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a b s t r a c t

In this paper we investigate the effect of longitudinal electric field components on the propagation
of intense ultrashort optical pulses. We find that the longitudinal electric field components have
contributions both from modes that in the paraxial limit are polarized transversely to the beam axis
and traveling along the beam axis and from a mode that is polarized along the beam axis even in the
paraxial limit and that travel transversely to the beam axis. We show that the amplitude of this last mode
in general satisfies a dispersivewave equation in the plane transverse to the beam axis and that the source
term in this equation depends on the amplitude of both types ofmodes. The source is large if the fields are
intense, the pulse is short or the fields are nonparaxial. Thus the effect of the mode that is polarized along
the beam axis is to transport energy away from the collapse region and in this way make the system less
prone to self-focusing collapse. In the weakly nonlinear slowly varying limit we show explicitly that the
effect of the longitudinally polarized mode is to restrict the range of transverse modulationally unstable
wavenumbers and to act as a defocusing lens in the collapse region.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Ultrafast laser pulse experiments and applications are now en-
tering a phase that challenge the validity of physical models uti-
lized for longer pulses in nonlinear optics. When nonlinearity and
strong self-focusing effects dominate, pulses can undergo strong
compression down to a few cycles, potentially develop optical
shock waves and generate strongly anisotropic non-equilibrium
distributions of photo-ionized electrons and ions. Important appli-
cations of intense terawatt (TW) power femtosecond laser pulses
include remote sensing, and efficient long distance energy trans-
fer including confinement of radio frequency or microwave radi-
ation. At petawatt (PW) power levels, the relativistically intense
powers can accelerate electrons up to 1.45 GeV when focused
down to many micron beamwaists [1]. In the latter scenario, peak
power densities approaching 1024 watts per centimeter squared
are achievable. Ultrashort pulse propagation in general has been
the focus of much theoretical and experimental work and sev-
eral review articles of TW and sub-TW pulse propagation in gases
and condensedmedia have been published by Couairon andMysy-
rowicz [2], Chin et al. [3]. Berge et al. [4] and Kasparian et al. [5].
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For a recent review of PW ultrashort laser pulse applications see
the article by Korzhimanov et al. [6].

The qualitative picture emerging from earlier studies of lower
power continuous wave and pulsed lasers is well established.
It was theoretically predicted and experimentally verified that
a narrow beam was subject to a self-focusing instability when
the input power exceeds a critical threshold, Pc , that depended
on the material properties and the wavelength of the light
[7,8]. That instability, even at TW power levels, leads to an
extreme amplification of the local intensity that is eventually
arrested by various physical mechanisms including ionization
with subsequent generation of a defocusing plasma [9] and/or
dispersion primarily in condensed media. In addition to global
collapse of a narrow beam at the critical power, wide beams can
experience multiple self-focusing events transverse to the beam.
These events are driven by a transverse beam instability that grows
from random intensity fluctuations across the beam [10]. So the
general picture of high intensity ultrashort pulse propagation is
one of a series of randomly generated, self-focusing events across
the transverse beam profile.

The simplest canonical mathematical model that includes both
self-focusing collapse and the transverse filamentation instability
is the scalar Nonlinear Schrödinger equation (NLSE) [7,11]. For this
equation the transverse modulational instability and self-focusing
collapse are amenable to theoretical analysis and many of the
analytic formulas and physical insights that exist in this field are
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based on this mathematical model and its close cousins. The most
obvious shortcoming of NLSE itself is that it does not include
physical effects that will arrest the collapse. In its purest form it
is a equation that forms infinite intensities in finite time [12,13].
Consequently there has been a lot of effort put into coupling this
equation to material degrees of freedom that act to regularize the
collapse. Coupled NLSE-type models that include both states of
polarization have been studied and the self-focusing collapse is not
arrested in thesemodels but the collapse threshold ismodified. The
inclusion of counter propagating modes at this level also fails to
arrest the collapse [14].

