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a b s t r a c t

In this paper we investigate the propagation of conical waves in nonlinear media. In particular, we
are interested in the effects resulting from applying a Gaussian apodization to an ideal nondiffracting
wave. First, we present a multiple scales approach to derive amplitude equations for weakly nonlinear
conical waves from a governing equation of cubic nonlinear Schrödinger type. From these equations we
obtain asymptotic solutions for the linear and the weakly nonlinear problem for which we state several
uniform estimates that describe the deviation from the ideal nondiffracting solution. Moreover, we show
numerical simulations based on an implementation of our amplitude equations to support and illustrate
our analytical results.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

A characteristic feature of wave propagation without waveg-
uides or other boundaries is the phenomenon of diffraction, namely
the spreading of energy transverse to the direction of propagation.
Diffraction compromises the ability of the waves to carry energies
over long distances. Nondiffracting waves are thus of considerable
practical and theoretical interest and have been studied in various
fields such as mathematics, physics, electromagnetics, and optics.

Themathematical analysis of nondiffracting solutions to the lin-
ear wave and the Helmholtz equation can be traced back as far as
a 1897 paper by Lord Rayleigh [1]. In his work, Lord Rayleigh de-
rives a family of special solutions in terms of Bessel functions for
electromagnetic waves traveling in a dielectric cylinder. In 1987,
Durnin and others rediscovered these solutions theoretically and
experimentally and introduced them as the so-called Bessel beams
to the optics community; see Durnin [2] andDurnin et al. [3]. Using
an appropriate integral representation of the Bessel functions it be-
comes apparent that these linear Bessel beams belong to the larger
family of conical waves, since they can bewritten as a superposition
of plane waves whose wave vectors all lie on a cone (see Fig. 1(a)).

Since in a linear medium plane waves are nondiffracting, so
too are conical waves. However, this also implies that these ideal
nondiffracting solutions have infinite energy and thus cannot be
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realized experimentally. A physically realizable, finite energy, ap-
proximation to these conical waves is obtained by apodization,
i.e., by introducing a cutoff transverse to the beam propagation.
Such apodized Bessel beams will eventually be affected by diffrac-
tive effects and can only persist in a finite region; see Fig. 1(b).

A common method in optics to approximate Bessel beams ex-
perimentally is described for example by McLeod [4] and McGloin
and Dholakia [5]. The main idea consists of focusing a Gaussian
beam through a conical lens, called an axicon, which refracts the
collimated beam and creates a conical superposition in a finite
Bessel region behind the lens; see Fig. 2. Theoretically, one can apply
a Gaussian apodization to a conical wave to create a finite energy
approximation. In the case of the aforementioned Bessel beams,
this leads to Bessel–Gauß beams; see Gori et al. [6], and Overfelt
and Kenney [7]. The concept has been used to study larger fam-
ilies of finite energy approximations for nondiffracting waves, in
the linear setting for example by Gutiérrez-Vega and Bandres [8],
Bandres and Guizar-Sicairos [9], and Graf et al. [10]. The resilience
of conical waves to diffraction makes them interesting objects of
study, even in a purely linear setting, with interesting applications
in optics and other fields. In particular, special nondiffracting so-
lutions are used frequently as building blocks in beam engineering
to assemble a beam with certain desirable properties for experi-
ments and applications; see for example Chong et al. [11], McGloin
et al. [12], Vasilyeu et al. [13], Lotti et al. [14], as well as Bandres
and Gutiérrez-Vega [15,8]. An important question that motivated
the research presented in this paper concerns the propagation be-
havior of such beams in a nonlinear medium. For example, one can
ask how the nonlinearity and apodization affect the characteristic
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(a) Conical waves are
superpositions of plane waves
whose wave vectors all lie on the
surface of a cone. However, they are
unphysical since they carry infinite
energy.

(b) A finite energy conical wave can
be viewed as a superposition of
apodized plane waves. The finite
conical region where the waves
interfere to create an almost
nondiffracting beam is often referred
to as the Bessel region.

Fig. 1. Infinite and finite energy conical waves.
Fig. 2. A Gaussian beam propagating in the positive z-direction is refracted by an
axicon lens. The double cone region where the resulting plane waves interfere to
form a conical wave is often referred to as the Bessel region.

features of the beam, especially the preservation of the transverse
profile and the resilience to diffraction; see Bandres and Gutiérrez-
Vega [15,8], Johannisson et al. [16], and Lotti et al. [14].

In this paper we present various uniform estimates that pro-
vide, among other results, bounds for the deviation of an asymp-
totic finite energy solution from an ideal nondiffracting solution.
These estimates can be derived froma fairly generalmultiple scales
approach that we apply in the linear and nonlinear setting and
which can also be used to develop numerical methods for simu-
lations and computer experiments. Our approach is based on the
asymptotic analysis of special solutions for a governing partial dif-
ferential equation (PDE) of nonlinear Schrödinger type. Although
nonlinear nondiffracting waves have been studied before, for ex-
ample by Johannisson et al. [16] using variational methods, to the
best of our knowledge the current PDE based approach and in par-
ticular the resulting uniform estimates have not been previously
described.

We start by stating the following problem. Consider the fol-
lowing initial value problem (IVP) in cylindrical coordinate system
(r, θ, z).

−i
∂A

∂z
=

1
2kz

∆⊥A + n2IkzA (1.1)

A(r, θ, 0) = E0 e
−

r2

L2 Jn

k⊥r


einθ . (1.2)

In the above equations, n is a positive integer and Jn the nth order
Bessel function.

A represents the (complex) amplitude of the electric field, n2 is
the secondorder nonlinear index of refraction (theKerr coefficient)
and I the intensity (irradiance) given by I = cn0ϵ0|A|

2/2 where
c is the speed of light, n0 is the refractive index of the medium
and ϵ0 is the vacuum permittivity. Since I ∝ |A|

2, Eq. (1.1) is
the dispersionless Nonlinear Schrödinger (NLS) equation [17]. We
consider the case of n2 > 0which corresponds to the focusing NLS.
kz is the longitudinal wave number and k⊥ is the transverse wave-
number.

Eq. (1.2) describes the initial condition for the NLS equation, in
the form of a Bessel function. E0 is the peak electric field for n = 0,
and for other n, it sets the scale of the electric field. The width of
the Gaussian apodization is controlled by the length scale L > 0.
In the above, the right-hand side of (1.2) corresponds to the initial
conditions for a nth-order Bessel beam. In the rest of the paper we
often use the integral representation

A(r, θ, 0) =
E0

2π in
e−

r2

L2

 2π

0
eia(x cos(φ)+y sin(φ)) einφ dφ,

where x = r cos θ, y = r sin θ are the cartesian coordinates
of a point with cylindrical coordinates (r, θ, z). Furthermore, our
discussion is mainly for the zeroth order Bessel beam (n = 0),
but the results can be extended to the more general case for
positive integers n. Note that throughout this paper we suppress
the harmonic time dependence of the solutions for brevity.

