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Unidirectional pulse propagation equations [UPPE, Phys. Rev. E 70, 036604 (2004)] have pro-
vided a theoretical underpinning for computer-aided investigations into dynamics of high-power
ultrashort laser pulses and have been successfully utilized for almost a decade. Unfortunately, they
are restricted to applications in bulk media or, with additional approximations, to simple waveg-
uide geometries in which only a few guided modes can approximate the propagating waveform.
The purpose of this work is to generalize the directional pulse propagation equations to structures
characterized by strong refractive index differences and material interfaces. We also outline a nu-
merical solution framework that draws on the combination of the bulk-media UPPE method with
single-frequency beam-propagation techniques.

I. INTRODUCTION

Computer simulations in the field of nonlinear op-
tics have been playing an important role in understand-
ing ever more extreme regimes in light-matter interac-
tions. Dynamics of ultrashort, high-power laser pulses
is one particular field, which motivated significant ef-
fort and concomitant progress in numerical methods de-
signed for optics at femtosecond time scales. One can
say that optical filamentation played the role of a cata-
lyst for the development of a number of pulse propaga-
tion models, which made detailed studies of extremely
nonlinear regimes a possibility. However, the most accu-
rate pulse propagation models remain restricted to bulk
media, both gaseous and condensed, while waveguiding
structures have to be treated with more significant ap-
proximations.
The purpose of this article is to put forward a theoret-

ical framework, which will allow the implementation of
simulators capable of handling pulse propagation regimes
characterized by the following four attributes:

A) Structures with strong refractive index contrasts.

B) Directional long-distance wave propagation.

C) Strong waveform reshaping, both in time and space.

D) Extreme spectral dynamics, with resulting spectra
often encompassing more than an octave in fre-
quency.

This combination is rather difficult to handle numerically.
For example, there exists a wealth of work (e.g., [1–5])
utilizing the beam propagation method (BPM), which
are designed for regimes A and B, and can incorporate
certain weak nonlinearities [6], but are restricted to nar-
row spectral regimes. Time-domain beam propagation
methods have been developed (e.g. [7, 8]), though they
concentrate mainly on linear regimes. Direct Maxwell’s
equations solvers [9–11] are well-suited to regimes A, C,
and D, but are prohibitively expensive for simulating

long-distance pulse propagation. Simulators based on
the Unidirectional Pulse Propagation Equation (UPPE)
[12, 13] and other types of one-way propagation equa-
tions [14–23] can cope with attributes B, C, and D, but
require additional approximations to simulate waveguid-
ing structures, such as hollow-slab leaky waveguides [24]
or nonlinear nano-waveguides [25–27]. In other words,
methods suitable for the combination A+B+C+D have
yet to be developed.

In this paper, we present a step in this direction and
describe a generalization of the UPPE, which can be ap-
plied to nonlinear structured media with strong differ-
ences between refractive indices of the constituent mate-
rials. Departing from the wave equations, we derive an
auxiliary evolution system. This is used to find projec-
tion operators that extract forward and backward prop-
agating components of the field from an arbitrary optical
field waveform. These operators transform the auxiliary
system into a coupled forward-backward pulse evolution
system that is exact and accounts for structured media.

Key to the approach we present is that the pulse evolu-
tion equations are cast in a form which makes it possible
to combine proven numerical methods. More specifically,
nonlinear interactions can be treated by ordinary differ-
ential equation (ODE) libraries, the same way it has been
done with UPPE-based simulators [28]; the linear propa-
gator can be treated by tapping the rich knowledge base
of BPM, and in particular the techniques developed for
wide-angle BPM (WA-BPM) (see Refs. [29, 30] for early
formulation, and Refs. [31, 32] for examples of various
Padé approximated propagators).

The remainder of this paper is organized as follows.
First, in Sec. II, we give a brief summary of the UPPE
model. In Sec. III, this model is generalized and a cou-
pled forward-backward pulse evolution system derived. A
unidirectional propagation approximation is applied and
the resulting equation transformed into a form analogous
to a bulk-medium UPPE. Considering a homogeneous
medium finds the generalized equation reduces back to
UPPE. Section IV outlines a strategy for a numerical
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solution of the generalized system. We summarize and
discuss future directions in Sec. V.