The effect of an electric field component in the propagation
direction, a longitudinal field component, has been less studied
but some results are known [15,16]. Formally, a bidirectional
ultrashort pulse propagator was derived directly from Maxwell’s
equation by Kolesik et al. [17] but this involved an expansion
in transverse plane wave modes. The unidirectional version
of this propagator has been widely used to study ultrashort
intense field ionization in gases and condensed media. The
influence of longitudinal field components is the focus of the
present work. We show that in addition to the longitudinal field
components associatedwith travellingwaveswhich in the paraxial
approximation are transverse waves, there is another contribution
to the longitudinal field component that we believe has not been
investigated so far. This mode is undamped and travels orthogonal
to the beam axis. Here we will call it the longitudinal mode. Its
motion is controlled by a wave equation in the plane transverse
to the beam axis. This wave equation is driven by modes traveling
along the beam axis. The size of the driving source is determined
by high intensity, short pulse length and nonparaxiality. These
effects typically go together in many experimental situations but
it is worth noting that the size of the source only requires at least
one of them to be present. The size of the source will in its turn
determine the strength of the longitudinal mode. The presence
of the longitudinal mode can evidently influence the evolution
of the self-focusing event by transporting energy away from the
collapsing region. It could thus compete with other regularizing
effects that have been proposed, like plasma defocusing and higher
order Kerr effects [18]. Additionally, the experimental detection of
this mode could open a new and previously unexplored window
into extreme nonlinear optical interactions of both TW and PW
pulses.

The presence of the longitudinal mode is a direct consequence
of the Maxwell equations, so its existence is not in question. The
effect it might have on the collapse and the practical possibility of
detecting it experimentally is an altogether different question that
can only be resolved through large scale computation and actual
experiments. In this paper we do not address these experimental
and computational issues directly but include in Section 2 a
detailed description of the equations that must be solved in order
to make predictions for specific experimental situations. These
equations constitute a reformulation and generalization of the
UPPE [19] model referred to above. We use these equations as a
starting point for developing asymptotic equations describing the
effects of the longitudinal mode in the weakly nonlinear, small
bandwidth limit. We also note that our approach leads in a natural
way to formulas that can be used to test the accuracy of the UPPE
approximation at least in some cases.

In Section 3 we derive the driven wave equation that controls
the longitudinal mode. It appears through a solvability condition
on the reduced beam equations where only the electric field
appears.

In Section 4we consider theweakly nonlinear, small bandwidth
solutions to the evolution equations for the mode amplitudes. We
show that in this limit the effect of the longitudinalmode is to limit
the range of unstable wavenumbers for the transverse instability
and to act as a defocusing lens in the collapse region.
2. The beam equations in the spectral domain

Our basic model equations in this paper are the Maxwell
equation including an instantaneous Kerr nonlinearity and linear
dispersion:

P(t, x, y, z) = PL(t, x, y, z) + PNL(t, x, y, z)

PL(t, x, y, z) = ε0

 t

−∞

dt ′χ(t − t ′)E(t ′, x, y, z)

PNL(t, x, y, z) = ε0η(E2E)(t, x, y, z).

We introduce the usual beam propagation geometry with the z-
axis pointing in the propagation direction. For what we will do
it is more convenient to write the Maxwell equations in terms
of components. Introducing field and polarization components
through

E(t, x) = e1i + e2j + e3k
B(t, x) = b1i + b2j + b3k
P(t, x) = p1i + p2j + p3k

the Maxwell equations take the form

∂ye3 − ∂ze2 + ∂tb1 = 0
∂ze1 − ∂xe3 + ∂tb2 = 0
∂xe2 − ∂ye1 + ∂tb3 = 0

∂yb3 − ∂zb2 −
1
c2

∂te1 = µ0∂tp1

∂zb1 − ∂xb3 −
1
c2

∂te2 = µ0∂tp2

∂xb2 − ∂yb1 −
1
c2

∂te3 = µ0∂tp3

∂xb1 + ∂yb2 + ∂zb3 = 0
ε0(∂xe1 + ∂ye2 + ∂ze3) = −∂xp1 − ∂yp2 − ∂zp3.