The goal of this paper is to derive amplitude equations for asym-
ptotic solutions to the IVP above and, most importantly, state uni-
form estimates for these asymptotic solutions that compare them
to the ideal nondiffracting solution. Thus, we obtain theoretical
confirmations of experimental observations and geometric optics
arguments concerning the geometry of the Bessel region. More-
over, we obtain in some cases new geometries that to our knowl-
edge have not been discussed in the literature previously.

There are several reasons to study problems of the form
(1.1), (1.2) in the nonlinear as well as the linear setting. Linear
Schrödinger type equations arise frequently in applied mathemat-
ics and other fields as paraxial approximations of wave propaga-
tion models; see for example Bamberger et al. [18,19], Grella [20].
In optics for example they arise in a PDE framework for diffraction
phenomena that is equivalent to the frequently used Kirchhoff in-
tegrals [20]. Similarly, the cubic NLS equation arises in nonlinear
optics as amodel for diffraction and Kerr effects, as well as amodel
for nonlinear wave propagation in fluid dynamics; see Sulem and
Sulem [21], Moloney and Newell [17], and Miller [22], as well as
Lotti et al. [14].

Remark 1.1 (Paraxial Equation). A linear Schrödinger equation
(often referred to as paraxial or paraxial wave equation) arises as
a model for diffraction in the paraxial limit for a linear medium
in optics; see Grella [20] and references therein. Here, we sketch
a heuristic argument for the derivation of the linear Schrödinger
equation from the Helmholtz equation in the paraxial limit. We
start with the Helmholtz equation
∆ + ω0

2 u(x, y, z) = 0 (1.3)

where ω0 ∈ R. Applying Fourier transforms with respect to x, y,
and z we obtain the dispersion relation

−kx2 − ky2 − kz2 + ω0
2

= 0.
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Furthermore, we make a paraxial approximation and assume that
the direction of propagation is close to the z axis, that is kx2+ky2 ≈

0. Next, we put

u(x, y, z) = v(x, y, z) exp(ikzz)

and assume v to depend slowly on z. Plugging into the Helmholtz
equation (1.3) yields∆⊥v + ω0

2v − kz2v  
≈0

+2ikz∂zv + ∂zzv
≈0

 exp(ikzz) = 0

where∆⊥ denotes the transverse Laplacianwith respect to x and y.
Neglecting the small terms we obtain for v the linear Schrödinger
equation

∆⊥v(x, y, z) = −2ikz∂zv(x, y, z).

As we have mentioned earlier conical waves, and in particular
Bessel beams, have been of tremendous interest in recent years to
theorists and experimentalists alike, for example because of the
property that they preserve their transverse profile during linear
propagation.

Remark 1.2 (Linear Bessel Beams).We can derive a solution for the
linear paraxial equation

−i
∂u
∂z

(x, y, z) = ∆⊥u(x, y, z) (1.4)

using a separation of variables ansatz in cylindrical coordinates

u(x) = v(r(x, y))w(z). (1.5)

Note that we assume rotational symmetry with respect to the
z-axis (propagation direction) and therefore use cylindrical coor-
dinates (r, θ, z), where r(x, y) =


x2 + y2. Plugging (1.5) into

Eq. (1.4) and separating variables yield for some constant a the
following Bessel type differential equation for v

r2 v′′(r) + r v′(r) + a2 r2 v(r) = 0. (1.6)

A solution of (1.6) is given by v(r) = J0(ar), where J0 denotes
the zeroth order Bessel function of the first kind; see also Lord
Rayleigh [1], Durnin [2] for a related discussion for the wave equa-
tion. Furthermore, we obtain for the second factor in (1.5) that
w(z) = exp(−ia2z). Hence, a solution of (1.4) is given by the
zeroth order Bessel beam

u(x, y, z) = J0

a

x2 + y2


exp(−ia2z).

Note that in the present paper we will be mostly concerned with
the integral representation

1
2π

 2π

0
eia(x cos(φ)+y sin(φ)) dφ exp(−ia2z)

= J0

a

x2 + y2


exp(−ia2z)

to describe Bessel beams. Asmentioned before, this integral is sim-
ply a superposition of plane waves whose wave vectors all lie on
the boundary of a cone; hence Bessel beams are a special class of
conical waves. Moreover, if we allow the solution to vary in the an-
gular direction of φ, we obtain higher order Bessel beams corre-
sponding to the Bessel functions Jn for positive integers n. More
precisely, we obtain solutions of the form

(−i)n

2π

 2π

0
einφ eia(x cos(φ)+y sin(φ)) dφ exp(−ia2z)

= Jn

ar

einθ exp(−ia2z)

where (r, θ, z) are again cylindrical coordinates.
Problem (1.1), (1.2) was formulated for the practically impor-
tant case of two transverse dimensions (1+2D). Another interest-
ing extension of this model would also include dispersive effects
through a time derivative; we plan to return to this case in a sepa-
rate paper. However, it is curious to point out that even the seem-
ingly simple case with only one transverse dimension (1+1D) can
offer interesting new results and insights, as has been shown in
case of the discovery of 1+1D Airy waves by Berry and Balazs [23]
and the subsequent studies by Bandres and Gutiérrez-Vega [15],
and Lotti et al. [14]. Higher dimensional analogues, the so-called
Airy beams, are currently a very active research area with inter-
esting applications, for example in nanotechnology and beam en-
gineering (Dholakia and Cizmar [24], Siviloglou et al. [25], and
McGloin et al. [12]). In recent years there has been a number of in-
novative theoretical beams that have been engineered with inter-
esting properties inmind. A logical question is then to ask inwhich
way these characteristics are preserved or altered when one intro-
duces an apodization in the problem to create a finite energy wave
or when nonlinear effects are taken into account. In this paper we
will develop amultiple scales framework for theNLS equation (1.1)
that allows us to consider diffractive effects arising from a Gaus-
sian apodization and nonlinear effects simultaneously. We obtain
sets of amplitude equations and asymptotic solutions forwhichwe
state several uniform estimates that describe rigorously the devia-
tions from the ideal nondiffracting beams.

This paper is organized as follows. In Section 2 we introduce
a multiple scales framework which we apply to derive a set of
amplitude equations and corresponding asymptotic solutions. In
Section 3we present ourmain results in form of uniform estimates
for asymptotic solutions in the linear and the nonlinear case. The
statements contain very characteristic geometric regions onwhich
the estimates hold. These are in good qualitative agreement with
the geometric optics description and experimental observation of
the Bessel region. Moreover, some of our estimates actually extend
to a region that cannot be explained with the geometric optics
approximation of light ray propagation but instead results from
a difference in phase and group velocity in the wave description.
In Section 4 we reduce the problem to the case of one transverse
dimension and compare the solutions of our amplitude equations
and the governing NLS equation to support our analytical results.
The latter section also discusses possible applications for numerical
simulations. In the final sectionwe summarize the previous results
and discuss potential extensions and applications.