II. UNIDIRECTIONAL PULSE PROPAGATION

EQUATIONS: SUMMARY

The main purpose of this paper is to generalize the
UPPE framework. For the reader’s convenience and
ease of reference, we briefly summarize the corresponding
equations.
In a homogeneous medium characterized by a dielectric

permittivity ǫ(ω), a pair of coupled UPPEs are exact
[13, 33] and can be written in the form

∂z ~E
⊥
+ (k⊥, ω, z) = +ikz ~E

⊥
+ (k⊥, ω, z) + (1)

∑

s=1,2

~e⊥s ~es ·
[

iω2

2ǫ0c2kz
~P (k⊥, ω, z)−

ω

2ǫ0c2kz
~J(k⊥, ω, z)

]

∂z ~E
⊥
−(k⊥, ω, z) = −ikz ~E⊥

−(k⊥, ω, z)− (2)

∑

s=1,2

~e⊥s ~es ·
[

iω2

2ǫ0c2kz
~P (k⊥, ω, z)−

ω

2ǫ0c2kz
~J(k⊥, ω, z)

]

These equations describe the evolution of ~E⊥
±(k⊥, ω, z),

which are the spectral (Fourier) representation of the
electric field. k⊥ = {kx, ky, 0} are the transverse wave
numbers and kz is the z−component of the wave-vector

~k =
{

kx, ky, kz ≡
√

ω2ǫ(ω)/c2 − k2x − k2y
}

, (3)

which satisfies the dispersion relation k2 = ω2n2(ω)/c2.
The two polarization vectors ~es(k⊥, ω) are orthogonal

to ~k and to each other, but otherwise can be chosen
freely. The superscript ⊥ denotes the transverse part
(i.e., x, y) of the corresponding vector. Equations (1) and
(2) are mutually coupled through the nonlinear medium

polarization ~P (k⊥, ω, z) and current density ~J(k⊥, ω, z).
These responses are functionals of the electric field. They
are normally specified in the real space and time repre-
sentation:

~P (r⊥, t) = ~P ({ ~E(x, y, t)}) , ~J(r⊥, t) = ~J({ ~E(x, y, t)}) .

It has to be emphasized that the system of Eqs. (1) and

(2) is exact and together with the ∇ · ~D equation (which
can be used to obtain the z component of the field if
needed), is equivalent to Maxwell’s equations. However,
as with direct Maxwell’s equations solvers, it would be
difficult to solve in its entirety, i.e., including forward and
backward propagating waves. In practice, the unidirec-
tional propagation approximation is assumed, and the
medium response is calculated solely from the forward
propagating waveform:

~P ( ~E), ~J( ~E)→ ~P ( ~E+), ~J( ~E+) . (4)

Under this approximation the system reduces to a sin-
gle UPPE, Eq. (1). For details of the numerical so-
lution, the reader is referred to Ref. [28]. Here we
only point out that the native representation suitable for
numerical implementation relies on spectral amplitudes
~As,+(k⊥, ω, z), which only change with z due to nonlinear
interactions with the medium. They are related to the
electric field through the linear propagator eikz(kx,ky,ω)z:

~E⊥
+ (k⊥, ω, z) =

∑

s=1,2

~e⊥s
~As,+(k⊥, ω, z)e

ikz(kx,ky,ω)z. (5)

The corresponding UPPE equation,

∂zAs,+(k⊥, ω, z) =
ωe−ikzz

2ǫ0c2kz
(6)

~es · [iω ~P (k⊥, ω, E+(z))− ~J(k⊥, ω, E+(z))].

constitutes a large system of ODEs. This is the repre-
sentation in which it is solved numerically. Because the
medium response is calculated in the real time represen-
tation at each spatial point, spectral transforms in both
directions have to be invoked multiple times when the
right hand side of the ODE system is evaluated.
The main limitation of the UPPE approach is that

it is restricted to homogeneous media. Weakly guiding
structures can be included as part of the polarization
response, but geometries with strong material contrasts
and interfaces cannot be efficiently simulated. Reference
[13] shows derivation of the UPPE system for waveguid-
ing structures, but its implementation requires knowl-
edge of the full system of electromagnetic modal fields,
which is impractical to obtain even for geometries that
admit exact solutions. Therefore, waveguiding scenar-
ios can only be simulated under additional assumptions,
which require that the fields can be described as a super-
position of a few guided or leaky modes of the structure,
whatever field configurations evolve.
The practical limitation of the UPPE, and in fact of

all other uni-directional pulse propagation methods orig-
inates in the identification of the forward and backward
propagating waves resting on the usage of a reference ho-
mogeneous medium. To elucidate this, let us consider the
following example. Let ǫ(ω) represent a chosen homoge-
neous background, and let χ(~r⊥, ω) be such that ǫ+χ(r⊥)
gives the actual permittivity of the structure. The vari-
able part χ(r⊥) can be treated within the polarization
term of Eq. (6), P (r) = ǫ0χ(r⊥)E+(r⊥). Now note
that even if χ is constant throughout space, the propaga-
tion constant of a plane wave predicted by Eq. (6), i.e.,
kz(ω, k⊥) + χω2/(2c2kz(ω, k⊥)), is only a second order
Taylor approximation to the exact plane-wave propaga-
tion constant

√

ω2[ǫ(ω) + χ(ω)]/c2 − k2⊥. On the other
hand, it is straightforward to show that if we retained
both coupled UPPEs (1) and (2), the resulting propaga-
tion constant would be exact independently of the choice
of the reference ǫ(ω). We thus see that if χ(r⊥) varies
in space, no matter how we select the reference medium
ǫ(ω), even the linear problem is not solved exactly by a
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single UPPE. This means that if we wish to use the uni-
directional approximation for nonlinear interactions, we
must find a way to marry it with an exact propagation
description in the linear limit. This in turn implies that
no part of the refractive index variation in space should
be included in the polarization term of the propagation
equation.

III. DIRECTIONAL PULSE PROPAGATION

EQUATIONS

In this section, we generalize unidirectional pulse prop-
agation equations to situations with material interfaces
parallel to the propagation direction z and with strong
refractive index differences between materials that com-
prise the structure. Central to this task will be the
ability to extract the true forward and backward prop-
agating components of the total electromagnetic field.
The main deviation from the method described above
is that the pulse propagator native representation will be
mixed; we will retain the spectral representation of the
frequency/time dimension, but will use the real space
representation for the transverse spatial dimensions x, y.

A. Model of a nonlinear, structured medium

Consider a non-magnetic, isotropic dispersive medium,
with the dielectric permittivity ǫ(x, y, ω), which only de-
pends on coordinates x and y and angular frequency ω.
We assume there are no free charges or currents. The
constitutive relation for all media will be written in a
form using polarization to account for all properties ex-
cept the linear ǫ(ω)

P = P(x, y, {E(x, y, t)}) . (7)

We assume that an algorithm is given that computes po-
larization from a given history of the electric field vector
E(x, y, t) at a specified point [x, y]. The first two argu-
ments of P are meant to indicate that this algorithm can
depend, through the medium properties, on the trans-
verse location [x, y] but not on the longitudinal coordi-
nate z. The concrete functional form of P is unimpor-
tant for the present purposes, but for a specific example,
the reader can think of the instantaneous optical Kerr
effect in which the local index of refraction changes pro-
portionally to the square of the electric field vector. As
the medium is isotropic, the polarization direction follows
that of E:

PKerr(x, y, {E(x, y, t)})
= 2ǫ0n̄2(x, y)(E

2
x + E2

y + E2
z )E. (8)

Here, n̄2(x, y) stands for the nonlinear index, which as it
indicates, may depend on location. Other models of light-
matter interactions that have been used in simulations

are described in articles on filamentation [34, 35] and Ref.
[28] shows methods for their numerical implementation.
To keep notation simple, we will not use current den-

sity explicitly. In general, nonlinear interactions with the
medium can be equivalently formulated either in the po-
larization or current density language, so this means no
loss of generality. In numerical simulations, using both
current and polarization may actually be convenient, and
it only requires trivial extension of our results.

B. Fields in terms of analytic signals

In numerical simulations, it is often easier to work with
analytic signals of the electric field. Here we use analytic
signals to represent all real quantities (E(t),P(t)). For
example, the electric field is obtained as a real part of its
analytic signal:

E = Re{ ~E(x, y, z, t)}, (9)

which has its spectrum restricted to positive frequencies:

~E(x, y, z, t) =

∫ ∞

0

dω ~E(x, y, z, ω)e−iωt. (10)

Here, and in what follows, we will distinguish be-
tween temporal and spectral representations of functions
through their respective arguments t and ω. Because
the only time we need the representation of the electric
field in the time domain is when we compute the non-
linear medium response (i.e., polarization), we will work
mostly in the spectral representation.

C. Derivation of Directional Pulse Propagation

Equations

Our departure point is the wave equation for the elec-
tric field, accompanied by a constraint in the form of the
divergence equation.

∇∇ · ~E −∇2 ~E =
ω2

c2

(

ǫ ~E +
1

ǫ0
~P

)

, ∇ · ~D = 0 (11)

The divergence equation deserves a note. While we have
assumed no free charges and currents, high intensities
can lead to medium ionization and subsequently to elec-
trons drifting away from their parent ions. However, our
treatment aims to describe femtosecond pulses. On such
a short time scale we can safely assume that even when
ionization occurs, the positive and negative charges do
not have enough time to separate, and the average lo-
cal charge remains zero. Therefore, using the divergence
equation,

∇ · ~D = ǫ0ǫ∇ · ~E + ǫ0 ~E · ∇ǫ+∇ · ~P = 0, (12)

∇· ~E can be expressed in terms of the nonlinear polariza-
tion divergence and transverse electric field components
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as follows

−∇ · ~E =
1

ǫ
~E⊥ · ∇⊥ǫ+

1

ǫ0ǫ
∇ · ~P (13)

The transverse (x, y) part of the wave equation is thus
rewritten to separate the linear and nonlinear terms

− ∂zz ~E⊥ = L̂ ~E⊥ + N̂⊥[ ~E]. (14)

Here, the linear operator L̂ is related to the corresponding
Helmholtz equation (for a fixed angular frequency). It
acts only on the transverse electric field vector

L̂ ~E⊥ ≡
ω2

c2
ǫ(r⊥, ω) ~E⊥ +∆⊥

~E⊥ +∇1

ǫ
~E⊥.∇⊥ǫ. (15)

The nonlinear operator N̂ acts on ~E⊥, but in general,
also depends on the Ez component

N̂ [ ~E] ≡ ω2

ǫ0c2
~P ( ~E) +∇ 1

ǫ0ǫ
∇ · ~P ( ~E). (16)

We will address how to obtain Ez later. For now, let us
assume that it can be calculated once Ex,y are known. To

obtain propagation equations for ~E⊥(z, x, y, ω), we first
introduce auxiliary field amplitudes, effectively doubling
the number of variables used to describe the electric field:

Ei(z, x, y, ω) = E+
i (z, x, y, ω) + E−

i (z, x, y, ω), (17)

with

E+
i = A+

i (z, x, y, ω)e
+iζz

E−
i = A−

i (z, x, y, ω)e
−iζz, (18)

where i = x, y and ζ stands for a parameter to be chosen
freely. Clearly, since no ζ appears in Maxwell’s nor the
wave equations, physical observables must not depend on
the concrete choice of ζ, and this “gauge invariance” will
become manifest when we arrive at our final result. We
will term ζ a reference wavenumber to emphasize the fact
that it has no physical meaning by itself.
It is also important to keep in mind that the positive

and negative wavenumber parts E±
i of the field are, in

general, not the forward and backward propagating por-
tions of the total waveform. So far we have not restricted
how fast A±

i can change with z. In principle, they could
evolve so fast that their variation would completely over-
ride the exponential factors e±iζz accompanying them.
That is why both E±

i can contribute to waves propagat-
ing in the positive and negative z direction (see Ref. [36]
for how this occurs).
By representing a single function Ei(z, x, y, ω) as a

combination of two functions E±
i (z, x, y, ω), we have

added artificial degrees of freedom. These will be taken
back by requiring that E±

i satisfy a relation of our choice.
Concretely, we impose an additional constraint in the
form

e+iζz∂zA
+
i (z, x, y, ω) + e−iζz∂zA

−
i (z, x, y, ω) = 0 (19)

The rationale behind this constraint is exactly the same
as in the variation of constants method for differential
equations. Namely, this representation eliminates the
second derivatives when one evaluates ∂zzE. Because
of the constraint, the first derivative simplifies to

∂zEi = iζ(E+
i − E−

i ) (20)

and the second derivative to

∂zzEi = −ζ2Ei + iζe+iζz∂zA
+
i − iζe−iζz∂zA

−
i (21)

Using this in the wave equation (14) together with the
constraint of Eq. (19), we obtain the evolution equations
for the auxiliary amplitudes A±

∂zA
±
i =

±i
2ζ
e∓iζz

[

(L̂ − ζ2) ~E⊥ + N̂ [ ~E]
]

. (22)

To evaluate the right hand side of this system, ~E⊥ is ex-
pressed in terms of A±

i , and Ez is subsequently obtained
from the z-component of the wave equation. Using Eq.
(20), the latter can be written as follows

iζ∂x(E
+
x − E−

x ) + iζ∂y(E
+
y − E−

y )− ω2

c2ǫ0
Pz( ~E)

= ∂xxEz + ∂yyEz +
ω2ǫ

c2
Ez . (23)

If not for nonlinearity, this is an inhomogeneous
Helmholtz equation that determines Ez in terms of the
transverse field components. The part of the polariza-
tion component Pz which is nonlinear in Ez , is usually
very small and therefore normally neglected. Should one
not be satisfied with such an approximation, the above
equation can be solved by iteration. For example, in Kerr
media for intensities typical of femtosecond filaments, a
single iteration already gives an accurate result.
The next step consists in identifying the parts of the

electric field waveform which propagate in the positive
and negative directions along the z axis. The resulting
equations become more intuitive when expressed in terms
of auxiliary E-fields:

∂zE
+
i = +iζE+

i +
i

2ζ

[

(L̂− ζ2) ~E⊥ + N̂ [ ~E]
]

(24)

∂zE
−
i = −iζE−

i −
i

2ζ

[

(L̂− ζ2) ~E⊥ + N̂ [ ~E]
]

(25)

This system, completed by Eq. (23), is equivalent to the
wave equation with the divergence constraint, and can be
solved in principle. However, in this form, it poses two
problems. First, in general, it would require very short
propagation steps in order to resolve both the forward
and backward propagating waves. Second, the physical
input conditions for simulations are normally given such
that the problem to solve is a boundary value problem
rather than an initial value problem. The latter point be-
comes evident when we realize that it is only the forward-
propagating field component that is specified at z = 0
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(e.g., at the laser output). The second condition is that
the backward propagating field is zero at z → ∞ (i.e.,
at the far end of a laboratory). Such a boundary value
problem would be rather difficult to solve. Fortunately,
in many cases the backward propagating wave can be ne-
glected. We shall therefore derive the beam propagation
equations that account for such a situation, but in the
process shall identify the forward and backward propa-
gating fields (and see that they are, in general, different
from E±).
In matrix notation, the propagation equations read

∂z

(

~E+
⊥
~E−
⊥

)

= i

(

ζ + L̂−ζ2

2ζ + L̂−ζ2

2ζ

− L̂−ζ2

2ζ −ζ − L̂−ζ2

2ζ

)

(

~E+
⊥
~E−
⊥

)

+
i

2ζ

(

+N̂⊥[ ~E]

−N̂⊥[ ~E]

)

. (26)

Having separated the linear and nonlinear part of the
evolution operator, we are in the position to determine
the forward and backward propagating parts of the field.
This division will be defined with respect to the linear
system. In the spirit similar to Ref. [37], two projector
operators can be constructed from the Helmholtz opera-
tor L̂ and its square root L̂

1

2 :

PF ≡
L̂− 1

2

4ζ

(

+(ζ + L̂
1

2 )2 +(L̂− ζ2)
−(L̂− ζ2) −(ζ − L̂ 1

2 )2

)

(27)

PB ≡
L̂− 1

2

4ζ

(

−(ζ − L̂ 1

2 )2 −(L̂− ζ2)
+(L̂− ζ2) +(ζ + L̂

1

2 )2

)

(28)

It is straightforward to show that these operators have
the expected properties of projectors, in particular they
are idempotent

P2
F = PF P2

B = PB (29)

and they constitute a unity decomposition

PF + PB = 1 , PFPB = PFPB = 0. (30)

These projectors also commute with the linear evolu-
tion operator in Eq. (26), and direct calculation shows
that their eigenvectors have propagation constants cor-
responding to forward and backward modes propagating
in the linear system. Thus, we can use these projectors
to obtain the true forward and backward propagating
field components. If the total field is given in terms of

the auxiliary amplitudes ~E±
⊥ , then the forward portion

of the wave is obtained as

EF =
(

1 1
)

PF

(

~E+
⊥
~E−
⊥

)

=
1

2

[

( ~E+
⊥ + ~E−

⊥) + L̂− 1

2 ζ( ~E+
⊥ − ~E−

⊥)
]

. (31)

This expression contains the reference wavenumber,
which might suggest that it depends on our artificial split

of the field in Eq. (17). However, because of Eq. (20),
the above expression reduces to

EF =
1

2
~E⊥ −

i

2
L̂− 1

2 ∂z ~E⊥ (32)

and the backward propagating component is obtained as

EB =
1

2
~E⊥ +

i

2
L̂− 1

2 ∂z ~E⊥. (33)

As they must be, these forward/backward amplitudes are
independent of the reference wavenumber. Our aim is to
express the pulse evolution equations in term of these
directional fields. Because the projector operators are z-
independent, the simplest way is to apply them directly
to the propagation equations. In other words, we need
to compute

∂zE
F
⊥ =

(

1 1
)

PF

(

∂z ~E
+
⊥

∂z ~E
−
⊥

)

(34)

∂zE
B
⊥ =

(

1 1
)

PB

(

∂z ~E
+
⊥

∂z ~E
−
⊥

)

. (35)

Inserting the right hand side from Eq. (26) and using the
projector properties of Eqs. (29) and (30), we obtain a
pair of coupled equations for the forward and backward
fields

∂zE
F
⊥ = +i

√

L̂EF
⊥ +

i

2
√

L̂
N̂⊥[E

F + EB]

∂zE
B
⊥ = −i

√

L̂EB
⊥ −

i

2
√

L̂
N̂⊥[E

F + EB] (36)

This is a generalization of the coupled pair of Unidirec-
tional Pulse Propagation Equations (1) and (2). We
show later that in a homogeneous medium, for which
we have an explicit expression for the square root of the
Helmholtz operator, these equations reduce to UPPEs as
they should.
Similar to the case for bulk media, Eq. (36) is not

the best for numerical implementation. We transform
this system into a form analogous to that of bulk UPPE
(6) such that we can adopt the same numerical solution
strategy. Toward this purpose, we use amplitudes which
will exhibit evolution only if some nonlinearity is present:

EF
⊥ = e+i

√
L̂zAF

⊥(z) , E
B
⊥ = e−i

√
L̂zAB

⊥(z) (37)

In this representation, Eq. (36) reads

∂zA
F
⊥ =

+i

2
√

L̂
e−i
√

L̂zN̂⊥[e
+i
√

L̂zAF + e−i
√

L̂zAB]

∂zA
B
⊥ =

−i
2
√

L̂
e+i
√

L̂zN̂⊥[e
+i
√

L̂zAF + e−i
√

L̂zAB]

(38)

This shows explicitly that the forward and backward
propagating waves are mutually coupled in the nonlin-
ear terms. It is obvious that for strong nonlinearity, our
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forward-backward projection loses its intended meaning,
because it can renormalize and couple waves propagating
in both main directions [38]. Thus, we arrive at a point
where we must adopt an approximation which will allow
us to reduce the full system to a single unidirectional
equation.

D. Unidirectional propagation approximation

Our final step is to adopt the unidirectional approxi-
mation, where we assume that the nature and strength of
nonlinearity is such that only negligible backward prop-
agating fields are generated. Then, the nonlinear term
can be approximated as

N̂⊥[e
+i
√

L̂zAF + e−i
√

L̂zAB] ≈ N̂⊥[e
+i
√

L̂zAF ] (39)

and the system can be restricted to only the forward-
propagating field:

∂zA
F
⊥(r⊥, ω, z) = +

i

2
√

L̂
e−i
√

L̂zN̂⊥[e
+i
√

L̂zAF ]. (40)

This is the sought-after generalization of the Unidirec-
tional Pulse Propagation Equation. As expected, the
structure of this system is completely analogous to the
bulk UPPEs of Eq. (6), with the exception that the linear
propagator is formally expressed in terms of a Helmholtz
square root operator, instead of plane-wave expansion.
The most pronounced difference is that Eq. (40) is na-
tively represented in the mixed representation. It retains
the spectral treatment of the time dimension and with
that, it preserves the ability to treat chromatic and non-
linear properties of the material exactly. On the other
hand, the transverse dimensions are represented in real
space, which is the natural choice for the implementation
of the linear propagator in a structured medium with
strong refractive index variations.

E. Special case: reduction to UPPE in a

homogeneous medium

Before going into how this pulse evolution equation can
be solved numerically, let us illustrate how it reduces to
the well-known bulk UPPE for a homogeneous medium.
First, we recall that for a homogeneous medium, we know
that plane waves are eigenfunctions of the Helmholtz op-
erator L̂ and that in the plane-wave representation, the
linear propagator reduces to multiplication by a phase
factor given by the propagation constant kz(ω, k⊥):

e−i
√

L̂z = e−ikz(ω,k⊥)z.

It is therefore sufficient to Fourier-transform Eq. (40)
from the (x, y) space to the transverse wavenumber space
(kx, ky) to obtain

∂zA
F
⊥(k⊥, ω, z) = +

i

2kz
e−ikzzN̂⊥[e

+ikzzAF ], (41)

then use Eq. (37)

∂zE
F
⊥(k⊥, ω, z) = +ikzE

F
⊥(k⊥, ω, z)+

i

2kz
N̂⊥[E

F ], (42)

and express N̂ in terms of polarization:

∂zE
F = ikzE

F +
i

2kz

[

ω2

ǫ0c2
~P ( ~E)− 1

ǫ0ǫ
~k~k · ~P ( ~E)

]

.

(43)
Only the transverse components in this equation consti-
tute the evolution system, but in this full-vector form, it
is easy to see that the operator acting on the polariza-
tion term produces the transverse part of the nonlinear
response, namely

[

ω2

ǫ0c2
~P ( ~E)− 1

ǫ0ǫ
~k~k · ~P ( ~E)

]

=
ω2

ǫ0c2

[

1−
~k~k·
k2

]

~P ( ~E).

(44)
The projector operator in the square brackets can be re-
placed by a sum over projectors on the polarization vec-
tors ~es

[

1−
~k~k·
k2

]

=
∑

s

~es~es· (45)

Using this in Eq. (44) and inserting it into Eq. (43), we
obtain

∂zE
F
⊥(z, ω, k⊥) = ikzE

F
⊥+

iω2

2ǫ0c2kz

∑

s

~e⊥s ~es · ~P ( ~E), (46)

which is identical to the homogeneous medium UPPE of
Eq. (1) (with the current density term omitted). Thus,
as it must, the generalized pulse propagation equation
(40) passes this sanity check and reduces to the UPPE if
the medium is homogeneous.

IV. NUMERICAL SOLUTION STRATEGY

In this section we sketch, in broad strokes, an approach
for the numerical solution. It builds on the ODE-based
method for solving UPPE systems and combines it with
a wide-angle beam-propagation solver used to evaluate
the linear propagator exp(iL̂1/2z).
The core of the pulse propagator of Eq. (40) is an ODE

system, with z being the independent variable. The equa-
tion is evaluated at every transverse spatial location r⊥
and frequency ω while being incremented along the prop-
agation direction z. During a single ODE step, the right
hand side of Eq. (40) has to be evaluated multiple times
at different values of z which are subject to the choice
of the specific ODE algorithm. Because the integration
is normally executed with an adaptive integration step,
one cannot determine beforehand at what specific z lo-
cations the term [exp(iL̂1/2z)A] needs to be computed –
an algorithm is needed to evaluate the right hand side
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for any small value of z. For the ODE solver, we use the
open source Gnu Scientific Library (GSL), but any im-
plementation with the following capabilities can be cho-
sen. One necessary feature of a suitable ODE library is a
driver for adaptive step control, with a robust algorithm
monitoring the accuracy of the numerical solution. An-
other necessity is that the library contains methods which
do not require Jacobian evaluation, because such meth-
ods are not suitable for UPPE-like ODE systems [28].
We typically employ the Runge-Kutta-Fehlberg method,
however, another useful ODE library feature is the capa-
bility to switch easily between different integration meth-
ods. Regarding its structure and method of solution as an
ODE system, the generalized propagation equation does
not differ from an ordinary UPPE. What is different is
the implementation of the linear propagator.
Because the linear propagator is diagonal in angular

frequency, this task is equivalent to a set of uncoupled
beam-propagation problems. In other words, the action
of exp(iL̂1/2z)ψ only requires one independent BPM-like
update for each ω resolved in the simulation. This por-
tion of the algorithm is therefore “embarrassingly paral-
lel,” with perfect balance and no inter-dependencies be-
tween calculations performed for different angular fre-
quencies. There are many wide-angle BPM methods
available, and any of them can be utilized, in principle.
For instance, one can evaluate the linear propagator by
a Padé approximant. Defining β2(ω) ≡ ω2ǫ(ω)/c2, the
dominant part of the Helmholtz operator, one writes

ei
√

L̂∆z = eiβ
√

1+X̂∆z =
∏

k

X̂ + ak

X̂ + bk
. (47)

The coefficients ak, bk depend on ∆z and are chosen as
to reproduce the Taylor expansion of the left hand side.
For example,

4i+ (i− β∆z)X̂
4i+ (i+ β∆z)X̂

eiβ∆z (48)

is second-order accurate in X̂ with the error scaling as
∼ β∆zX̂3. Various higher order approximations can be
constructed in the same spirit. If the operator X acts in
a non-trivial way along both spatial dimensions x, y, it
is often further split into “one-dimensional” components
so that the resulting matrices are band-diagonal.
Similar techniques can be used to compute the inverse

square root of L that acts on the nonlinear response term
in Eq. (40). However, this operator can be approximated
by L1/2 ≈ ωn(ω)/c as is usually done in filamentation
simulations [28]. This is sufficient unless the spatial pro-
file of the nonlinear polarization becomes “focused” to
wavelength scale.
With the linear propagator implemented as a “BPM-

based plug-in,” the solution proceeds in steps with two
stages:

1. Call the ODE solver. One integration step is exe-
cuted that updates the current A(r⊥, ω, z) into the

new A(r⊥, ω, z + ∆z). The ODE solver algorithm
invokes computation of the right hand side of Eq.
(40)

+
i

2β
e−i
√

L̂δzN̂⊥

[

e+i
√

L̂δzAF

]

,

which contains two applications of the linear prop-
agator [e.g., Eq. (48)] for a sub-step ±δz. Be-
hind the scenes, the solver determines the maxi-
mum step ∆z possible on a global scale, since some
parts of the grid may contain finer features, and re-
quire shorter integration steps than others. Unlike
the fully spectral UPPE, the length of the integra-
tion step the ODE solver is permitted to take is
bounded from above by the maximum step allowed
by the BPMmethod used for the linear propagator.

2. Re-align the spectral amplitudes. The point along
z at which A and E amplitudes coincide can, of
course, be chosen arbitrarily. It is advantageous to
renew this synchronization point after each ODE
step such that A and E coincide at the beginning
of the ODE step. This is achieved by

AF
⊥ ← e+i

√
L̂∆zAF

⊥, (49)

which amounts to yet another application of the
linear-problem propagator to the current solution.
Naturally, ∆z must be obtained from the ODE
solver as the actual length of the last adaptive in-
tegration step. This repeated re-alignment step is
normally implemented in bulk-media UPPE solvers
as well, but there implementations without it are
possible, in principle. Here, it is crucial that the
step length in the linear propagator is kept small,
and application of Eq. (49) ensures that δz is al-
ways smaller than the maximal step allowed in the
ODE solver.

In a nutshell, the above procedure describes the stan-
dard UPPE solution method modified in two ways: First,
a BPM-based propagator is utilized for the (short-step)
linear advancement of the optical field, and second, real-
space representation of transverse dimensions is retained
at all times.

V. SUMMARY

We have presented a generalization of the Unidirec-
tional Pulse Propagation Equation suitable for structures
characterized by material interfaces parallel to the pulse
propagation direction and by strong differences between
the properties of the constituent materials. While the
main result of Eq. (40) is somewhat intuitive, we show a
rigorous derivation based on identification of the forward
and backward propagating wave components. These are
expressed in terms of projection operators [Eq. (28)] akin
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to those we have previously used in bulk media [12]. They
allow expression of the generalized UPPE in terms of the
linear propagator, and they “isolate” the nonlinear inter-
actions with the medium, such that the evolution is de-
scribed in terms of spectral amplitudes which only evolve
due to non-zero nonlinearity.
The generalized UPPE uses a mixed representation:

spectral for the time/frequency dimension and real-space
for the transverse (to the direction of propagation) di-
mensions. The linear propagator can be based on one of
the many available beam-propagation methods. The con-
crete choice of the method will depend on the given ge-
ometry. For example, the important case of nearly plane-
parallel wave guide structures [39, 40] can be treated by
a one-dimensional WA-BPM combined with the plane-
wave expansion in the free-propagating direction. In-
dependently of the chosen BPM approach, the numeri-

cal solution strategy developed previously for bulk-media
UPPEs can be used with relatively minor modifications.

There is an increasing interest in extreme nonlinear op-
tics confined to wave-guiding structures of different kinds.
It is therefore expected that our results will find appli-
cation in various implementations of efficient pulse prop-
agation solvers, especially situations in which both the
geometry of the structure and waveform reshaping due
to nonlinear interactions play important roles.
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Ramı́rez-Góngora, and M. Kolesik, Eur. Phys. J. Special
Topics 199, 5 (2011).

[29] G. R. Hadley, Opt. Lett. 17, 1426 (1992).
[30] G. R. Hadley, Opt. Lett. 17, 1743 (1992).
[31] Y. Y. Lu and P. L. Ho, Opt. Lett. 27, 683 (2002).
[32] K. Q. Le and P. Bienstman, J. Opt. Soc. Am. B 26, 353

(2009).
[33] M. Kolesik, P. T. Whalen, and J. V. Moloney, IEEE J.

Sel. Top. Quantum Electron. 18, 494 (2012).
[34] A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47

(2007).
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