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Postionization medium evolution in a laser filament: A uniquely nonplasma response
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Theoretical consideration of the optical response of nascent free electrons in the process of laser filamentation
reveals that the initial microscopically inhomogeneous charge distribution causes a transient electromagnetic
response of the medium that differs drastically from that of a homogeneous plasma with the same degree of
ionization. An analytical model, describing the forced oscillations of virtually isolated and expanding electron
clouds, predicts considerable enhancement of these oscillations caused by transient resonance with the laser
field. The transient resonance processes should play a role in the currently accepted picture of filament formation
dynamics.
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I. INTRODUCTION

Laser filamentation in air or other gaseous media has
been an area of intense research interest due both to the
unique, coupled light-matter structure created in the filament
and to the new technical capabilities that filaments enable
[1,2]. The process is initiated through the intensity-dependent
index of refraction that accompanies the passage of radiation
through a medium. If the laser beam power exceeds the
medium-specific critical value, the nonlinear refraction index
inducing Kerr lensing overcomes diffraction and causes the
laser beam to self-focus. The self-focusing is accompanied
by broadening of the spectral distribution to the blue side of
the pump frequency through the process of pulse shortening
known as self-steepening. The processes arresting the ultimate
collapse of the beam, leading to filament stabilization, are
the subject of some controversy [3–7]. The conventional
mechanism involves a negative contribution to the refractive
index due to the presence of the freed electrons, pictured
as an underdense plasma in the framework of Drude theory
[1,2]. Recently, however, this notion has been challenged,
on both experimental and theoretical grounds, by invoking
a negative contribution to the refraction index by higher-order
nonlinearities [3,8,9]. The issue of ionization, or the absence
thereof, in laser filamentation remains a topic of some debate
[4,5,10]. Moreover, the dynamics of laser-induced ionization
in atmospheric-pressure gases has recently come to the fore
in two other areas of active current research: laser wakefield
acceleration [11–13] and indirect-drive inertial confinement
ignition efforts [14–17]. In both of these experiments, the
ionization is also a crucial step for unfolding multiple nonlinear
processes, and in both cases it is not well understood,
requiring ad hoc fitting parameters to properly describe the
situation. In this paper, we challenge the assumption that the
ionization process results immediately in locally homogeneous
plasma, using laser filamentation in air as the primary
example.

*Corresponding author: daroman@temple.edu

II. THE MODEL

In this section, we delineate and then present a model for a
fundamental difference between the nascent state of ionization
in the filament-bearing medium and a low-density plasma. The
characteristic distance between atoms or molecules in a gas at
atmospheric pressure is about ∼30 Å. At the same time, at the
typical ion density in a filament [2,18], n ∼ 1015−1016 cm−3,
the average distance between ions is ∼500−1000 Å. At
the velocity of ∼1017 cm/s, the released electron covers
only ∼20 Å during an ∼20 fs laser pulse. This means that
during filamentary propagation, the ionization process does
not produce a uniform plasma by the end of the laser pulse
(at t ≈ 20 fs). Rather, the isolated and well-separated ions
are each surrounded by an expanding electron cloud. This
cloud is initially formed by the wave packet emerging from the
ionization process, and the spatial extent of the wave packet is
estimated as h̄/�p ∼ h̄/

√
2m�E ∼ 2.5 Å, where �E is the

uncertainty in the freed electron energy for an eight-photon
ionization using a laser with 60 meV of bandwidth. [At the
focused laser intensity of ∼1013 W/cm2 [1,2], the electron
kinetic-energy distribution is strongly peaked at low kinetic
energies; as the ponderomotive potential is <1 eV (with
800 nm laser wavelength), the exponentially decreasing tail of
high-kinetic-energy above-threshold-ionization electrons can
be safely neglected.] The expansion and thinning of this initial
electron cloud, that is, the spatial evolution of the wave packet
in the presence of the ion-core potential, is a quantum process
that is still largely unaccounted for, except for a few limiting
cases [19]. However, the essence of the medium response
effects considered here does not depend on the details of
the expansion process, thus allowing for very general (and
simplifying) assumptions.

Accordingly, we consider the initial electron wave packet
of a general form having spherically symmetric and asym-
metric components, which we will model as a classical
electron cloud having the initial charge density ρ(r,0) =
(1 − μ)ρ0(r,0) + μ(3/2)ρ1(r,0) cos2 θ where r is the distance
to the ion core and θ is the polar angle in the corresponding
spherical coordinate system, the parameter μ � 1 quantifies
the relative contribution of the asymmetric component, and
the distribution functions ρ0(r,0) and ρ1(r,0) are normalized

046408-11539-3755/2012/86(4)/046408(5) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.046408


D. A. ROMANOV AND R. J. LEVIS PHYSICAL REVIEW E 86, 046408 (2012)

to the fundamental charge e. Note that ρ0(r,0) is nonzero at
the center, while ρ1(r,0) ∝ r2 (at least) when r → 0. As a
simple assumption, we model this expansion as a self-similar
process, where the distribution functions ρ0(r,0) and ρ1(r,0)
maintain their form while the characteristic scale grows with
t at a constant rate α: ρ0,1(r,t) = C(t)ρ̃0,1[r/(r0 + αt)], thus
causing the electron cloud to spread, decreasing the charge
density ρ0(0,t) in the middle of the cloud and increasing the
effective distance between the two lobes of the asymmetric
distribution ρ1(r,0). In this expression, ρ̃0,1 are function of
a dimensionless argument, referring to the initial charge
distributions: ρ̃0,1(r/r0) = ρ0,1(r,0). The time-dependent co-
efficient C(t) is obtained from the normalization condition∫

dV ρ0,1(r,t) = e, which gives C(t) = r3
0 /(r0 + αt)3, so that

ρ0,1(r,t) = [r3
0 /(r0 + αt)3]ρ̃0,1[r/(r0 + αt)].

Consider the system of the ion core and the electron charge
distribution in the oscillating electric field of the laser pulse,
E(t) = E0 cos(ωt); neglecting the slow motion of the heavy
ion, this electric field just shifts the electron cloud as a whole
with respect to the ion charge. If the oscillating displacement
distance z is much smaller than the characteristic scale of the
charge distribution, |z| � r0 + αt , the restoring force F (z,t)
exerted on the shifted cloud by the ion charge can be obtained
by expanding the slowly evolving potential energy U (z,t) =
e
∫

d3rρ(r,t)/
√

r2 + z2 − 2rz cos θ , to find

F (z,t) ≈ −z
4π

3

eQr3
0

(r0 + αt)3
,

(1)

Q = (1 − μ)ρ̃0(0) + 12

5
μ

∫ ∞

0
dr ′ ρ̃1(r ′)

r ′ ,

where the integral in the second term in Q converges due to the
mentioned asymptotic properties of ρ1(r,0). One can note the
physically distinct nature of the two terms in the expression
for Q. The first term arises from the shift of spherically
symmetric charge distribution and corresponds to effective
attraction of the charged sphere of radius z as follows from
the Gauss theorem. The second term corresponds to the shift
of the positive charge from the middle position between two
equal lobes of the negative charge distribution. The equation
of motion for the newly released electron can be recast as an
equation for the effective oscillating dipole d = ez:

∂2

∂τ 2
d̃(τ ) = − γ

(1 + βτ )3
d̃(τ ) + cos(τ + τ0), (2)

with the initial conditions d̃(0) = 0,(∂d̃/∂τ )|τ=0 = 0 and
where τ0 signifies the ionization moment. In Eq. (2), we use the
ponderomotive radius a = eE0/(meω

2) as the length scale, so
that d = ead̃ , and we choose τ = ωt to effect a dimensionless
form. The contribution of the first term in the right-hand side is
determined by two dimensionless coefficients β = α/(ωr0) �
1 and γ = (4π/3)(Qr0/E0)(a/r0) � 1. For example, if we
take α ∼ 5 × 106 cm/s and r0 ∼ 3 Å, then β ∼ 10−2. Then,
setting μ ≈ 1/2 in Eq. (1), we obtain γ ∼ 3. As seen in Eq. (2),
the physical meaning of γ is the initial squared frequency of
the free dipole oscillations of the nascent electron cloud as
related to the laser carrier frequency, while β signifies the
relatively slow rate at which this frequency decreases. It is
noteworthy that in a realistic situation, γ > 1, that is, the initial
free-oscillation frequency is greater than the carrier frequency.

As the electron cloud expands, the value of γ inevitably passes
through unity [at τ = (γ 1/3 − 1)/β 
 1], and this point of
transient resonance is a major factor determining the dynamics
of the medium response to the laser pulse.

III. ANALYSIS OF FORCED OSCILLATIONS

Equation (2) is formally an equation for a forced harmonic
oscillator with slowly varying natural frequency �(βτ ) =
γ 1/2/(1 + βτ )3/2. Assuming β � 1, we apply the two-scale
approach that has been developed for such cases [20]. We
consider d̃(τ ) as a function of two temporal variables, slow ς

and fast ξ : d̃(τ ) = d̃(ξ,ς ). Specifically, we choose

ς = βτ ;
(3)

ξ = 1

β

∫ βτ

0
dx�(x) = 2γ τ

(1 + βτ )1/2[(1 + βτ )1/2 + 1]
.

Then, Eq. (2) becomes

∂2d̃

∂ξ 2
+ 2β

�(ς )

∂2d̃

∂ξ∂ς
+ β2

�2(ς )

∂2d̃

∂ς2
+ β

�2(ς )

∂�(ς )

∂ς

∂d̃

∂ξ

= −d̃ + 1

�2(ς )
cos[τ (ξ ) + τ0]. (4)

We look for the solution in the form d̃(ξ,ς ) = d̃0(ξ,ς ) +
βd̃1(ξ,ς ) + β2d̃2(ξ,ς ) + · · ·, collect the terms of the same
power of β, and impose cancellation of resonance terms in
higher-order contributions that would destroy the hierarchy.
Thus, we obtain in the main approximation:

d̃0(ξ,ς ) = a0√
�(ς )

cos(ξ + θ0) + 1

�2(ς ) − 1
cos[τ (ξ ) + τ0].

(5)

Here, the constants a0 and θ0 are determined by the initial
conditions to Eq. (2) as

a0 = −
√

�(0)

�2(0) − 1
cos(τ0)

√
1 + tan2(τ0)

�2(0)
,

(6)

tan(θ0) = tan(τ0)

�(0)
.

The most interesting feature of the solution is that as the
“slow time” ς progresses, the denominator in the second term
becomes zero at the point ς = ςR = γ 1/3 − 1. Physically,
this means that the natural oscillation frequency of the
expanding electron cloud becomes resonant with the laser field
oscillations. The two-scale approximation (5) does not apply
in the vicinity of the resonance and as a result, the constants
a′

0 and θ ′
0 in Eq. (5) after the resonance will differ from a0 and

θ0 determined in Eq. (6).
In the vicinity of the resonance, we use an approach

[21] where the reference point to ςR is shifted and the
slow variable is scaled as ς̃ = γ −1/3(ς − ςR) = ετ̃ , where
τ̃ = τ − ςR/β, τ̃0 = τ0 + ςR/β, and ε = γ −1/3β � 1, so
that and �(ς̃) = (1 + ς̃ )−3/2. Then the solution to Eq. (4) is
written as d̃(τ̃ ) = a(ετ̃ ) cos[τ̃ + ϕ(ετ̃ )] = Re[z(ετ̃ ) exp(iτ̃ )],
where z(ετ̃ ) = a(ετ̃ ) exp[iϕ(ετ̃ )]. Upon substituting this d̃(τ̃ )
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in Eq. (4), the approximate expression for z(ς̃) is obtained as

z(ς̃) = eig(ς̃ )

(
− i

2ε
eiτ̃0

∫ ς̃

0
dς̃ ′e−ig(ς̃ ′) + z0

)
,

(7)

g(ς̃) = 1

2ε

∫ ς̃

0
ς̃[�2(ς̃ ′) − 1].

Here, the constant z0 sets the amplitude of the oscillations
at the point of the transient resonance, ς̃ = 0, as it is eventually
determined by the initial conditions. Thus, to find the value of
z0, we need to match d̃(τ̃ ) with that given by the expression
of Eq. (5) at some sufficient distance from the resonance,
where ς̃ is still small while the values of g(ς̃ ) in Eq. (7) are
already large enough to allow asymptotic expansions. In this
range, for negative values of ς̃ (that is, in the region before the
resonance),

d̃(τ̃ ) = Re

[
ei(τ̃+g(ετ̃ ))

(
z0 + i

2ε
A−eiτ̃0

)]
+ cos(τ̃ + τ̃0)

�2(ς̃ ) − 1
,

(8)

where A± = ± ∫ ±∞
0 dςe−ig(ς̃ ) ≈ (επ/6)1/2(1 + i). By com-

paring Eqs. (8) and (5), we obtain z0 ≈ a0 exp[i(ξR + θ0)] +
exp(iτ̃0)(1/2)(π/6ε)1/2(1 − i), where, according to Eq. (3),
ξR = 2γ 5/6(γ 1/6 − 1)/β. Performing an expansion similar to
that of Eq. (8) in the region of positive ς̃ , we relate z0 to

the constants a′
0 and θ ′

0, and then obtain the relation between
(a′

0, θ ′
0) and (a0, θ0):

a′
0 exp(iθ ′)
= a0 exp(iθ0) − (i/2ε) exp[i(τ̃0 − ξR)](A− + A+)

≈ a0 exp(iθ0) + exp[i(τ̃0 − ξR)](π/6ε)1/2(1 − i).

IV. RESULTS AND DISCUSSION

The considerations outlined in the previous section sum up
to the following analytic expressions for the oscillating dipole.
For the values of τ outside the resonance zone,

d̃(τ ) = − (1 + βτ )3/4

γ − 1

(
cos(τ0) cos[ξ (τ )] − sin(τ0)

γ 1/2
sin[ξ (τ )]

)

+ (1 + βτ )3/4

γ 1/12
�(τ − τR)

(
π

3β

)1/2

× cos

(
ξ (τ ) + τ0 + τR − ξR − π

4

)

+ (1 + βτ )3

γ − (1 + βτ )3
cos(τ + τ0), (9)

where ξ (τ ) is given by the expression (3). In the immediate
vicinity of the resonance,

d̃(τ ) =
(

π

6ε

)1/2

cos[f (τ − τR) + τ0 + τR]

[
S

(
(τ − τR)

√
3ε

2π

)
+ 1

2

]
+ sin[f (τ − τR) + τ0 + τR]

[
C

(
(τ − τR)

√
3ε

2π

)
+ 1

2

]

− (1 + γ 1/3ετ )3/4

γ − 1

(
cos(τ0) cos[f (τ − τR) + ξR] − 1√

γ
sin(τ0) sin[f (τ − τR) + ξR]

)
, (10)

where f (x) = x − 3εx2/4, while S(x) and C(x) are the
Fresnel integrals. A typical evolution of the oscillating dipole
is shown in Fig. 1. Note that the dipole oscillation undergoes a
significant nonlinear enhancement as it passes through the
region of the inevitable transient resonance with the laser
carrier frequency. Moreover, in contrast to the typical situation
with mechanical systems, the amplitude gains are retained as
the system evolves away from the resonance, because there are
no damping terms in the master equation (2), in accordance
with the physical picture of a virtually isolated ion-electron
pair whose interaction with the surroundings is at this stage
negligibly weak. Note also that the transient resonance effect
does not require a specific form of the function �(βτ ) and
will take place under any temporal dependency of the electron
cloud expansion. As seen in Fig. 2, the amplitude-enhancement
interval is positioned roughly between the eighth and twelfth
laser cycles. Given the accepted value of the parameter α,
this corresponds to ∼10 Å radius of the electron cloud. The
corresponding effective charge density is ∼1021 e cm−3 which
compares well with the critical plasma density for 800 nm
laser light, 1.7 × 1021 cm−3.

As the ion-electron pairs continue to emerge in the medium
during the laser pulse (summing up to a total of about 103 per

cubic wavelength), local polarization in the medium will result
from the compounded action of all the “preplasma” dipoles that

FIG. 1. (Color online) Postionization evolution of the effective
dipole moment of an individual parent ion–expanding electron cloud
system.
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FIG. 2. (Color online) The cumulative polarization response of
a medium that is being tenuously ionized by a laser pulse with
rectangular envelope. (The laser electric field oscillations are shown
for comparison, not to scale.)

have been initiated prior to the moment of observation:

P (t ′) = 4π
∑
t0<t

n(t0)d(t ′,t0) → 4π

∫ t ′

−∞
dt0n(t0)d(t ′,t0)

= 4πdp

∫ t ′

−∞
dt0n(t0)d̃(ω(t ′ − t0),ωt0), (11)

where n(t0) is the number-density rate of ionization, which
depends (very nonlinearly) on E(t0). This nonlinear and
nonsimultaneous polarization differs drastically from what one
would expect from a homogeneous low-density plasma. As a
simple illustration of the cumulative polarization effect, we
calculate the transitional polarization response of the medium
to a rectangular laser pulse E(t0) = E0�(t0), where �(t0)
is the Heaviside step function. In this case, the ionization
rate in Eq. (11) is reduced to a constant, n(t0) = n0, so
that the integrand maintains its transpositional property under
t0 → t0 + 2π/ω. The results of simulation are shown in Fig. 2.
The time-dependent polarization retains the main features of
the individual dipole response, viz., a sharp rise associated
with the transient resonance and sustained large (negative)
values, more than an order of magnitude greater than those of
a homogeneous plasma having the same degree of ionization.

V. CONCLUSIONS

The proposed model is open to possible refinements to
address more subtle effects and to account for atomic or
molecular specifics. Note, however, that any such refinements
will not change the two conceptual features: the localized,

unplasmalike nature of the postionization response and the
transient resonance enhancement of the electron oscillations.
The physics revealed by the model suggests that the negative
contributions to the index of refraction by the ionized electrons
will be much more significant than those suggested by the
currently accepted Drude model of homogeneous plasma. The
differences will be especially pronounced for shorter laser
pulses and thus may be expected to play a considerable role at
the peak intensity developed during the filamentation process.

Finally, we comment briefly on the other two relevant
areas mentioned in the introduction: wakefield acceleration
and indirect-drive inertial confinement ignition. Although in
these cases the peak laser intensities and the resulting eventual
plasma densities are much larger than for laser filamentation,
reaching the range of 1019 cm−3, the distances between the
nascent electron-ion pairs are still ∼40 Å, thus allowing for
the spread of the initial electron cloud. Then the predicted
effects will take place in these situations, provided that the
ponderomotive wiggles of the electron cloud are smaller
than the cloud size, as assumed in the model presented. For
the typical parameters of the laser pulse in the gas-filled
Hohlraum ionization case (multiple beams of 351 nm carrier
wavelength, ∼10 ns duration, and 1016 W/cm2 total focused
intensity [14]), the ponderomotive radius a = eE0/(meω

2)
is roughly estimated as a ∼ 10 Å. In this case, the model
may well serve as a qualitative guidance, but a nonlinear
version is required for quantitative predictions. For the typical
wakefield acceleration situation (a 30 fs pulse of 800 nm carrier
wavelength with focused intensity of 1019 W/cm2 [12]), the
estimates give a ∼ 100 Å in the peak region. However, even
in this unfavorable case the model will be applicable to the
leading ramp of the pulse and to the side areas of the laser
beam where the critical instabilities are expected to emerge.

In conclusion, we considered the evolution of a gaseous
system immediately following a multiphoton ionization event
caused by an intense laser pulse. At a realistically low
degree of ionization this initial evolution concerns individual
electron-ion pairs rather than a low-density homogeneous
plasma. The electromagnetic response of this pairwise system
in the laser field differs significantly from the plasma picture.
The individual dipole contributions undergo considerable
modifications as their oscillations evolve through transient
resonance. The results call for reevaluation of current laser
filamentation models in the most critical issue of the filament
stabilization.
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