The beam formulation consists of writing the Maxwell equations
as a dynamical system in the z-coordinate. Collecting all of the
equations that contain a derivative with respect to z we get

∂ze1 = ∂xe3 − ∂tb2 (1)
∂ze2 = ∂ye3 + ∂tb1
∂ze3 = −∇⊥ · e⊥ − η(1 + L)−1

[∇⊥ ·

e2
⊥

+ e23

e⊥


+ ∂z


e2
⊥


e3 +


e2
⊥

+ 3e23

∂ze3]

∂zb1 = ∂xb3 +
1
c2

∂t

1 + L + η


e2
⊥

+ e23


e2


∂zb2 = ∂yb3 −
1
c2

∂t

1 + L + η


e2
⊥

+ e23


e1


∂zb3 = −∂xb1 − ∂yb2
where we have defined

L =

 t

−∞

dt ′χ(t − t ′)

e⊥ = e1i+e2j.

This is not quite a dynamical system because among other
things the equation for the longitudinal electric field, e3, contains
derivatives with respect to z on both sides of the equation. Wewill
resolve this problem shortly. For now, observe that the Maxwell
system consists of eight equations and we have only used six
of them to derive our dynamical system. The remaining two
equations give the following two constraints

∂xe2 − ∂ye1 + ∂tb3 = 0

∂xb2 − ∂yb1 −
1
c2

∂t

1 + L + η


e2
⊥

+ e23


e3


= 0 (2)
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on solutions of the dynamical system (1).Observe however that by
using the dynamical system we have

∂z

∂xe2 − ∂ye1 + ∂tb3


= ∂x∂ze2 − ∂y∂ze1 + ∂t∂zb3
= ∂x


∂ye3 + ∂tb1


− ∂y (∂xe3 − ∂tb2) + ∂t


−∂xb1 − ∂yb2


= ∂xye3 + ∂xtb1 − ∂yxe3 + ∂ytb2 − ∂txb1 − ∂tyb2
= 0

and

∂z


∂xb2 − ∂yb1 −

1
c2

∂t

1 + L + η


e2
⊥

+ e23


e3


= ∂x∂zb2 − ∂y∂zb1 −
1
c2

∂zt

1 + L + η


e2
⊥

+ e23


e3


= ∂x


∂yb3 −

1
c2

∂t

1 + L + η


e2
⊥

+ e23


e1


− ∂y


∂xb3 +

1
c2

∂t

1 + L + η


e2
⊥

+ e23


e2


−
1
c2

∂zt

1 + L + η


e2
⊥

+ e23


e3


= ∂xyb3 − ∂yxb3 − µ0∂t∇ · (ε0E + P)

= 0.

The constraints are thus conserved by the dynamical system and
therefore only need to be imposed at one point along the beam
axis. We let this point be located at the point z0 where the beam
enters the medium. The dynamical system (1) is therefore subject
to the entry point constraint
∂xe2 − ∂ye1 + ∂tb3


|z0 = 0 (3)

∂xb2 − ∂yb1 −
1
c2

∂t

1 + L + η


e2
⊥

+ e23


e3


z0

= 0.

These constraints will turn out to be important for our work.
Observe that so far no approximations have been made and the
dynamical system (1) with the constraint (3) is equivalent to the
original Maxwell equations.

Themagnetic field can be eliminated by taking time derivatives
of the equations for b1 and b2 in (1). This leads to the following
beam equations for the electric field components alone

∂zze1 = ∂xze3 + ∂xye2 − ∂yye1

+
1
c2

∂tt

1 + L + η


e2
⊥

+ e23


e1


(4)

∂zze2 = ∂yze3 + ∂xye1 − ∂xxe2

+
1
c2

∂tt

1 + L + η


e2
⊥

+ e23


e2


∂ze3 = −∇⊥ · e⊥ − η(1 + L)−1
[∇⊥ · ((e2

⊥
+ e23)e⊥)

+ ∂z(e2⊥)e3 + (e2
⊥

+ 3e23)∂ze3].

As propagation equations for the z coordinate this system is
somewhat awkward since it is an implicit system for ∂ze3.We could
resolve this by solving the third equation exactly with respect to
∂ze3. This would produce a somewhat messy explicit equation for
∂ze3. However observe that since the size of the nonlinear term,
as measured by the parameter η, is in all cases of interest a small
perturbation, we can solve the third equation in (4) with respect to
∂ze3 by iterating it once. This gives the system

∂zze1 = ∂xze3 + ∂xye2 − ∂yye1

+
1
c2

∂tt

1 + L + η


e2
⊥

+ e23


e1


∂zze2 = ∂yze3 + ∂xye1 − ∂xxe2

+
1
c2

∂tt

1 + L + η


e2
⊥

+ e23


e2


∂ze3 = −∇⊥ · e⊥ − η(1 + L)−1
[∇⊥ · ((e2

⊥
+ e23)e⊥)

+ ∂z(e2⊥)e3 − (e2
⊥

+ 3e23)∇⊥ · e⊥]

but we have

∇⊥ ·

e2
⊥

+ e23

e⊥


−


e2
⊥

+ 3e23

∇⊥ · e⊥

= ∇⊥


e2
⊥

+ e23

e⊥ +


e2
⊥

+ e23

∇⊥ · e⊥

−

e2
⊥

+ 3e23

∇⊥ · e⊥

= ∇⊥


e2
⊥

+ e23

e⊥ − 2e23∇⊥ · e⊥.

So the electric field equations can be written as

∂zze1 = ∂xze3 + ∂xye2 − ∂yye1

+
1
c2

∂tt

1 + L + η


e2
⊥

+ e23


e1


(5)

∂zze2 = ∂yze3 + ∂xye1 − ∂xxe2

+
1
c2

∂tt

1 + L + η


e2
⊥

+ e23


e2


∂ze3 = −∇⊥ · e⊥ − η(1 + L)−1 
∇⊥


e2
⊥

+ e23

· e⊥

− 2e23∇⊥ · e⊥ + ∂z

e2
⊥


e3


.

Wewill now rewrite this system in the spectral domain. From this
formulation the UPPE approximation is easily described. The key
step here is to find all the modes of the linearized system

∂zze1 = ∂xze3 + ∂xye2 − ∂yye1 +
1
c2

∂tt [(1 + L) e1]

∂zze2 = ∂yze3 + ∂xye1 − ∂xxe2 +
1
c2

∂tt [(1 + L) e2]

∂ze3 = −∇⊥ · e⊥.

Assuming that themedium is homogeneouswe can use the Fourier
transform in space and time and get the following algebraic system
for the transformed variables

−k2e1 = −ξ1ke3 − ξ1ξ2e2 + ξ 2
2 e1 −

1
c2

ω2n2(ω)e1
−k2e2 = −ξ2ke3 − ξ1ξ2e1 + ξ 2

1 e2 −
1
c2

ω2n2(ω)e2
ike3 = −iξ1e1 − iξ2e2
where k is the longitudinal wavenumber and ξ = (ξ1, ξ2) is the
transverse wavenumber. This algebraic system is easy to solve and
we get the following three types of vector modes.

• Right traveling modes
β
0

−ξ1


eiβ(ω,ξ)zei(ξ ·x−ωt),

 0
β

−ξ2


eiβ(ω,ξ)zei(ξ ·x−ωt).

• Left traveling modes
β
0
ξ1


e−iβ(ω,ξ)zei(ξ ·x−ωt),

 0
β
ξ2


e−iβ(ω,ξ)zei(ξ ·x−ωt).

• Transversely traveling modes0
0
1


ei(ξ ·x−ωt).

We have here defined

x = (x, y) (6)

β(ω, ξ) =


ω2

c2
n2(ω) − ξ 2. (7)
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The classification of the modes into left and right traveling ones
of course only holds for positive frequencies. Observe that the
transversely traveling mode is purely longitudinal. This is by
definition the longitudinal mode we discussed in the introduction.
Also observe that in order to get actual traveling modes and to
ensure the completeness of the set of modes we assume that
the refractive index, n(ω), is real. In order for the Kramer–Kronig
relations to be satisfied n(ω) is of course in reality complex,
but assuming that we are far from any material resonances the
imaginary part will be small. The imaginary part can then, if
needed, be included with the nonlinearity.

Because of completeness any vector function, in particular any
solution to the beamEq. (5), can be expanded in terms of themodes
of the linearized system

e(z, t, x) =
1

8π3


∞

0
dω


dξ


A+(z, ω, ξ)


β
0

−ξ1


eiβ(ω,ξ)z

+ A−(z, ω, ξ)


β
0
ξ1


e−iβ(ω,ξ)z

× B+(z, ω, ξ)

 0
β

−ξ2


eiβ(ω,ξ)z

+ B−(z, ω, ξ)

 0
β
ξ2


e−iβ(ω,ξ)z

Q (z, ω, ξ)

0
0
1


ei(ξ ·x−ωt)

+ (∗)

where A+ and B+ are amplitudes for right traveling waves of the
two states of linear polarization and A− and B− are the amplitudes
for the left traveling ones. Q is the amplitude for the longitudinal
mode.

There is however redundancy in this mode description. Since
e is real we only need 3 half-frequency range quantities to fix
it uniquely for each value of z. We have 5 half-frequency range
amplitudes. We can thus impose two more constraints without
restricting physical solutions to the beam equations. We will use
this redundancy to simplify our equations.

We only need quantities defined for positive frequencies but
as usual it is more convenient to work with quantities defined for
both positive and negative frequencies. This gives us the following
representation of the real electric field

e(z, t, x) =
1

8π3


dω


dξ


A+(z, ω, ξ)


β
0

−ξ1


eiβ(ω,ξ)z

+ A−(z, ω, ξ)


β
0
ξ1


e−iβ(ω,ξ)z

× B+(z, ω, ξ)

 0
β

−ξ2


eiβ(ω,ξ)z

+ B−(z, ω, ξ)

 0
β
ξ2


e−iβ(ω,ξ)z

×Q (z, ω, ξ)

0
0
1


ei(ξ ·x−ωt).

This description is evenmore redundant than the previous one and
we have the usual additional constraints on the amplitudes that
ensure the reality of the electric field

A−(z, ω, ξ) = A∗

+
(z, −ω, −ξ) (8)

B−(z, ω, ξ) = B∗

+
(z, −ω, −ξ)

Q (z, ω, ξ) = Q ∗(z, −ω, −ξ).

When we use this representation the mode amplitudes A− and B−

are redundant and will in fact not appear in the final equation.
In this representation the positive spectral content of A+ and B+

are amplitudes for right moving waves and their negative spectral
content are amplitudes for left moving waves. The real refractive
index function n(ω) is extended as an even function to negative
frequencies.

The component form of the mode expansion is

e1(z, t, x) =
1

8π3


dωdξ{βA+eiβz

+ βA−e−iβz
}ei(ξ ·x−ωt) (9)

e2(z, t, x) =
1

8π3


dωdξ{βB+eiβz

+ βB−e−iβz
}ei(ξ ·x−ωt)

e3(z, t, x) =
1

8π3


dωdξ{−ξ1A+eiβz

− ξ2B+eiβz

× ξ1A−e−iβz
+ ξ2B−e−iβz

+ Q }ei(ξ ·x−ωt).

Observe that the longitudinal electric field contains both contribu-
tions from A+, B+ and Q . In a paraxial situation the contribution
from A+ and B+ is negligible whereas the contribution from Q can
still be significant.

We are now going to insert these expressions into the beam
equation (5). First we compute the derivatives with respect to z
of e1 and e2:

∂ze1(z, t, x) =
1

8π3


dω


dξ{iβ2A+eiβz

+ β∂zA+eiβz

− iβ2A−e−iβz
+ β∂zA−e−iβz

}ei(ξ ·x−ωt)

∂ze2(z, t, x) =
1

8π3


dω


dξ{iβ2B+eiβz

+ β∂zB+eiβz

− iβ2B−e−iβz
+ β∂zB−e−iβz

}ei(ξ ·x−ωt).

We can simplify these expressions considerably by imposing the
constraints [20]

∂zA+eiβz
+ ∂zA−e−iβz

= 0 (10)
∂zB+eiβz

+ ∂zB−e−iβz
= 0.

What is happening here is completely analogous to what happens
when we apply the method of variation of parameters in order
to find special solutions to second order ordinary differential
equations. In that case we introduce two unknown functions, the
parameters, but we have only one equation to satisfy. We can thus
specify onemore relation between the parameters and this is done
in such a manner that the equations for the parameters become
simplified. Integrating the constraint (10) between the boundary
of the domain, z0 and some arbitrary point z we get the identity

A−(z, ω, ξ) = A−(z0, ω, ξ) −

 z

z0
dz ′∂z′A+(z ′, ω, ξ)e2iβz′

where A−(z0, ω, ξ) can be given any value. This means that the
constraint does not determine the left propagating amplitude in
terms of the right propagating one. We still have full freedom to
fit any given electric field configurations at z0. Note however the
remark after Eq. (14).

The constraints (10) now imply that

∂ze1(z, t, x)

=
1

8π3


dωdξ{iβ2A+eiβz

− iβ2A−e−iβz
}ei(ξ ·x−ωt) (11)
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∂ze2(z, t, x)

=
1

8π3


dωdξ{iβ2B+eiβz

− iβ2B−e−iβz
}ei(ξ ·x−ωt)

∂ze3(z, t, x) =
1

8π3


dωdξ{−iξ1βA+eiβz

− iξ2βB+eiβz

− iξ1βA−e−iβz
− iξ2βB−e−iβz

− 2ξ1∂zA+eiβz

− 2ξ2∂zB+eiβz
+ ∂zQ }ei(ξ ·x−ωt).

We now take another z derivative of the expressions for e1 and e2.
Observe that because of the constraints (10) the expressions for
∂zze1 and ∂zze2 contain only first derivatives of the amplitudeswith
respect to z.

Inserting these expressions for e1, e2 and their derivatives into
the beam Eq. (5) gives after some manipulations the system

{2i(β2
+ ξ 2

1 )∂zA+ + 2iξ1ξ2∂zB+}eiβz
− iξ1∂zQ = NL1

{2i(β2
+ ξ 2

2 )∂zB+ + 2iξ1ξ2∂zA+}eiβz
− iξ2∂zQ = NL2

{−2ξ1∂zA+ − 2ξ2∂zB+}eiβz
+ ∂zQ = NL3

for the amplitudes. Here the hat symbol,, above any quantity
means the Fourier transform in x and t . The nonlinear terms
NL1,NL2 and NL3 are defined by

NL1 =
η

c2
∂tt


e2
⊥

+ e23


e1


NL2 =
η

c2
∂tt


e2
⊥

+ e23


e2


NL3 = −η(1 + L)−1 
∇⊥


e2
⊥

+ e23

· e⊥

− 2e23∇⊥ · e⊥ + ∂z

e2
⊥


e3


.

By addition and subtraction we can simplify the linear part of this
system and arrive at the following system of first order equations
for the spectral amplitudes

2iβ∂zA + 2β2A = NL1 + iξ1NL3 (12)
2iβ∂zB + 2β2B = NL2 + iξ2NL3
∂zQ =

ω2n2(ω)

c2β2
NL3 − i

ξ1

β2
NL1 − i

ξ2

β2
NL2.

This system is equivalent to the full Maxwell equations under
the assumption that the nonlinear terms are smaller than the linear
terms. The negative frequency content of the amplitudes A and B
will describe the left traveling waves and the positive frequency
content will describe the right traveling waves. Q is the amplitude
for the longitudinalmode. In order to generate a solution consisting
of both left and right traveling waves we must specify the full
spectral content at z0. Observe that (12) appears to be implicit in
∂zA and ∂zB sinceNL3 contains ∂ze1 and ∂ze2. However since we are
imposing the constraints (10) these derivatives only depend on A
and B and not on ∂zA and ∂zB as onemight have believed. Thus (12)
is an explicit set of propagation equations for the z coordinate.

In the UPPE approximation we assume that the negative
frequency content of the amplitudes at z = z0 is exactly zero and
any negative frequency content that might be generated during
the numerical propagation of the amplitudes is removed. Evidently
this is not a consistent solution to the system (12) since the
nonlinearity will drive negative frequency content up from noise
that is always present. The success of the UPPE approximation
depends on whether or not the negative frequency content that is
generated by the actual system is small compared to the positive
frequency content. This can be verified a posteriori using the
constraints (10) and (8). By integration we get the relations

A∗

+
(z, −ω, −ξ)

= A∗

+
(z0, −ω, −ξ) −

 z

z0
dz ′∂zA+(z ′, ω, ξ)e2iβz′ (13)
B∗

+
(z, −ω, −ξ)

= B∗

+
(z0, −ω, −ξ) −

 z

z0
dz ′∂zB+(z ′, ω, ξ)e2iβz′ .

In the typical experimental setup there is no source at z = +∞.
Thus

A∗

+
(z, −ω, −ξ) = A−(z, ω, ξ) −→ 0

B∗

+
(z, −ω, −ξ) = B−(z, ω, ξ) −→ 0

when z −→ +∞. