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Abstract—The theory of femtosecond pulse propagation in dis-
persive nonlinear media is reviewed with emphasis on modeling
light–matter interactions in femtosecond optical filaments. Discus-
sion of the principles underlying the pulse propagation models is
followed by the description of the “standard” light–medium inter-
action model utilized in the ultrafast nonlinear optics, and open
problems are identified across the field.

Index Terms—Femtosecond filamentation, nonlinear optics,
ultrafast optics, wave propagation.

I. INTRODUCTION

THE propagation of intense ultrashort laser pulses in gases
and condensed media [1] (see, e.g., [2], [3] for a review)

involves strong coupling between temporal and spatial degrees
of freedom. Consequently, a rigorous propagation model must
allow in principle for ultrabroadband spectrum generation in
the presence of realistic linear and nonlinear material disper-
sion and absorption, and vectorial and potentially nonparaxial
effects. Progress over the past decade in experiments utilizing
multiterawatt laser pulses in the atmosphere, somewhat lower
power pulses in gases (in a cell or extended hollow waveguide)
and with milli-Joule or nano-Joule pulses in condensed media,
has prompted the derivation of a number of improved nonlinear
envelope propagation models (see, e.g., [4]–[12], [14]–[21]).
Ultrafast pulse experiments and applications are now entering a
phase that challenge the validity of physical models utilized for
longer pulses in nonlinear optics. As mentioned earlier, these
experiments require resolution of the optical response to the ex-
citing field over huge spectral bandwidths. Additionally, when
nonlinearity and strong self-focusing effects dominate, pulses
can undergo strong compression down to a few cycles, po-
tentially develop optical shock waves, and generate strongly
anisotropic nonequilibrium distributions of photoionized elec-
trons and ions. Currently, there are two major challenges fac-
ing the modeler when it comes down to capturing the correct
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physics: 1) a correct electromagnetic (EM) propagator derived
from the vector Maxwell equations and 2) a quantitatively cor-
rect physical description of all physical processes occurring
within the strongly interacting nonlinear core. The latter material
models currently utilized in pulse propagation studies are phe-
nomenological in nature describing situations more relevant to
near-monochromatic or long pulse regimes. When propagation
over extended distances is not an issue, such as higher harmonic
generation in a gas cell, for example, more rigorous quantum
mechanical models describing intense field photoionization are
being developed. Even such time domain models are computa-
tionally intensive and are restricted typically to simple atomic
or diatomic gases. Marrying these two rigorous approaches and
scaling them to large scale to represent potentially hundreds of
interacting light filaments or smart beams (Bessel [22]–[24],
Airy [25]–[28], etc.) with transversely extended wings remains
an open challenge.

In this paper, we highlight a unidirectional pulse propagation
equation (UPPE) [29], [30] optical carrier resolved propaga-
tion model that has proved remarkably successful in yielding
almost quantitative agreement with experiments in air and con-
densed media. In fact, we step back and first introduce a full
counterpropagating spectral propagator derived directly from
Maxwell’s equations and discuss its broad applicability. We
then specialize to the unidirectional scalar version and show
how the many nonlinear envelope models, including nonlinear
Shrödinger equation (NLSE) [31], the extensively used non-
linear envelope equation (NEE), and other nonlinear envelope
equations, can be seamlessly derived from the former. Follow-
ing this, we illustrate the applicability of the UPPE model and
contrast it with the well-known NEE [12], [13] model.

II. PULSE PROPAGATION MODELING

The main focus of this section is to present a state-of-the-art
carrier-resolved ultrashort pulse propagator and connect it to
existing nonlinear envelope models. Such a model is suitable
for the extremely nonlinear regimes when the temporal, spatial,
and spectral shapes of the pulsed waveform undergo significant
changes during its interaction with the medium. Much of our
discussion is directed toward the so-called UPPEs. The deriva-
tion of the UPPE has been discussed in a relatively detailed
fashion in [29]. Here, for convenience, we recap the key steps
in its derivation and further elucidate its broad applicability to
EM propagation problems.
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A. Time-Propagated and Space-Propagated Equations

Pulse propagation models in nonlinear optics are derived from
the underlying vector Maxwell equations and can be formulated
in two possible ways: 1) the initial condition, which means
both the electric and magnetic fields, is specified throughout the
space for a given initial time, and the evolution is then calculated
along the time axis. This is the natural setting for evolving the
original vector Maxwell equations. 2) The initial condition is
given as a function of the local time (in the frame moving
with the pulse) and of the two transverse (w.r.t. propagation
direction) coordinates. Then, the numerical evolution proceeds
along the propagation, e.g., z-axis. We refer to these cases as
time- and z-propagated equations. The z-propagated approach
is much more common in nonlinear optics simulations, while
the time-propagated method is common for solvers based on
direct integration of Maxwell’s equations.

The versions of the UPPE which are numerically evolved in
the spatial and temporal directions are in fact quite similar to
each other. Not only is the mathematical form of these equations
formally the same, but, most importantly, also the approximation
which makes it possible to separate the two counterpropagating
waves is expressed in the same physical assumptions which con-
cerns the nature and the strength of the nonlinearity. However,
the respective derivations are rather different, and so far there is
no proof that the two approaches are in some sense equivalent.
A point worthwhile to make is that it can be explicitly showed
that while the pair of forward and backward evolution equation
is formally exact as long as they are solved together, the set of all
UPPE solutions is in fact smaller than the set of all Maxwell’s
equation solutions. It is interesting to note that such distinction
is not required for the t-propagation, and this is one of the reason
we believe that the two approaches are in fact not equivalent.
From the practical point of view, the z-propagated approach has
more than one advantage over simulation in the t-propagated
picture, and these will be discussed in the following.

B. Bidirectional and Unidirectional Pulse
Propagation Equations

We now review the formal derivation of the “bidirectional
pulse propagation equation (BPPE)” and then discuss its reduc-
tion to propagation in one direction. In the following section,
for simplicity, we connect its solutions to those of the 1-D wave
equation as a means of elucidating the solution structure and a
connection to other nonlinear envelope models.

In order to derive the fully vectorial, carrier-resolved BPPE,
we start from Maxwell’s equations

�J + ∂t
�P + ε0∂tε ∗ �E = ∇× �H

−μ0∂t
�H = ∇× �E (1)

where the star represents a convolution so that the term is a short
hand for

ε0∂tε ∗ �E = ε0∂t

∫ ∞

0
dτε(τ) �E(t − τ).

Here, we have separated the linear and nonlinear medium re-
sponses. This separation is not unique, and indeed, it may be

appropriate to do a different splitting if we pursue formal mathe-
matical methods using asymptotics to extract the dominant com-
ponent of the nonlinear response. The linear properties of the
medium (or, in a waveguide, also the geometric contribution to
the dispersion) are accounted for exactly through the frequency-
dependent permittivity. The nonlinear response is represented
by the polarization and current density

�P = �P ({ �E}) �J = �J({ �E})

where we emphasize that both are functionals of the electric
field. It will become evident later that while this formal sepa-
ration of linear and nonlinear contributions in the light–matter
interaction admits an arbitrary split, it is important to include the
full linear chromatic dispersion and absorption, both as func-
tions of frequency, into the medium permittivity, and only leave
truly nonlinear interactions contribute to �P and �J .

EM fields of a light pulse propagating along the z-axis can be
expanded into modes that reflect the geometry of the problem.
Naturally, in the homogeneous bulk medium, these modes are
the well-known plane wave solutions. Another possible set of
basis functions in bulk would be so-called conical waves, i.e.,
Bessel, Airy, etc. However, at this point, we only require that the
studied structure, or geometry, only depends on the coordinate
z. The electric and magnetic field expansions are then expressed
through the common spectral amplitudes A

�E(x, y, z, t) =
∑
m,ω

Am (ω, z)�Em (ω, x, y)eiβm (ω )z−iω t

�H(x, y, z, t) =
∑
m,ω

Am (ω, z) �Hm (ω, x, y)eiβm (ω )z−iω t . (2)

Here, m labels all transverse modes, and an initial condition
Am (ω, z = 0) is supposed to be given or calculated from the
field values at z = 0. Note that the previous expansion is used
for the transverse components only, and that the modal index m
is a short hand for all quantities that are required to specify a
unique propagation mode. For example, in a homogeneous bulk
medium, when the eigenmodes are the plane waves, the index
m represents the polarization, two transverse wavenumbers, and
a binary value selecting the forward or backward direction of
propagation.

The procedure, outlined in detail in [29], is based on using
the modal fields, and their orthogonality properties to project
from the full Maxwell’s system the evolution equations for the
spectral decomposition amplitudes A. These in turn can be used
straightforwardly to obtain the two coupled unidirectional (bidi-
rectional) pulse propagation equations in the following form:

∂z
�E⊥

kx ,ky ,+(ω, z) = +ikz
�E⊥

kx ,ky ,+(ω, z)

+
∑

s=1,2

�e⊥s �es .

[
iω2

2ε0c2kz

�Pkx ,ky
(ω, z)− ω

2ε0c2kz

�Jkx ,ky
(ω, z)

]

∂z
�E⊥

kx ,ky ,−(ω, z) = −ikz
�E⊥

kx ,ky ,−(ω, z)

−
∑

s=1,2

�e⊥s �es .

[
iω2

2ε0c2kz

�Pkx ,ky
(ω, z)− ω

2ε0c2kz

�Jkx ,ky
(ω, z)

]

(3)
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where �k denotes the wavevector whose z-component is the
frequency- and transverse wavenumber-dependent plane-wave
propagation constant

�k = {kx, ky , kz ≡
√

ω2ε(ω)/c2 − k2
x − k2

y} (4)

and �es is a pair of (polarization) unit vectors orthogonal to �k
and to each other. The forward and backward electric fields that
appear in these equations are the Fourier transforms in time
and in the transverse coordinates. For example, to obtain the
forward-propagating (+) field in the real-space representation,
we compute

�E+(x, y, z, t) =
∫

Ekx ,ky ,+(ω, z)e−iω t+i�k.�r dkxdkydω.

The forward and backward equations are mutually coupled
through the polarization and current density terms, because these
are medium responses to the total electric field of the optical
pulse. Explicitly,

�Pkx ,ky
(ω, z) = �Pkx ,ky

(ω, z, { �E+(x, y, z, t) + �E−(x, y, z, t)})

depends on the total electric field, and similarly does the current
density. The concrete functional dependence of P and J on the
electric field is unimportant for establishing the validity of these
equations (see the next section devoted to the medium models
for examples). Moreover, as we resolve the full optical field,
all higher harmonics are automatically included in contrast to
envelope models where one generates spectral features relative
to a reference carrier frequency. It has to be emphasized that
the two coupled unidirectional (bidirectional) equations are ex-
act. Additionally, the BPPE model includes nonparaxial effects
that would be relevant in realistic settings involving strong fo-
cusing in a vacuum prior to entering a nonlinear medium or in
simulating petawatt pulses.

The UPPE reduction arises when we specialize to a laser pulse
propagating in a single direction under conditions where there
are no significantly generated backward propagating fields. In
the absence of natural reflecting boundaries, this could be vi-
olated if strong gradients from shock waves are established
downstream or a mechanism for phase-matched back propaga-
tion via a generated plasma, for example, was operative. The
UPPE assumption is that the nature of the nonlinearity is such
that we can calculate the nonlinear response solely from the
forward propagating field, e.g.,

�Pkx ,ky
(ω, z) ≈ �Pkx ,ky

(ω, z, { �E+(x, y, z, t)})
�Jkx ,ky

(ω, z) ≈ �Jkx ,ky
(ω, z, { �E+(x, y, z, t)}). (5)

With this approximation, the forward-going UPPE can be solved
alone, isolated from its backward propagating counterpart. This
then represents a very large, nonlinear system of ordinary dif-
ferential equations for the field Fourier components that can be
practically solved in many important applications. In general,
all three components of the field are needed when the medium
response is calculated. In such a case, the longitudinal com-
ponent Ez is obtained from the divergence equation ∇. �D = 0
using the medium constitutive relation.

The characteristic feature of the UPPE is its spectral char-
acter. This is what gives us the capability to include, essen-
tially without any approximations, both the chromatic disper-
sion (i.e., the wavelength dependence of the refractive index)
and the frequency-dependent linear losses. On the other hand,
the fact that the native representation of the UPPE is in the spec-
tral space spanned by frequency and transverse wave numbers
make it necessary to use spectral transforms to go forth and back
between the real and spectral representations. This is because
the models of the light–medium interactions are invariably ex-
pressed in the real space, and in general require knowledge of
the whole history of the electric field at a given point in space.

C. Alternative Path to UPPE: The Wave Equation

The aforementioned derivation and the resulting evolution
model appear rather complicated, partly due to their generality.
It is, therefore, useful to narrow our attention to a simplified
case intended to elucidate certain issues. The following section
is meant to show a simplified derivation corresponding to the
scalar, 1-D wave equation. It will allow us to make connection to
usual way forward propagating evolution equations have been
derived in the literature. One may assume that it makes no
difference whether we start derivations from Maxwell or wave
equations, but it will soon become clear that even such important
issues as conditions for validity of the model strongly depend
on its mode of derivation.

For the moment, let us ignore any transverse variations in
the fields, and assume propagation in the positive z-direction.
Furthermore, assume that the electric and nonlinear polariza-
tion fields are polarized in the same direction, i.e., we consider
a dispersive but isotropic medium. Then, E(x, t) → êE(z, t)
and PNL(x, t) → êPNL(z, t) for some field direction ê which
is transverse to the propagation direction. The nonlinear wave
equation can then be written in scalar form as

(
∂2

z − n2(ω)
c2 ∂2

t

)
E(z, t) = μ0∂

2
t PNL(z, t) (6)

with the polarization term implicitly depending on the electric
field in some nonlinear way, details of which are irrelevant for
now. We next assume that the electric field takes the form of

E(z, t) =
∫ ∞

−∞
A(z, ω)ei[k(ω )z−ωt] dω

2π
(7)

where the electric field is a real quantity, so E(z, t) = E∗(z, t).
This implies A(z,−ω)eik(−ω )z = A∗(z, ω)e−ik(ω )z and we can
write (7) in terms of two integrals over positive frequencies

E(z, t) =
∫ ∞

0
A(z, ω)ei[k(ω )z−ωt] dω

2π

+
∫ ∞

0
A∗(z, ω)e−i[k(ω )z−ωt] dω

2π
.
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By substituting into the driven wave equation (6), we obtain∫ ∞

0

[
∂2

z A + 2ik(ω)∂zA − k2(ω)A
]
ei[k(ω )z−ωt] dω

2π

+
∫ ∞

0

[
∂2

z A∗ − 2ik(ω)∂zA
∗ − k2(ω)A∗] e−i[k(ω )z−ωt] dω

2π

− 1
c2 ∂2

t

∫ t

−∞
n2(t − τ)E(z, τ)dτ

= −μ0

∫ ∞

−∞
ω2PNL(z, ω)e−iω t dω

2π
.

Since the convolution of the index of refraction with the electric
field is a real quantity and the right side involving the non-
linear polarization is also real, we have n2(−ω) = n2(ω) and
PNL(z,−ω) = P ∗

NL(z, ω). After some manipulations, the fol-
lowing equality holds:∫ ∞

0

[
∂2

z A + 2ik(ω)∂zA
]
ei[k(ω )z−ωt] dω

2π
+ c.c.

= −μ0

∫ ∞

0
ω2PNL(z, ω)e−iω t dω

2π
+ c.c.. (8)

The aforementioned equality is satisfied when the condition[
∂2

z A(z, ω) + 2ik(ω)∂zA(z, ω)
]
eik(ω )z = −μ0ω

2PNL(z, ω)
(9)

is met for positive frequencies. If in addition to this A(z, ω)
satisfies the slowly varying spectral amplitude approxima-
tion |∂zA(z, ω)| 	 |k(ω)A(z, ω)|, then the evolution equation
becomes

∂zA(z, ω) =
i

2k(ω)
μ0ω

2PNL(z, ω)e−ik(ω )z . (10)

We stress that this is not an envelope equation. Using (8), we
obtain that the electric field satisfies the forward UPPE equation

∂zE(z, ω) = ik(ω)E(z, ω) +
i

2k(ω)
μ0ω

2PNL(z, ω). (11)

Let us emphasize again that this is nothing but the scalar case
of the UPPE equation which we derived in the previous section.
It may, therefore, come as a surprise that we arrive at this point
using a slowly varying amplitude approximation—something
we clearly did not have to assume in our derivation based on
Maxwell’s equations in [29]. Next, we show that while it was a
sufficient condition for the validity of the resulting propagation
model, it is certainly not necessary. Indeed, a complete descrip-
tion of the fields will require a backward field component; if this
field assumes the form

E(z, t) =
∫ ∞

−∞
B(z, ω)e−i[k(ω )z+ωt] dω

2π
(12)

then the driven wave equation implies[
∂2

z B(z, ω) − 2ik(ω)∂zB(z, ω)
]
e−ik(ω )z =−μ0ω

2PNL(z, ω).
(13)

In particular, if the electric field is the sum of a forward traveling
piece and a backward traveling piece, then we can satisfy the
driven wave equation if

[
∂2

z A(z, ω) + 2ik(ω)∂zA(z, ω)
]
e+ik(ω )z

+
[
∂2

z B(z, ω) − 2ik(ω)∂zB(z, ω)
]
e−ik(ω )z

= −μ0ω
2PNL(z, ω). (14)

We can rewrite (14) as

∂z

[
(∂zA)eik(ω )z + (∂zB)e−ik(ω )z

]

+ ik(ω)
[
(∂zA)eik(ω )z − (∂zB)e−ik(ω )z

]

= −μ0ω
2PNL(z, ω)

from where it is easy to see that the wave equation is satis-
fied exactly if the forward and backward amplitudes satisfy the
following first-order evolution equations:

∂zA(z, ω) = +
i

2k(ω)
μ0ω

2PNL(z, ω)e−ik(ω )z

∂zB(z, ω) = − i

2k(ω)
μ0ω

2PNL(z, ω)e+ik(ω )z . (15)

This is of course equivalent to the pair of UPPEs (or Bidirec-
tional equation) in the scalar, 1-D approximation. Thus, here
we can see what was the origin of the seeming inconsistency
in derivation of (11): if the wave equation is considered as the
source for a one-way evolution equation (which it has been nu-
merous times in the literature), then it is necessary to utilize both
the forward and backward field components. A single, directed
field component does not satisfy the nonlinear wave equation.
This means that such a successful model as the NEE was orig-
inally derived from an equation that should not be satisfied by
the sought waveform in the first place.

At this stage, we can connect to other NEEs derived in the
literature ( [4]–[12], [14]– [21]). These can be seamlessly de-
rived from the scalar UPPE by simply choosing an (ωr , kr )
frequency–wavenumber reference pair and Taylor expanding
in (ω, k) relative to this reference pair. This is the basis for
all nonlinear envelope models and clearly distinguishes them
from UPPE in that the latter involves absolute frequencies and
wavevectors. Details of the derivation of these models from
UPPE are given elsewhere, and here, we simply write down the
well-known NEE model due to Brabec and Krausz [12] as this
is the most extensively used in modeling and we will use this in
the next section to contrast with UPPE.

The NEE is an envelope equation in which the complex en-
velope amplitude A describes the optical field, and evolves ac-
cording to

∂ξA =
i

2kR

(
1 +

i

ωR
∂t

)−1

Δ⊥A

+ iD̂A

+
ikR

2ε0n2
b (ωR)

(
1 +

i

ωR
∂t

)
P (16)

where

D̂ = −α1

2
∂t +

∞∑
n=2

(
∂nk

∂ωn

)
ω=ωR

(i∂t)n

n!
(17)
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is the dispersion operator whose coefficients can be related to the
real and imaginary parts of the complex propagation constant
k(ω) and thus to the index of refraction.

This equation has been derived under the assumption of the
slowly evolving wave approximation which, in contrast to the
usual slowly varying envelope approximation [32], requires the
field not to change significantly over a wavelength distance
along the propagation characteristic. This approximation in-
cludes an assumption that there is little difference between the
phase and group velocities. Note that the latter requirement only
concerns the linear chromatic properties of the medium, which
is rather unexpected, because in a linear Maxwell problem there
is no difficulty in separating the forward and backward field
components and their corresponding evolution equations. It is
solely the effect of nonlinearity that makes such a separation
nontrivial. Thus, in the light of the previous section, one should
ask if the assumptions put forward by the authors of the NEE
are truly necessary conditions? Recall that they were invoked
in order to reconcile the one-way propagating NEE solution
with the full wave equation, but the latter is not the equation
which a nonlinear pulse should satisfy. Indeed, it is possible
to show [29], starting from UPPE and adopting a paraxial ap-
proximation followed by neglecting chromatic dispersion in the
wavelength-dependent diffraction term and expressing the field
in terms of an envelope, that the NEE is in fact more robust than
it may seem based on the original assumptions. This emphasizes
the importance and advantage of consistent Maxwell equations-
based approach in treatment of pulse propagation models.

III. LIGHT-MATTER INTERACTION MODELS IN FEMTOSECOND

NONLINEAR OPTICS

A. Linear Material Response

The total wavevector �k(ω) appearing in the UPPE (11) de-
scribes all linear optical properties of the host medium. This
includes linear dispersion and absorption bands of the real ma-
terial. The latter could be extracted from experimental data,
for example. In particular, for all applications in the nonlinear
regime that lead to significant spectral broadening, it is essential
to employ models that can treat the linear chromatic properties
of the medium with sufficient accuracy.

Historically, the NLSE remains the canonical description of
ultrashort pulse propagation in extended media. Formally, this
propagation model can be derived consistently via a singular
perturbation approach starting from Maxwell’s equations [31].
Traditionally, higher order corrections to NLSE arise as higher
order terms in an asymptotic expansion. The standard NLSE
only describes the chromatic dispersion “landscape” of the mod-
eled material up to second order in the dispersion. At this level,
in 1-D we observe (in certain regimes) solitons, for which inclu-
sion of the group velocity dispersion (GVD) is crucial. However,
such an equation cannot properly describe radiation of disper-
sive waves from solitons—higher order dispersion terms are
necessary to capture such effects. In 2-D and 3-D, the standard
NLSE has singular solutions that lead to blow up over finite
distances. These are termed “critical self-focusing” or “criti-
cal collapse” in 2-D and supercritical collapse in 3-D. A more

Fig. 1. Susceptibility of water with an added “agent” that exhibits a narrow
absorption band around 500-nm wavelength (black line). The red dashed line
depicts the numerical susceptibility as “experienced” by an ideal model imple-
mentation of the dispersion operator used in the NEE. The order of the dispersion
operator expansion is 20 in this picture, and the center wavelength is 800 nm
(marked by an arrow). Inclusion of more higher order terms cannot provide any
approximation beyond the absorption band.

ad hoc approach to adding correction terms to NLSE is to aug-
ment the second derivative w.r.t. time in the NLSE by corre-
sponding higher order terms, with their coefficients chosen to
mimic the proper frequency dependence of the refractive index
(and/or of the geometric dispersion in waveguides). An exam-
ple of such an approach is the well-known NEE by Brabec and
Krausz. This was formulated originally as a formal Taylor ex-
pansion of a dispersion operator that can, in principle, account
for arbitrarily high-dispersion orders. However, such a formal
treatment does not recognize the fact that Taylor series expan-
sions in general exhibit a finite radius of convergence. As a
consequence, while the NEE has been intended for extremely
broad spectra situations, the dispersion operator expansion may
limit its utility in certain regimes. Let us assume that we want
to investigate ultrafast nonlinear dynamics in a medium with
a narrow absorption band located within the spectral window
of interest. Such an absorption feature will result in a pole
(in the complex frequency plane) that restricts the radius of
convergence of the dispersion operator. Then, no matter how
many terms are included in the operator expansion, the resulting
chromatic dispersion as “seen” by the numerical model would
not converge for frequencies generated beyond the absorption
band. In other words, the way the NEE has been formulated,
its applications are restricted to the relatively simple chromatic
landscapes it can capture. This may be fully sufficient for appli-
cations in bulk media confined to the “center” of a transparency
window, but it may not suffice for structured materials such as
photonic crystal fibers in which the effective refractive index and
the accompanying frequency-dependent loss can exhibit a very
rich behavior which includes multiple “transparency windows”
alternating with “absorption frequency bands.”

This issue is illustrated in Fig. 1, which shows the suscepti-
bility of a hypothetical water sample with addition of a dilute
absorber. The added agent has an absorption band located at
around 500-nm wavelength. To illustrate what a perfect im-
plementation of the NEE equation would result in, we assume
a central wavelength of 800 nm and include 20 orders in the
expansion of the dispersion operator in the NEE. The picture
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Fig. 2 Effect of the finite radius of convergence in the dispersion operator of
the NEE. The simulated spectra for a water sample with an absorption band.
The black curve shows the UPPE-based results that take into account index
and loss over the whole spectra range. The red curve corresponds to an ideal
implementation of the Brabec and Krausz NEE—this model fails at frequencies
near and above the absorption band.

illustrates the fact that such an expansion is unable to provide
any reasonable approximation at frequencies higher than the
absorption band. This is a principal problem caused by the fact
that the radius of convergence of the operator is finite.

The restricted frequency interval in which the NEE disper-
sion operator can approximate the properties of the medium
becomes very evident in the simulation. This is shown in Fig. 2,
which compares a UPPE-based supercontinuum (SC) gener-
ation (black) in the previously described “sample,” with that
calculated using the dispersion operator approach (red). The
UPPE spectral solver correctly exhibits a gap in the SC spectrum
caused by the absorber, but the rest of the SC radiation remains
unaffected. The dispersion operator cuts off the spectrum close
to the absorption band, and thus restricts the applicability of the
model to a single “transparency window.”

On the other hand, UPPE as a Maxwell-like carrier-resolved
propagator does not suffer from this restriction. The chromatic
properties of the medium enter through a complex-valued func-
tion, say ε(ω) which captures both the index of refraction and
losses over an arbitrarily broad spectral range. The “only” real
restriction here is in fact the availability of reliable and suffi-
ciently accurate experimental data that span the relevant spectral
window to serve as input to the model ε(ω). Once we have a
sufficiently accurate, smooth (i.e., free of numerical interpola-
tion artifacts) representation of the permittivity, this is “applied”
directly during the solution of the UPPE. This is of course made
possible by the fact that the native computational variables are
actually the spectral amplitudes of the electric field, and the
propagator is a diagonal operator in the spectral space.

To emphasize the importance of the accurate treatment of the
linear medium properties, we offer yet another illustration which
concerns the so-called 1-D short pulse equation (SPE). Derived
by Alterman and Rauch [33] as an asymptotic expansion in a
small parameter [31] and further analyzed by Schäfer and Wayne
[34], this equation is designed to capture the ultrabroadband
spectrum of the propagating pulse.

Here, we want to point out one property of this equation that
is intimately connected to the way it was derived. The authors
chose to restrict the model to those media which can be described

Fig. 3. Submicrometer diameter silica strand effective susceptibility (red) and
its SPE-type approximation for the wavelength of 800 nm. Note that while the
real system exhibits a zero-GVD wavelength, the approximation does not.

Fig. 4 SC generation in the silica strand. The UPPE-based simulation (red)
correctly generates a strong dispersion wave component that shows up as a peak
at short wavelength. Due to the lack of zero-GVD wavelength in the SPE model
(black), the simulation fails to reproduce basic features of the SC generation
process in microstructure fibers.

by the wavelength-dependent susceptibility of the form

χ ≈ χ0 + χ2λ
2 .

This choice results in the wave equation that subsequently
lends itself to multiple scales analysis, and leads to the SPE.
As pointed out by the authors, different functional dependence
of the linear dispersion on wavelength would lead to different
SPEs.

We want to emphasize that the fact that the medium chro-
matic properties are described in terms of only two parameters
drastically restricts the range of applicability of this propagation
model.

This is demonstrated in Figs. 3 and 4, which relate to an
important regime of short-pulse propagation in silica wires and
SC radiation in fibers in general. Fig. 3 compares the effec-
tive susceptibility of the silica waveguide to its best SPE-type
approximation for the wavelength of 800 nm. While the approx-
imation is locally good, and one could argue that the shape of
the susceptibility function is also captured, the simulated spec-
tra reveal a principal drawback of the SPE. Fig. 4 compares the
UPPE spectrum to that generated in the corresponding SPE-type
approximation, and shows that the SPE is completely missing
the so-called dispersive wave component of the SC. The reason
for this is the absence of the zero-GVD wavelength in the SPE
model. What is worse, it can be shown that the SPE has encoded
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the medium properties in such a way that no zero-GVD point
can exist in this model. One consequence of this restriction is
that the equation is inappropriate to simulate this very important
regime of pulse propagation in fibers.

With respect to previous examples, it has to be emphasized
that accurate treatment of chromatic dispersion is possible, and
indeed necessary, both in the normal and anomalous group ve-
locity dispersion regimes. While equivalent from the mathemat-
ical or model-implementation point of view, there is a significant
difference between the anomalous and normal GVD frequency
domains (see, e.g., [35], [36]). In particular, while normal GVD
results in pulse splitting [37], the anomalous dispersion regime
exhibits different pulse dynamics, which in turn can be measured
and visualized in angularly resolved spectra. Because of the
typical shape of the chromatic dispersion landscape, anomalous
GVD regime is often affected by the generation of dispersive
waves that actually propagate with normal group velocity disper-
sion. As a consequence, integration of pulse evolution equations
tends to be somewhat more demanding from the numerical point
of view. Nevertheless, spectral-based methods such as UPPE can
handle both mixed dispersion regimes very well.

B. Nonlinear Material Response

Most of extreme nonlinear optics is currently studied in non-
magnetic materials and in the nonrelativistic intensity regimes
in which the effects due to magnetic fields are negligible. In the
following, we describe what can be considered as the standard
model in the general areas of femtosecond optical filamentation
and high-harmonic generation.

The most important physical effects that influence propaga-
tion of ultrashort, high-power light pulses in nonlinear disper-
sive media include the optical Kerr [38], [39] and stimulated
Raman effects [40], free-electron generation, defocusing by the
generated plasma, and losses caused by avalanche and mul-
tiphoton ionization (MPI). With minor modifications, models
including these effects can be used for description of ultra-
short optical pulses propagation in gases [1], [41]–[56], in con-
densed bulk media [57]–[61], and in conventional, microstruc-
tured, and tapered fibers [62]–[64] as well as in ultrathin waveg-
uides [65]. Over the last 15 years, the community developed
an accepted model that has been instrumental in understanding
many filamentation-related phenomena. However, recent exper-
imental improvements and some unexpected results from them
have provided a strong indication that the light–medium inter-
action models need revision. We are entering a stage in which
experiments are about to achieve the fidelity that will require
much more accurate modeling. This motivates the discussion
in this section: we review the current state of the art, expose
its weaknesses, and identify ways to qualitatively improve the
models.

Nonlinear effects are usually described in terms of nonlinearly
induced polarization and current density. The polarization P
enters through the material constitutive relation

�D = ε0ε ∗ �E + �P ({ �E}. (18)

The star in this formula represents a convolution integral with
ε being the linear response function corresponding to the
frequency-dependent ε(ω, x, y). The nonlinear polarization can
be an “arbitrary” function of the electric field �P = �P ( �E). In
the present context, it is related to the optical Kerr effect and
to the “delayed Kerr nonlinearity” which is due to anisotropic
polarizibility of molecules and their alignment in strong optical
fields.

We will also discuss the current density that is driven by
the optical field �J = �J( �E) to describe interactions with plasma
generated by the high-intensity optical pulse. Often, defocusing
effects are treated within the polarization term. It has to be em-
phasized that while formally equivalent, the way such a model
is usually implemented results in different dispersion proper-
ties. We will discuss this approximation as a special case of the
current–density-based model, and will provide an example of an
experiment where the distinction between the two approaches
becomes important.

1) Optical Kerr and Stimulated Raman Effects: Although
very different in microscopic origin, the optical Kerr and the
stimulated Raman effects appear similar from a modeling point
of view. The local contribution to the nonlinear polarization
can be written, and conveniently implemented, in terms of the
time-dependent modification of the medium susceptibility

�P = ε0Δχ�E. (19)

The susceptibility change itself then responds to the history of
the light intensity I at a given spatial location

Δχ = 2nbn2

[
(1 − f)I + f

∫ ∞

0
R(τ)I(t − τ)dτ

]
. (20)

Here, f is the fraction of the delayed nonlinear response and R
is the memory function of the stimulated Raman effect. It has to
be emphasized that, here, the intensity I should be understood
as the cycle-averaged quantity. Therefore, in both terms, we
have nonlinear sources that probe the spectrum (very) roughly
centered around the wavelength of the driving pulse. The stim-
ulated Raman effect memory function of course depends on the
medium. In gases, it originates from the molecular reorientation
induced by the high-intensity field and exhibits “revivals” on
a picosecond time scale. This is typically a much longer scale
than that of the individual pulse generated by the femtosecond
laser system. It is, therefore, often sufficient to include the ini-
tial portion of R(τ). Most often this is parametrized in the form
R(τ) ∼ sin (Ωτ)e−Γτ in filament simulations (see, e.g., [2])
in gases. An advantage of this particular response form is that
it can be very efficiently implemented without performing the
convolution explicitly. A considerably more complex function
may be necessary to use in condensed media, this, again, de-
pending on the pulse duration. For example, in silica more than
ten “effective” oscillators must be used to capture the Raman
memory accurately [66]. Then, it may be more effective to ap-
ply the Fourier transform-based evaluation of the convolution
integral.

The typical ratio f between the instantaneous and delayed
Kerr effect contribution is about one half. However, it has to be
noted that some recent experiments employing a pump–probe
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approach can measure the respective contribution more pre-
cisely than the previous experiments performed more than a
decade ago. At the time of this writing, this is a subject of de-
bate with strong indication that in longer duration pulses it is
actually the delayed nonlinearity that is the major effect.

Now, let us turn our attention to the instantaneous part of
the Kerr effect. This is due to the response of the tightly bound
electrons to the optical field. As such, electrons can follow the
driving field without much of a delay, which in turn results in
an instantaneous response. If we treat the Kerr effect as strictly
instantaneous, then the polarization is simply proportional to
the cube of the real electric field (it has to be emphasized that
this is only true for an instantaneous effect)

P (�r, t) ∼ E(�r, t)3 . (21)

Note that both quantities here are real physical fields, not their
envelopes. This model can be used with the propagation equa-
tions that do not rely on the use of envelopes. The physical dif-
ference from the aforementioned envelope-based treatment is
that (21) contributes not only to the frequency range of the driv-
ing pulse (i.e., to the so-called fundamental), but also generates
the third harmonic [67] and higher harmonics. Third harmonic
generation is a well-characterized effect in optical filaments
and it is, therefore, important to include this real-field-based
model in simulations designed to capture higher harmonics.
The first attempt to include third harmonic generation in the
filamentation models used coupled envelopes, each centered at
the fundamental and higher harmonics. We emphasize that such
an approach lacks proper justification in the context of ultrafast
optics and should be avoided. This is because the generated SC
typically spans many decades in frequency encompassing these
harmonics, making a unique separation into separate envelope
components impossible.

2) Ionization in Strong Optical Fields: Now we turn to the
next major player affecting dynamics in femtosecond filaments
and in the high-harmonic generation. This is ionization in in-
tense optical fields. Somewhat imprecisely, this is often referred
to as the MPI, although it has to be kept in mind that tunneling
ionization can also occur. In filaments at atmospheric pressure,
the actual regime of ionization is in the crossover between the
MPI and tunneling.

Because of the potentially high intensities occurring in fem-
tosecond pulses, free electrons are generated by MPI and by the
avalanche mechanisms. Consequently, it is then also necessary
to account for the response of the optical field to the presence
of a dilute plasma. Since the relevant time scales are very short,
plasma diffusion and ion motion can be neglected. In the stan-
dard model, the free-electron density ρ is usually obtained as a
solution to an equation of the following form [45], [50], [51]:

∂tρ = aIρ + b(I) − cρ2 . (22)

Here, I is the light intensity, a parametrizes the avalanche free-
electron generation, and b(I) represents the MPI rate that is a
highly nonlinear function of the intensity. The last term describes
plasma recombination.

Another important issue related to ionization is, naturally, that
it induces losses in the optical fields. Within the standard model,

this effect is included simply as a loss term in the propagation
equation which is designed to impose a loss of energy equal to
that needed to liberate the electrons from their parent neutrals.
Also possible is to model the losses caused by MPI as either
an equivalent current (see, e.g., [16], [68]) or an imaginary
susceptibility contribution (which itself is proportional to the
free electron density) that extracts from the field the energy
needed for the free-electron generation.

IV. FREE-ELECTRON INDUCED DEFOCUSING AND LOSSES

It is usually assumed that the collective electron velocity �v
responds to the optical field and the total current density is
governed by the following simple equation (see, e.g., [68]):

d

dt
�J(t) =

e2

me
ρ(t) �E(t) − �J(t)/τc (23)

where τc is the mean time between collisions experienced by
electrons. This equation is solved together with (22) to capture
effects of the plasma on the propagation of the optical field,
namely defocusing due to plasma and plasma-induced losses.
Effectively, the aforementioned equations are mathematically
equivalent to the so-called Drude plasma model.

As an alternative to treating the electrons freed from the neu-
trals (atoms or molecules constituting the gas) via the current
density, a simplified model is often used due to its ease of im-
plementation. Given the density of free electrons, one can treat
the plasma-induced effects as a susceptibility modification, and
lump them with the rest of �P which simplifies numerical cal-
culation. Then, ∂t

�P = �J is interpreted as a part of nonlinear
polarization time derivative, and �P is approximated by

�P = ε0Δχpla(ρ) �E = ρ
ie2

meωR(1/τc − iωR)
�E (24)

with ωR being a chosen reference angular frequency. It needs
to be emphasized that this approximation completely neglects
the plasma-induced chromatic dispersion. In most situations
related to femtosecond filaments this may not be a problem,
especially if we take into account how crude the model is to
start with. However, to model certain pump–probe experiments
in which the plasma generated by the pump pulse is detected
by the probe pulse centered at a sufficiently different frequency,
the model based on the current density equation must be used.
The susceptibility-based approach would fail to reflect that the
induced index of refraction depends on the wavelength. For
example, if the probe is derived from the second harmonic of
the fundamental, the simplified treatment would overestimate
the effect on the probe by a factor of four!

V. OPEN PROBLEMS IN MODELING LIGHT-MATTER

INTERACTIONS IN ULTRASHORT PULSES

There is no doubt that the standard model as described in
previous section is a crude, essentially phenomenological way
to describe the dynamics in the optical filaments in air and other
gases. The only reason, we believe, that it has “survived” for
more than a decade is actually related to the fact that also the
experiments in the filamentation field have been a far cry from
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being quantitative and reproducible. While this situation has
been improving recently, it is fair to say that filamentation ex-
periments are in general not reproduced by other groups, many
of them are qualitative in nature, and the few quantities that
experimentalists attempt to characterize quantitatively are very
difficult to access in real (as opposed to simulated) experiments.
The impact on the simulation efforts is that even the param-
eters that characterize the present models are not known with
sufficient accuracy. Historically, the standard model provided
an important simulation tool, and was effective in bringing us
to the current level of understanding of the femtosecond pulse
propagation dynamics. However, such qualitative phenomenol-
ogy is no longer sufficient, and one now has to address the
issue of more quantitative first principles model development.
We address in the following sections what we see as the most
important related problems.

A. Open Problems Related to Extreme Propagation Regimes

So far, the filamentation community has concentrated its ef-
forts on understanding of “naturally” occurring filaments. While
a great deal of interest has been devoted to the control of single
and multiple filamentation regimes, the aim has been mostly
on manipulating the location of the resulting hot spots. This is
very much in line with current understanding that the individual
filament properties are to a certain degree universal. Because
the onset of filamentation is driven by the self-focusing, which
in turn is controlled by the optical Kerr effect responding to the
local light intensity, the inner structure of the filaments is mostly
independent of how they are created. In particular, it is assumed
that due to the dynamic balance between the self-focusing and
collapse arrest mechanism, the latter being dispersion and/or
plasma based, the typical thickness of filaments is significantly
larger than the light wavelength. Consequently, vectorial effects
are not likely to play a role in natural filaments. While the issues
related to the possibility of the collapse arrest due to nonparaxial
diffraction [14], [69], [70] regimes as well as effects caused by
the vector nature of the optical field [7] have been studied the-
oretically, there are so far no experiments which would reveal,
say, vectorial effects in filamentation in gases. This is why the
great majority of the pulse propagation models used in this field
are based on paraxial approximations, and the few approaches
which go “beyond paraxial” can be viewed as an “overkill” in
the context of filamentation. One of the effects held responsible
for preventing filaments to “enter” nonparaxial and vectorial
regimes is so-called intensity clamping [71], [72]. Even when
the energy carried by the pulse increases, the collapse cannot
reach finer spatial scales and instead the volume and the trans-
verse cross section of the filament core actually increase, and
the paraxial approximation remains well justified.

However, the aforementioned argument may not be valid
for future experiments with “artificial” filaments. For example,
preparation of the hot spot in a medium with low (e.g., helium)
or zero nonlinearity (vacuum) and launching the beam into a
medium with a wavelength-sized waist may potentially induce
novel dynamics. To illustrate the potential effect that the mod-
eling would have to deal with, we present Fig. 5 which shows

Fig. 5. Collapse regularization via the nonlinear ∇.E �= 0 related terms. A
tightly focused pulse in a pure Kerr medium.

a comparison of scalar and vectorial approaches for a tightly
focused pulse suddenly entering a Kerr-type nonlinear medium.
For a spot size comparable with the wavelength, the longitudi-
nal field component, usually disregarded in filament modeling,
increases. Together with the gradient of intensity, it gives rise to
a ∇.P term that appears in the vectorial UPPE model. It turns
out that for moderate power that leads to collapse within several
micrometers of propagation, this correction is sufficient to arrest
critical self-focusing.

The gap between the filament size and nonparaxial regimes is
significantly smaller in condensed media. So, it is conceivable
that truly nanoscale nonlinear optics could be studied in future
experiments with filaments. Then, we have to address practical
simulation issues related to the implementation of fully vec-
torial models, as these require significantly larger computation
volumes in comparison with the models restricted to the paraxial
approximation.

An open theoretical question related to this is whether one-
way propagation can be sustained when nonlinear interactions
occur within a volume of a few cubic wavelengths. A possible
testbed for such problems could be efficient coupling of the
UPPE-type solvers with the direct Maxwell equations’ solvers.
While the unidirectional propagator would handle the pulse ap-
proach toward the tight interaction “zone,” the Maxwell solver
could take over within the small volume where strong vector–
nonlinear effects take place.

B. Open Problems Related to the Kerr Effect

Of course, (19) neglects the dependence of the Kerr effect on
wavelength. Although Δχ may exhibit a finite memory due to
the Raman contribution, it acts on the instantaneous value of �E
only. This is in part due to only rather limited data available on
frequency dependence of the nonlinear coefficients n2 (see [73]
for silica), but it also simplifies practical calculations consid-
erably. Consequently, the “background” index of refraction nb

can be approximated by a constant value taken at the central
frequency of the initial pulse. Physically, this approximation is
equivalent to the assumption that the Kerr effect is strictly in-
stantaneous. However, with the ever shorter and more intense
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pulse lasers available, the fact that the Kerr effect has a finite,
albeit short memory will have to be addressed in the near future.

Another important issue which generated a heated debate
recently is the role of higher order nonlinearity saturation ver-
sus plasma limiting. In a recent experiment, Loriot et al. have
presented measurements for major gases present in the atmo-
sphere [74], [75]. They proposed that the Kerr effect strongly
depends on the intensity of light, and published values for the
corresponding nonlinear coefficients are up to an order of 10.
This is currently an open, very exciting issue. While it is be-
yond the scope of this paper, we mention it as an example of
a development that clearly indicates limitations of the standard
filamentation model.

C. Open Problems Related to Ionization and Defocusing

The part of the model dealing with free electrons is even more
problematic than the Kerr nonlinearity model. First, let us con-
sider ionization. This is characterized in terms of rates, be it in
the filamentation modeling or in the fundamental, theoretical,
and experimental studies of ionization in strong fields. In this
respect, one has to recognize that the notion of the rate is an
ill-defined quantity in the present context. Indeed, if we charac-
terize the ionization probability as a rate, we silently assume that
the ionization yield at the given moment of time does not depend
on the previous history of the atom or molecule subjected to the
time-dependent waveform of the femtosecond pulse. Intuition
alone states that this cannot possibly be true in sufficiently strong
fields. It has been argued that the notion of rate can be applied to
the driving pulses that contain several optical cycles under their
envelopes. At the same time, simulations have indicated that
much shorter subpulses can be created in the process of self-
compression. The problem is made worse by the fact that such
ultrafast features are extremely broad in frequency. Because the
ionization models and measurements that provide input to pulse
propagators are invariably related to a specific wavelength, one
has to ask, what is the carrier frequency that determines the
ionization when the spectrum is very broad? Clearly, for such
situations what is desirable is a model that incorporates correctly
the history of the driven electronic system, and “translates” it
into the polarization and current density contributions in the
light-propagation equations.

To illustrate the need for a wavelength-sensitive model of
ionization in strong optical fields, we have performed a simula-
tion of multiple filament formation in an ultrashort “pancake”
pulse. Namely, we consider a 7 fs duration pulse with an initial
intensity of 4 × 1016 W/m2 . We concentrate on a 5 mm× 5 mm
patch of what we assume to be a very wide beam that suffers
from a random phase modulation in both transverse dimensions.
The width to length “aspect ratio” of such a pulse is enormous,
hence the characterization as a “pancake.” This geometry is
very different from what is usually employed in filamentation
experiments. In most cases, the initial duration of the pulse is
significantly longer than that of the self-compressed “subpulses”
that occur inside of optical filaments. In this case, the initial du-
ration is so short that dispersion immediately competes with
the self-focusing and random phase front perturbations. We are,

Fig. 6. Extreme frequency shift in a hot spot occurring within a wide “pan-
cake” femtosecond pulsed beam propagating in air. The initial propagation was
a pulse with the duration of 7 fs, and the beam passed through a random phase
screen before impinging on a vacuum–air “interface” where the perturbed phase
front initiated random filament formation.

thus, in a regime in which all important effects “kick in” simul-
taneously. This is different from naturally occurring filaments
in which the main players contribute more or less accumula-
tively. It has to be emphasized that while not at all common,
this regime is in principle possible to achieve in experiments.
For example, one could launch a widely collimated beam from
vacuum through an aerodynamic window. The observation we
want to emphasize for the purpose of this review is related to
an extreme spectral behavior that can potentially invalidate the
MPI model based on the notion of a central pulse wavelength.

Fig. 6 shows a spectrum of a selected hot spot on the
cross section of a wide beam after the initial propagation over
2.5 m. The most violent dynamics occur in the initial few meters
of propagation due to the extreme nature of the launch pulse.
It is interesting to compare the initial spectrum, itself rather
broad due to the very short pulse duration, to that of a hot spot
(i.e., randomly generated filament). The latter appears to be
red-shifted to such a degree that the notion of the central wave-
length spanning the “entire life” of a pulse completely loses
justification. This is, therefore, an example of a regime when
a first-principle ionization model independent of a prescribed
pulse wavelength would be much more appropriate. Although
the overall spectrum of the beam may still be assigned a roughly
800-nm wavelength, it is the high-intensity spots where essen-
tially all ionization occurs, and such a frequency shift should be
taken into account. We believe that construction of such models
and their integration with the pulse propagation simulators are
one of the most interesting and important emerging problems in
this field.

Besides the reference wavelength, another fundamental prob-
lem in the standard model is related to ionization losses, which
are included as “correlated” with the ionization yield, but are
otherwise independent. In particular, they affect all spectral
components of the pulse equally. This is of course in conflict
with the fact that shorter wavelengths are more efficient in over-
coming the ionization potential of the medium. In reality, the
ionization losses of the optical energy are intimately connected
with the induced phase changes, and are in fact two aspects of
the same process. (The good analogy here is the real and imag-
inary parts of the linear optical susceptibility that are related
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to each other through causality.) The current standard model
completely disregards this issue.

Next, let us consider the free-electron-induced defocusing.
This is described in terms of a Drude model in which all elec-
trons are characterized by the same, sharply defined velocity,
and by the typical time between collisions. It is further envi-
sioned that the electrons “lose” any memory of their kinetic
state preceding the collision. This model is also strictly speak-
ing unjustified in the context of femtosecond pulses. Indeed,
within a few optical cycles, there is no time for the electron lib-
erated from an atom to collide with other molecules or atoms,
or other free electrons. What we have is essentially a single-
atom, single-electron process, and it is questionable whether
this can be phenomenologically modeled by equations mathe-
matically equivalent to the Drude model. It is conceivable that
the Drude-like model can be justified in some sense, in particu-
lar if the collisional “equilibration” is replaced by the scattering
off the parent ion. However, at present a microscopically based
treatment of this problem is still missing.

VI. CONCLUSION

Theory and simulation of ultrashort, high-power optical pulse
propagation in dispersive, nonlinear media have contributed cru-
cially to progress in the ultrafast science, and especially in the
field of optical filamentation. We have reviewed the main ideas
that support various pulse propagation models with an emphasis
on identifying the open challenging problems.

Recent experiments provide more and better insight into the
dynamics governing intense light–matter interactions, and this
means that the theoretical basis and practical implementations
of the computer models for extreme nonlinear optics require
significant improvement.

Among the most important issues to address, at least for the
simulation community, is a departure from the phenomenology
based models to ones that are rigorously justified on the micro-
scopic level. This represents a major challenge for both theory
and practical computing.
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T. Johnston, J.-C. Kieffer, and H. Pépin, “Filamentation of ultrashort pulse
laser beams resulting from their propagation over long distances in air,”
Phys. Plasmas, vol. 6, no. 5, pp. 1615–1621, 1999.

[47] M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse prop-
agation in argon: A pressure dependence study,” Phys. Rev. E, vol. 58,
no. 4, pp. 4903–4910, 1998.

[48] J. Schwartz, P. Rambo, J.-C. Diels, M. Kolesik, E. Wright, and J. Moloney,
“Ultraviolet filamentation in air,” Opt. Commun., vol. 180, pp. 383–390,
2000.

[49] A. Chiron, R. Lamouroux, R. Lange, J.-F. Ripoche, M. A. Franco,
B. S. Prade, G. Bonnaud, G. Riazuelo, and A. Mysyrowicz, “Numerical
simulations of the nonlinear propagation of femtosecond optical pulses in
gases,” Eur. Phys. J. D, vol. 6, pp. 383–396, 1999.
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