2. Amplitude equations

In this section we describe a perturbative framework for the
derivation of asymptotic solutions to the IVP (1.1), (1.2). Eqs. (1.1)
and (1.2) are written in dimensional units, so we first begin by
nondimensionalizing these equations. We nondimensionalize all
the lengths in the problem by the longitudinal wavenumber kz .
Denoting nondimensional quantities with a tilde, we define

r̃ = 2kzr, z̃ = 2kzz, x̃ = 2kzx, ỹ = 2kzy.

In terms of the nondimensional lengths, we have

∂

∂z
= 2kz

∂

∂ z̃
, ∆⊥ = 4k2z ∆̃⊥.

WedefineA = E0u, where E0 is the peak electric field, so that u is a
non-dimensional electric field. Since the intensity is proportional
to the square of the electric field, we have I = β|u|2 where β is
a dimensional constant, whose value depends on E0. Substituting
these rescalings in (1.1) yields

−i
∂u
∂ z̃

= ∆̃⊥u +
n2β

2
|u|2u. (2.1)
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The linear part of this equation is identical to (1.4). Applying the
rescalings to the initial condition (1.2) with n = 0 yields

u(r̃, θ, 0) = J0(ar̃)e−r̃2/N2

where a and N are the nondimensionalization of k⊥ and L respec-
tively, so that

a =
k⊥

2kz
, N = 2kzL.

This definition of a allows us to connect this initial condition to the
previously considered solution of (1.6). Finally, we observe that we
can determine β in terms of the total power P of the beam. The
(dimensional) intensity of the initial condition is given by

I = β|u(r̃, θ, 0)|2 = βI0J20 (ar̃)e
−2r̃2/N2

.

The total power is obtained by integrating this expression over the
transverse profile of the beam so we have

P = 2πβ


∞

0
J20 (ar̃)e

−2r̃2/N2
r dr =

πβN2

8k2z
e−

1
4 a

2N2
I0


a2N2

4


where I0 is the modified Bessel function of the first kind [26]. Note
that aN = k⊥L in terms of the dimensional quantities, and we
are interested in the regime where the central lobe of the Bessel
beam is much smaller than the radius of the apodization, so that
k⊥L ≫ 1. Expanding the function I0 for large values of its argu-
ment [26], we obtain

P =


π

2
βN
4k2za

.

From this expression, we get

β =


2
π

4k2zaP
N

=


2
π


k⊥P
L


(2.2)

Remark 2.1. With our rescaling, the nondimensional electric field
at r = 0 is u = 1. Consequently the intensity of the Bessel beam
at the central peak is β . It is known that every side lobe of the
Bessel beam has nearly the same total power [5]. Since the total
number of lobes in the apodized beam of radius L is proportional
k⊥L, the power per lobe is proportional to P/(k⊥L). In particular,
for the central peak, which has a transverse radius r0 ∝ 1/k⊥, we
see that the intensity is given by

β ∝
P

k⊥L
1
r20

=


k⊥P
L


in agreement with (2.2).

From this point, we will work with the nondimensional equa-
tions obtained by the above rescaling. We henceforth drop the
tildes on r̃, z̃, x̃ and ỹ for clarity of presentation. Using the expres-
sion from (2.2) in (2.1), we obtain the dimensionless version of the
IVP (1.1), (1.2) as

−i
∂u
∂z

(x, y, z) = ∆x,yu(x, y, z) ± ϵ|u|2u(x, y, z)

=
∂2u
∂x2

(x, y, z) +
∂2u
∂y2

(x, y, z)

± ϵ|u|2u(x, y, z), (2.3)

u(x, y, 0) =
1
2π

e−
x2+y2

N2

 2π

0
eia(x cos(φ)+y sin(φ)) dφ

= J0

ar

e−

r2

N2 . (2.4)
The IVP has 3 dimensionless parameters, namely

ϵ =
1

√
2π

n2k⊥P
L

, a =
k⊥

2kz
, N = 2kzL.

In a typical situation of a laser in air, we have λ = 800 nm so
kz ≈ 8×106 m−1, n2 = 10−23 m2/W, P = 3×1010 W, L = 1 cm =

10−2 m, radius of the central lobe = r0 = 10 µm and the first zero
of J0 is approximately 2.405 so that k⊥ ≈ 2.4/r0 = 2.4× 105 m−1.
Consequently,

ϵ ≈ 3 × 10−6, a ≈ 1.5 × 10−2, N ≈ 1.6 × 105.

ϵ denotes the nondimensional strength of the nonlinearity (with
our normalization in terms of the peak electric field) or equiva-
lently the nonlinear change in the refractive index near the cen-
tral peak. N is a nondimensional measure of the apodization; in
particular the number of Bessel rings in the apodized beam is pro-
portional to aN .

We observe that ϵ ≈ 3×10−6 and N−1
≈ 6×10−6 are compa-

rable in magnitude andmuch smaller than one. This observation is
key to our analysis as we discuss below.

Remark 2.2. In the above rescaling, the non-dimensional peak
electric field is set to 1, and the nonlinear coefficient ϵ is then
determined by the parameters of the problem. Alternatively, we
can pick the rescaling A =

E0
α
u. In this case, the peak amplitude is

α, and the same analysis as above yields

ϵ =
1

√
2π

n2k⊥P
Lα2

.

We can now pick α to set ϵ to any desired positive value. In
particular, we can pick α to be O(1) and make ϵ = N−1 exactly.
Of course, the price we pay is that the initial condition will now
read

u(r, θ, 0) = αJ0

ar

e−

r2

N2

=
α

2π
e−

x2+y2

N2

 2π

0
eia(x cos(φ)+y sin(φ)) dφ

where

α =

√
2n2kzk⊥P
(2π)1/4

instead of α = 1 as in the above rescaling.

2.1. Multiple scales analysis and amplitude equations

Exploiting the fact thatN−1
≪ 1, wemake the following ansatz

for an asymptotic expansion of the solution

u(x, y; z) = u0(X, Y , Z1, Z2) +
1
N
u1(X, Y , Z1, Z2)

+
1
N2

u2(X, Y , Z1, Z2) + · · · . (2.5)

Furthermore, we assume that the first order contribution u0 is of
the form of a linear conical superposition, but with slowly varying
amplitudes. Thus, we put

u0(X, Y , Z1, Z2)

=

 2π

0
Aφ(X, Y , Z1, Z2) eia(x cos(φ)+y sin(φ)) dφ e−ia2z (2.6)

where the slowly varying amplitudes depend on the variables

X = x/N, Y = y/N, Z1 = 2az/N, Z2 = z/N2. (2.7)
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Next, we combine Eq. (2.5) with (2.6) and plug into the governing
PDE in (2.3). For the present paper we assume that the strength
of the nonlinearity is of order ϵ = O(1/N). Then, by Remark 2.2,
we can set ϵ = 1/N without loss of generality. In what follows,
we also assume that the initial condition is J0(ar)e−r2/N2

i.e we
choose α = 2π . This choice simplifies the algebra, although the
conclusions we draw and the multiple scale approach we develop
are also valid for any choice of α which is O(1) as N → ∞.

Collecting the coefficients of powers of 1/N we obtain the fol-
lowing amplitude equations.
Order O(1/N): 2π

0


∂Aφ

∂Z1
+ cos(φ)

∂Aφ

∂X
+ sin(φ)

∂Aφ

∂Y
−

i
2a

|u0|
2Aφ


× eia(x cos(φ)+y sin(φ)) dφ = 0. (2.8)

Order O(1/N2): 2π

0


i
∂Aφ

∂Z2
+

∂2Aφ

∂X2
+

∂2Aφ

∂Y 2


eia(x cos(φ)+y sin(φ)) dφe−ia2z

+ i
∂u1

∂Z1
+ 2|u0|

2u1 + u0
2u∗

1 = 0. (2.9)

Remark 2.3. (i) Observe that the above scheme can be continued,
at least formally, to arbitrary orders of 1/N .

(ii) With the assumption ϵ = O(1/N), the nonlinearity enters
the amplitude equations as soon as possible for a weak
nonlinearity within our framework. We also avoid tautologies
since, for example, the choice ϵ = O(1/N2) would reproduce
a cubic NLS for the nonlinear amplitude equations at order
O(1/N2) while we would recover the linear equations at order
O(1/N).

2.2. Asymptotic solutions based on amplitude equations

We observe that (2.8) holds if

∂Aφ

∂Z1
= − cos(φ)

∂Aφ

∂X
− sin(φ)

∂Aφ

∂Y
+

i
2a

|u0|
2Aφ (2.10)

for all φ ∈ [0, 2π ]. Next, we derive asymptotic solutions to the
nonlinear amplitude equations in (2.10) and the corresponding
linearization. These will be the starting point for the derivation of
several uniform estimates that compare asymptotic solutions to
the ideal Bessel beam as well as the ideal Bessel beam apodized
with a Gaussian.

2.2.1. Linear amplitude equations
We consider first the linearization of Eq. (2.10) given by

∂Aφ

∂Z1
= − cos(φ)

∂Aφ

∂X
− sin(φ)

∂Aφ

∂Y
(2.11)

which corresponds to the linear Schrödinger equation (ϵ = 0) as
the governing equation. From (2.11) we conclude that

Aφ(X, Y , Z1) = Ãφ(X − cos(φ)Z1, Y − sin(φ)Z1). (2.12)

Since Aφ(X, Y , Z1 = 0) = Ãφ(X, Y ) = e−(X2
+Y2) we obtain in the

linear case the solution

Aφ(X, Y , Z1) = e−((X−2a cos(φ)Z1)2+(Y−2a sin(φ)Z1)2), (2.13)

and hence Eq. (2.5) yields

u ≈ ũlin =

 2π

0
e−((X−2a cos(φ)Z1)2+(Y−2a sin(φ)Z1)2)

× eia(x cos(φ)+y sin(φ)) dφ e−ia2z . (2.14)
2.2.2. Characteristic variables
Observe that in (2.12) we have introduced characteristics

variables

ξ = X − cos(φ)Z1 and ζ = Y − sin(φ)Z1.

If we consider Aφ along a characteristic curve (X(s), Y (s), Z1(s)),
parametrized by s ≥ 0, we obtain that

d
ds

Aφ(X(s), Y (s), Z1(s)) = Ẋ
∂Aφ

∂X
+ Ẏ

∂Aφ

∂Y
+ Ż1

∂Aφ

∂Z1
.

Thus, we put

Ż1 = 1, Ẋ = cos(φ), and Ẏ = sin(φ).

From the above we conclude that

Z1 = s, X = X0 + cos(φ)s, and Y = Y0 + sin(φ)s

where (X0, Y0) is the starting point of the characteristic line.

2.2.3. Nonlinear amplitude equations
For the full (i.e. nonlinear) amplitude equations (2.10), we ob-

tain similarly to the previous discussion in Sections 2.2.1 and 2.2.2
that along a characteristic curve

d
ds

Aφ(X(s), Y (s), Z1(s))

= i|u0(X(s), Y (s), Z1(s))|2 Aφ(X(s), Y (s), Z1(s))

holds. Hence, we conclude that Aφ is determined implicitly by

Aφ(s) = Aφ(0) ei
 s
0 |u0(s′)|2 ds′

= e−(X02+Y02) ei
 s
0 |u0(X0+cos(φ)s′,Y0+sin(φ)s′,s′)|2 ds′

sincewe recall from (2.6) that the conical superposition u0 depends
on the slowly varying amplitudes. Returning to the original Carte-
sian coordinates the above yields

Aφ(X, Y , Z1) = e−((X−cos(φ)Z1)2+(Y−sin(φ)Z1)2)

× ei
 Z1
0 |u0(X−cos(φ)Z1+cos(φ)s′,Y−sin(φ)Z1+sin(φ)s′,s′)|2 ds′ .

Hence, using the conical superposition assumption (2.6) for u0 we
obtain the asymptotic solution

u ≈ unl = e−ia2z
 2π

0
dφ e−((X−2a cos(φ)Z1)2+(Y−2a sin(φ)Z1)2)

× eia(x cos(φ)+y sin(φ))

× ei
 2az/N
0 |u0((X−2a cos(φ)Z1)+cos(φ)s′,(Y−2a sin(φ)Z1)+sin(φ)s′,s′)|2 ds′ . (2.15)

3. Main results

3.1. Linear Bessel and Bessel–Gauß beams

We start by considering the linear part of Eq. (2.3), which cor-
responds to the case ϵ = 0. We put for brevity

pφ(x, y) := x cosφ + y sinφ. (3.1)

For the corresponding linear IVP (2.3) with ϵ = 0, (2.4) it is
straight forward to check that we obtain solutions of the form 2π

0
A(φ)eia(x cos(φ)+y sin(φ)) dφ e−ia2z . (3.2)

Here the functions A(φ) denote the (possibly complex) amplitudes
of the plane wave components of a conical superposition. We
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introduce the following notation for ideal zeroth order Bessel
beams

u∞ =

 2π

0
eiapφ (x,y) dφ e−ia2z

= 2π J0

a

x2 + y2


e−ia2z . (3.3)

Recall that we have already derived amplitude equations (2.11)
and corresponding asymptotic solutions (2.14) in Section 2 using
a slowly varying amplitude approach.

3.1.1. Asymptotic linear Bessel–Gauß beams
Recall that we found in Eq. (2.14) the asymptotic solution given

by

ũ(1)
lin =

 2π

0
e−(X−cos(φ)Z1)2e−(Y−sin(φ)Z1)2eiapφ (x,y) dφ


e−ia2z . (3.4)

Using the Taylor expansion of the exponential function we obtain
a second approximation given by

ũ(2)
lin =

 2π

0
eiapφ (x,y) dφ


e−ia2z  

u∞(x,y,z)

+

 2π

0


(X − cos(φ)Z1)2(Y − sin(φ)Z1)2

− (X − cos(φ)Z1)2 − (Y − sin(φ)Z1)2

eiapφ (x,y)dφ


e−ia2z . (3.5)

Remark 3.1. Note that the first term in the expression for ũ(2)
lin in

Eq. (3.5) coincides with the ideal Bessel beam u∞ in (3.3).

3.1.2. Estimates for asymptotic Bessel–Gauß beams
Next we will state and prove some uniform estimates for

asymptotic solutions that provide bounds for the deviation from
the ideal conical wave solutions and the apodized initial condition.
In particular, from the characteristic lines we will obtain cone seg-
ments as the regions where these estimates are valid. The conical
regions in our estimates are in good agreement with the Bessel re-
gions depicted in Figs. 1(b) and 2. However, rigorous estimatesmay
only hold on segments and not over the whole conical region.

The observation in Remark 3.1 suggests to look for estimates of
the absolute error

|u∞(x, y, z) − ũ(2)
lin (x, y, z)|,

to compare the behavior of the approximate Bessel–Gauß beam to
the ideal Bessel beam. It follows from Eqs. (3.3) and (3.5) that

|u∞ − ũ(2)
lin | ≤ 2π


(|X | + Z1)2 + (|Y | + Z1)2


+ 2π(|X | + Z1)2(|Y | + Z1)2. (3.6)

To estimate the terms (|X |+Z1)2+(|Y |+Z1)2 and (|X |+Z1)2(|Y |+

Z1)2 in (3.6) we consider now the solid cone

C
(1)
N,a :=


(x, y, z) :


x2 + y2 ≤ 2az


. (3.7)

For ϵ > 0 and (x, y, z) ∈ C
(1)
N,a we have

|x| + 2az
N

≤


x2 + y2 + 2az

N
≤

4az
N

≤
√

ϵ (3.8)
where the right-hand side holds if

z ≤ zϵ =

√
2ϵN
8a

. (3.9)

Similarly, we also find that

|y| + 2az
N

≤


x2 + y2 + 2az

N
≤

4az
N

≤
√

ϵ (3.10)

if (3.9) is satisfied. Therefore, we have

(|X | + Z1)2 ≤
ϵ

4π
and (|Y | + Z1)2 ≤

ϵ

4π
(3.11)

if (x, y, z) ∈ C
(1)
N,a(ϵ) where we denote by

C
(1)
N,a(ϵ) :=


(x, y, z) :


x2 + y2 ≤ 2az, z ≤

√
ϵN

8a
√

π


(3.12)

the segment of C̃N,a bounded by the plane {(x, y, π−1/2zϵ)}. From
the previous observations we obtain a uniform estimate for the
right-hand side of (3.6).

Theorem 3.1. Let ϵ > 0. Then for all (x, y, z) ∈ C
(1)
N,a(ϵ) we have

|u∞ − ũ(2)
lin | ≤ ϵ +

ϵ2

8π
. (3.13)

Proof. It follows from (3.6) and (3.11) that

|u∞ − ũ(2)
lin | ≤ 2π

1
2π

ϵ + 2π
ϵ2

16π2
= ϵ +

ϵ2

8π
. �

Similarly to Theorem 3.1 we can estimate the deviation of an
asymptotic solution from the apodized ideal solution. To do so, we
approximate the asymptotic solution in (3.4) by

ũ(3)
lin (x, y, z) =

 2π

0
e−(X2+Y2)eiapφ(x,y) dφ


e−ia2z

+

 2π

0
e−(X2+Y2)


2pφ(X, Y )Z1 − Z12


eiapφ(x,y) dφ


e−ia2z . (3.14)

Thus, we obtain the estimate

|ũ(3)
lin − e(x2+y2)/N2

u∞|

≤ 2π
2 max

φ∈[0,2π ]

(X cosφ + Y sinφ) − Z1

 Z1. (3.15)

Case 1: Consider the cone

C
(2)
N,a :=


(x, y, z) :


x2 + y2 ≤ az


. (3.16)

Then we obtain from (3.15) the inequality

|2(X cosφ + Y sinφ) − Z1| ≤
4az
N

(3.17)

for (x, y, z) ∈ C
(2)
N,a. Furthermore, we conclude from (3.15) and

(3.17) that

2π
2 max

φ∈[0,2π ]

(X cosφ + Y sinφ) − Z1

 Z1 ≤
4π
N2

(2az)2 ≤ ϵ (3.18)

when

z ≤
N

√
ϵ

4a
√

π
.

Hence, we put

C
(2)
N,a(ϵ) :=


(x, y, z) :


x2 + y2 ≤ az, z ≤

N
√

ϵ

4a
√

π


. (3.19)

With the above observations we can now state the following
theorem.
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Fig. 3. The geometry of the conical regions C
(1)
N,a (solid lines), C(2)

N,a (dashed lines),
and C

(3)
N,a (dotted lines). The uniform estimates stated in Section 3 are valid on

segments of these regions. The estimates compare an asymptotic solution to an
ideal nondiffracting solution u∞; see (3.3), or an apodized nondiffracting solution
e−x2/N2

u∞ . Note the common features of the geometry above and the geometries
of the Bessel regions shown in Figs. 1(b) and 2 and discussed in Section 1.

Theorem 3.2. Let ϵ > 0. Then for all (x, y, z) ∈ C
(2)
N,a(ϵ) we have

|e−(x2+y2)/N2
u∞ − ũ(3)

lin | ≤ ϵ. (3.20)

Proof. The statement in (3.20) follows immediately from (3.15)
and (3.18). �

Case 2: Now we consider the cone

C
(3)
N,a :=


(x, y, z) :


x2 + y2 ≤ N − az


(3.21)

and the segment

C
(3)
N,a(ϵ) :=


(x, y, z) :


x2 + y2 ≤ N − az, z ≤

Nϵ

8aπ


. (3.22)

We obtain the following estimate.

Theorem 3.3. Let ϵ > 0. Then for all (x, y, z) ∈ C
(3)
N,a(ϵ) we have

|e−(x2+y2)/N2
u∞ − ũ(3)

lin | ≤ ϵ. (3.23)

Proof. The statement in (3.23) follows immediately from (3.15)
and the fact that2 max

φ∈[0,2π ]

(X cosφ + Y sinφ) − Z1

 ≤ 2Z1. �

The geometry of the conical regions that are considered in the
above estimates is illustrated in Fig. 3. At this point we emphasize
the striking resemblance to the geometries of the Bessel regions
discussed in Section 1; see Figs. 1 and 2.

Remark 3.2 (Group Versus Phase Velocity). Note that in Theo-
rem 3.1 the boundaries of the cone changed in the transverse di-
rections at a rate equal to the group velocity of the conical wave
while in Theorems 3.2 and 3.3 this happens at the phase velocity.
This suggests that the Bessel regionmay actually be larger than the
geometric optics argument illustrated in Fig. 2 predicts.

3.2. Nonlinear Bessel–Gauß beams

We return in this section to the cubic nonlinear Schrödinger
equation and consider again the IVP (2.3), (2.4), but now with
ϵ > 0. Recall that we have already derived amplitude equations
(2.10) and asymptotic solutions (2.15) for this case in Section 2.
Since in this paper we are primarily interested in weak nonlin-
earities we assume that the nonlinearity introduces only a small
perturbation into the linear system. Hence, we use the previously
found linear solutions to express the nonlinear |u|2 term up to or-
der 1/N . In particular, ifwe omit the phasemodulation arising from
the nonlinearity in (2.15)we recover the linear asymptotic solution
(2.14). Thus, we linearize the NLS (2.3) by using the linear solution
or a linear asymptotic solution from (2.14), (3.4), or (3.5). Thus, we
obtain the following possible expressions for the nonlinearity.

F = |ũlin|
2, F̃ = |ũ(1)

lin |
2,

˜̃F = |ũ(2)
lin |

2. (3.24)

In the present paper we focus on nonlinearity which enters in the
amplitude equations at order 1/N , and in the upcoming discussion
we employ the last term in (3.24) to keep our analysis tractable.
We believe however, that our arguments can be extended even to
the nonlinear situation.

Combining one of the above expressions with Eq. (2.3) we ob-
tain an equation of the form

∂

∂t
u(x, y, z) = ∆x,yu(x, y, z) ± ϵFnl(x, y, z)u(x, y, z) (3.25)

where Fnl(X, Y , Z1) = F , F̃ , or ˜̃F as defined in (3.24). In particular,
the amplitude equation derived in (2.10) takes the form

∂Aφ

∂Z1
(X, Y , Z1, Z2) = − cos(φ)

∂Aφ

∂X
(X, Y , Z1, Z2)

− sin(φ)
∂Aφ

∂Y
(X, Y , Z1, Z2)

± i
1
2a

fnl(X, Y , Z1)Aφ(X, Y , Z1, Z2) (3.26)

where we express the term Fnl in the slow variables as fnl(X, Y , Z1).

3.2.1. Asymptotic nonlinear Bessel–Gauß beams
We obtain the following asymptotic solution for the nonlinear

IVP

ũ(0)
nl = e−ia2t

 2π

0
e−(X−Z1 cos(φ))2e−(Y−Z1 sin(φ))2eia(x cos(φ)+y sin(φ))

× e±i
 Z1
0 fnl(X−Z1 cos(φ)+σ cos(φ),Y−Z1 sin(φ)+σ sin(φ),σ ) dσ dφ. (3.27)

Using the Taylor series of the exponential function we obtain

ũ(1)
nl =

 2π

0
e−(X−Z1 cos(φ))2e−(Y−Z1 sin(φ))2eia(x cos(φ)+y sin(φ)) dφ e−ia2t  

ũlin(x,t)

± i
 2π

0
e−(X−Z1 cos(φ))2e−(Y−Z1 sin(φ))2eia(x cos(φ)+y sin(φ))

×

 Z1

0
fnl(X + (σ − Z1) cos(φ), Y + (σ − Z1) sin(φ), σ ) dσ


× dφ e−ia2t . (3.28)

Furthermore, we also obtain

ũ(2)
nl =

 2π

0
eia(x cos(φ)+y sin(φ)) dφ e−ia2z  

u∞(x,t)

−

 2π

0
(X − Z1 cos(φ))2eia(x cos(φ)+y sin(φ)) dφ e−ia2z

−

 2π

0
(Y − Z1 sin(φ))2eia(x cos(φ)+y sin(φ)) dφ e−ia2z
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+

 2π

0
(X − Z1 cos(φ))2(Y − Z1 sin(φ))2

× eia(x cos(φ)+y sin(φ)) dφ e−ia2z

± i
 2π

0
(1 − (X − Z1 cos(φ))2)(1 − (Y − Z1 sin(φ))2)

×

 Z1

0
fnl(X + (σ − Z1) cos(φ), Y

+ (σ − Z1) sin(φ), σ ) dσ


× eia(x cos(φ)+y sin(φ)) dφ e−ia2z . (3.29)

3.2.2. Uniform estimates

If we consider Eq. (3.25)with Fnl =
˜̃F thenwe can find estimates

relating the linear and nonlinear solutions. First we make the
following observation.

Remark 3.3. Observe that for Fnl =
˜̃F as defined in (3.24) we have

˜̃F = |ũ(2)
lin |

2
≤


2π +

 2π

0
(X + Z1)2 dφ +

 2π

0
(Y + Z1)2 dφ

+

 2π

0
(X + Z1)2(Y + Z1)2 dφ

2

.

Hence, for all (x, y, z) contained in the cone segment

C
(1)
N,a(ϵ) :=


(x, y, z) :


x2 + y2 ≤ 2az, z ≤

√
ϵN

8a
√

π


(3.30)

we have (X + Z1)2 ≤ ϵ/(4π) and (Y + Z1)2 ≤ ϵ/(4π). We obtain
thus

|ũ(2)
lin |

2
≤


2π + ϵ +

ϵ2

8π

2

.

With the observations made in Remark 3.3, we obtain the
following estimate.

Theorem 3.4. Let ϵ > 0. Then for all (x, y, z) in the solid cone
segment C

(1)
N,a(ϵ) we have the following estimates

(i)

|ũlin − ũ(1)
nl | ≤

√
π

2
√

ϵ


2π + ϵ +

ϵ2

8π

2

= π3/2√ϵ + o(ϵ),

(ii)

|u∞ − ũ(2)
nl | ≤

√
π

2
√

ϵ


2π + ϵ +

ϵ2

8π

2

+ ϵ +
ϵ2

8π

= ϵ + π3/2√ϵ + o(ϵ).

Proof. (i) Combining (3.4) and (3.28) we obtain

|ũlin − ũ(1)
nl | ≤

 2π

0

 Z1

0
|fnl(X + (σ − Z1) cos(φ), Y

+ (σ − Z1) sin(φ), σ )| dσ


dφ.
From the above considerations and Remark 3.3 we obtain

|ũlin − ũ(1)
nl | ≤ 2π

2a
N

√
ϵN

8a
√

π


2π + ϵ +

ϵ2

8π

2

=

√
π

2
√

ϵ


2π + ϵ +

ϵ2

8π

2

.

(ii) To show that the second statement holds, we consider

|u∞ − ũ(2)
nl | ≤

 2π

0
(X − Z1 cos(φ))2 dφ

+

 2π

0
(Y − Z1 sin(φ))2 dφ

+

 2π

0
(X − Z1 cos(φ))2(Y − Z1 sin(φ))2 dφ

+

 2π

0

 Z1

0

fnl(Xσ ,φ, Yσ ,φ, σ )
 dσ dφ.

Here we denote Xσ ,φ = X + (σ − Z1) cos(φ), Yσ ,φ = Y + (σ −

Z1) sin(φ). From the previous observations and Remark 3.3 we
obtain – similarly to the proof of (i) – the following

|u∞ − ũ(2)
nl | ≤ ϵ +

ϵ2

8π
+

√
π

2
√

ϵ


2π + ϵ +

ϵ2

8π

2

. �

Next, we consider the asymptotic solution

ũ(3)
nl = e−ia2z


e−(X2

+Y2)

 2π

0
eiapφ (x,y) dφ

+ e−(X2
+Y2)

 2π

0


2
pφ(x, y)

N
− Z1


Z1eiapφ (x,y) dφ

± ie−(X2
+Y2)

 2π

0


1 + 2

pφ(x, y)
N

Z1 − Z12


×

 Z1

0
fnl(Xσ ,φ, Yσ ,φ, σ ) dσ eiapφ (x,y) dφ


. (3.31)

Note that the right-hand side term in the first line of (3.31) corre-
sponds to the apodized ideal solution while we recover the linear
asymptotic solution (3.14) from the first and second lines. This sug-
gests to look for uniform estimates of

|ũ(3)
nl − e−(x2+y2)/N2

u∞| (3.32)

and

|ũ(3)
nl − ũ(3)

lin |. (3.33)

Case 1: Consider again the coneC
(2)
N,a aswell as the segmentC

(2)
N,a(ϵ)

defined in (3.16) and (3.19), respectively. Moreover, we define

C
(2′)
N,a (ϵ) :=


(x, y, z) ∈ C

(2)
N,a : z ≤

N
√

ϵ

8a
√

π


. (3.34)

In analogy to Theorem 3.2 we state the following.

Theorem 3.5. Let ϵ > 0. Then for all (x, y, z) ∈ C
(2′)
N,a (ϵ) we have

(i)

|e−(x2+y2)/N2
u∞ − ũ(3)

nl | ≤ ϵ +

√
π

2
√

ϵ + o(ϵ), (3.35)

(ii)

|ũ(3)
nl − ũ(3)

lin | ≤

√
π

2
√

ϵ + o(ϵ). (3.36)
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Fig. 4. Plots of the initial conditions (z = 0.0) for a comparison of numerical solutions for NLS and amplitude equations (top left: absolute value/intensity, bottom left: real
part, top and bottom right: absolute error between absolute value and real part of the NLS and asymptotic solution, respectively). Here uNLS denotes the solution of the NLS
equation while we solve the amplitude equations on a coarser grid and use cubic spline interpolation to compute the asymptotic solution uspline .
Proof. The statements follow from (3.18) and Remark 3.3. �

Case 2: Now we recall the definition of C
(3)
N,a and C

(3)
N,a(ϵ) in (3.21)

and (3.22), respectively. We put

C
(3′)
N,a (ϵ) := C

(3)
N,a(ϵ) ∩ C

(1)
N,a(ϵ). (3.37)

We obtain the following estimate.

Theorem 3.6. Let ϵ > 0. Then for all (x, y, z) ∈ C
(3′)
N,a (ϵ) we have

(i)

|e−(x2+y2)/N2
u∞ − ũ(3)

nl | ≤ ϵ +

√
π

2
√

ϵ + o(ϵ), (3.38)

(ii)

|ũ(3)
nl − ũ(3)

lin | ≤

√
π

2
√

ϵ + o(ϵ). (3.39)

Proof. The statements also follow from (3.18) and Remark 3.3. �

4. Numerical evaluation of the multiple scales approach

In this section we present the results of several numerical ex-
periments based on an implementation of our amplitude equa-
tions. First, we discuss briefly the analogue of our multiple scales
analysis in one transverse dimension (1+1D). Thenwewill discuss
numerical experiments that compare the numerical solution ob-
tained from our amplitude equations to the result of a standard
split-step Fourier method.
4.1. Asymptotic analysis in 1+1D

Observe that themultiple scales analysis presented in Section 2
can also be used to derive amplitude equations in the case of only
one transverse dimension. The appropriate IVP in this case takes
the form

−i
∂u
∂z

=
∂2u
∂x2

± ϵ|u|2u, (4.1)

u = e−x2/N2
(eiax + e−iax). (4.2)

We obtain the following set of amplitude equations

−i
∂A+

∂Z1
=

∂A+

∂X
± ϵ|u0|

2A+, (4.3)

−i
∂A−

∂Z1
= −

∂A−

∂X
± ϵ|u0|

2A−, (4.4)

where the asymptotic solution is of the form

u(x; z) ≈ A+(X, Z1, Z2) eiax + A−(X, Z1, Z2) e−iax. (4.5)

Once we have derived our amplitude equations, we can proceed
analogously to Section 3 and obtain uniform estimates similar to
the 1+2D case. Although the case of two transverse dimensions
appears to be more relevant in applications, the 1+1D case often
provides new and important insights; see for example Berry and
Balasz [23], Bandres and Gutiérrez-Vega [15], and Lotti et al. [14]
for related discussions of Airy beams in 1+1D.
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Fig. 5. Comparison of numerical solutions for NLS and amplitude equations, z = 1.0; uNLS denotes the solution of the NLS equation while we solve the amplitude equations
on a coarser grid and use cubic spline interpolation to compute the asymptotic solution uspline .
4.2. Numerical experiments

For the 1+1D case we have implemented numerical solvers for
the focusing NLS equation (4.1) and the corresponding amplitude
equations (4.3), (4.4) using a standard split-step Fourier method.
Furthermore, we solve the amplitude equations on a significantly
coarser grid than the NLS equation. To reconstruct the asymptotic
solution (4.5) on the fine grid, we use a cubic spline interpolation
method. The numerical methods were implemented in Python
using the boxSciPy [27] and matplotlib [28] libraries.

Remark 4.1 (Split-Step Fourier Method). Consider a nonlinear PDE
of the form

−i
∂u
∂z

=
∂2u
∂x2

+ |u|2u, (4.6)

with initial conditions

u(x; 0) = u0(x). (4.7)

Then a numerical approximation of the IVP (4.6), (4.7) can be
computed at z + ∆z with the following split-step scheme, starting
with u(0)

= u0(x).

1. Nonlinear half-step: Solve for a step length 1
2∆z the nonlinear

problem

−i
∂u
∂z

= |u|2u.

Put

u(n+1)
= u(n) exp(i|u(n)

|
2∆z/2).
2. Linear full-step: Solve for a step length ∆z the linear problem

−i
∂u
∂z

=
∂2u
∂x2

.

Put

u(n+1)
= F −1

[F [u(n+1)
] exp(−ikx2∆z)]

whereF andF −1 denote the Fourier transformwith respect to
x and its inverse, respectively.

3. Nonlinear half-step: Solve for a step length 1
2∆z the nonlinear

problem

−i
∂u
∂z

= |u|2u.

Put

u(n+1)
= u(n+1) exp(i|u(n+1)

|
2∆z/2).

We refer for example to Taha and Ablowitz [29], Weideman and
Herbst [30] for a more detailed discussion.

In the following experiments we use a transverse grid with
212 grid points in the interval [−500, 500] to solve the NLS (4.1)
with a split-step Fourier method (see Remark 4.1). To solve the
amplitude equations we use a coarser grid with only 26 grid
points. We interpolate between the two grids using a cubic spline
interpolationmethod.Moreover, we fix the parametersN = 100.0
and a = 0.1. Fig. 4 shows the absolute value and real part of the
initial conditions for z = 0 in the left column. We solve the NLS
and amplitude equations for z = 1.0, 5.0, 10.0 numerically (left
columnFigs. 5–7) and compare the results (right columnFigs. 5–7);
see Table 1 for a summary of the propagation intervals and number
of grid points.
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Fig. 6. Comparison of numerical solutions for NLS and amplitude equations, z = 5.0; uNLS denotes the solution of the NLS equation while we solve the amplitude equations
on a coarser grid and use cubic spline interpolation to compute the asymptotic solution uspline .
Table 1
Choice of parameters for the propagation grids in the numerical experiments.

Interval (z) Number of grid points

[0.0, 1.0] 10
[0.0, 5.0] 50
[0.0, 10.0] 100

The plots in Figs. 4–7 show that our amplitude equations
can be used to compute good approximations to the real part
and the absolute value (intensity) of the transverse profile. The
left column contains plots of the absolute value (top) and real
part (bottom) while the plots in the right column show the
difference between the solution to the NLS equation and the
amplitude equations. Since we use a significantly coarser grid for
the amplitude equations, we do not have exact agreement for the
initial conditions in Fig. 4. However, although we use only 26 out
of 212 for the amplitudes, the error between the solution of the
NLS equation (uNLS) and the asymptotic solution (uspline) is less
than 5 · 10−5 if we use a cubic spline interpolation while simple
linear interpolation would only allow for reduction of the coarse
grids to around 210 grid points. After propagating one unit in nine
steps we see in Fig. 5 that the error for the real part is still at the
same order of magnitude as that for the initial interpolation error
in Fig. 4. After five units the maximal errors in Fig. 6 are around
2%. Even after propagating for ten units, as shown in Fig. 7, the
maximal errors are well below 10%. We also point out here that
changing the parameters a and N confirms that the accuracy of
the approximation depends on the ratio N/a and not solely on the
Gaussian width N; this dependency can also be seen directly in the
uniform estimates in Section 3.
The experiments described above suggest that the amplitude
equations derived in Section 3 may be useful tools for numeri-
cal simulations in the 1+2D case as well. A significant compli-
cation consists in the fact that the conical waves in 1+2D are in
general not a discrete superposition but are instead generated by
an uncountable family of plane waves; see for example Eq. (3.2).
Thus, the need to approximate the wave vector cone by a discrete
polyhedron causes a loss of accuracy andmay increase the compu-
tational effort. We believe that the investigation of the aforemen-
tioned discrete conical wavesmay provide interesting insights into
the propagation behavior of nonlinear conical waves, in particular
if symmetry assumptions such as radially symmetric initial condi-
tions, can be employed to reduce the computational effort.Weplan
to return to these questions in a separate paper.

5. Conclusions

Ideal Bessel beams in a linearmediumare infinite energy super-
positions of planewaveswhosewave vectors lie on a cone. They are
of great interest in optics because they are nondiffracting [5]. They
also have a remarkable self-healing property. The beam can be par-
tially obstructed on its axis, but the energy from the side lobes will
feed into the center and the beam can reconstitute itself [5]. These
properties are, however, a consequence of themediumbeing linear
and the beam having infinite energy.

In this paper we investigate the question of howmuch of these
properties carry over to physically realizable (apodized) beams
with finite energy propagating in a weakly nonlinear medium. The
two parameters whichmainly characterize the difference between
a physical beam and an ideal Bessel beam are the beam width
N ≫ 1 in terms of the wavelength, and the strength of the
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Fig. 7. Comparison of numerical solutions for NLS and amplitude equations, z = 10.0; uNLS denotes the solution of the NLS equationwhile we solve the amplitude equations
on a coarser grid and use cubic spline interpolation to compute the asymptotic solution uspline .
nonlinearity ϵ ≪ 1. As N → ∞ and ϵ → 0, we thus expect to
recover the ideal Bessel beam in a linear medium. In this paper,
we use a multiple scales method to derive amplitude equations
and asymptotic solutions for the propagation of apodized conical
waves under a cubic NLS with two transverse dimensions in the
regime where ϵ ∼ 1/N .

Our analysis demonstrates that physical beams do indeed
approximate the ideal Bessel beams, both in intensity and in
phase, but only in finite regions that have a characteristic conical
shape and whose extent depends linearly on N . This agrees with
geometrical optics and experimental observations which reveal
a conical Bessel region (see Fig. 1(b)) where the apodized beam
behaves like an ideal Bessel beam.

Through our analysis, we are able to prove precise uniform
estimates for asymptotic solutions in the linear and the nonlinear
case that are in good qualitative agreement with experimental
observations of Bessel regions. Moreover, some of these results
suggest that the approximation of an ideal conical wave may
actually extend into a region that is not predicted by the geometric
optics description of the Bessel region.

We have focused on the case of zeroth order Bessel beams in the
presentation of our uniform estimates, but we expect that these
methods and results can be extended to study higher order Bessel
beams and even more generally to superpositions of such beams.

Themultiple scale analysis also points away to efficient numer-
ical simulations of these apodized beams. Directly simulating the
wave equation for these beams will require a grid on the scale of
the wavelength. However the amplitude equations we obtain can
be solved numerically on a grid on the scale of the apodization.
For N ≫ 1, this can result in a significant increase in efficiency.
We have presented numerical experiments that demonstrate this
approach for the case of one transverse dimension. In ongoing
work, we are trying to extend this idea to radially symmetric initial
conditions in the higher dimensional case as well.

In the present paper we have studied the effects of diffraction
and nonlinearity on finite energy approximations to conical waves
in the context of the Nonlinear Schrödinger equation. The NLS
equation is applicable to nearly monochromatic waves in the
presence of a weak nonlinearity [17].

There are two natural extensions of this analysis which we
hope to pursue. First, there are other types of nondiffracting beams
which are not conical waves, e.g., Airy beams [23]. These beams
have been studied in linear media [25,11,15]. Since Airy beams
are also nearly monochromatic, we expect that our multiple-
scale analysis can be extended to study the propagation of Airy
beams [25], Airy–Bessel beams [11] and apodized Airy–Gauss
beams [15] in weakly nonlinear media.

Another avenue for further investigation is the development
of multi-scale methods for apodized ultrashort pulses. Ultrashort
pulses are compressed in the time domain and thus broadband
in frequency by the uncertainty principle. In this situation, one
has to account for the effects of dispersion on a broadband pulse
along with the effects of diffraction and weak nonlinearities.
Consequently, the NLS equation is not a good model for the prop-
agation of ultrashort pulses.

It is thus a significant challenge to extend the present work
to investigate the propagation of ultrashort pulses. The study of
ultrashort pulses is currently a very active field of research; see
for example Alterman and Rauch [31], Balakin et al. [32], Glasner
et al. [33], Kolesik et al. [34], and Schäfer and Wayne [35]. These
works focus on exploiting the shortness of the pulse in the propa-
gation direction to build multiple-scale models. Less important in
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these models is the structure of the pulse in the transverse direc-
tion.We intend to include the effects of the transverse apodization
into the multiple-scale models for ultrashort pulses. This is an im-
portant issue in the analysis and the numerical simulation of phys-
ically realizable, finite energy, ultrashort pulses.
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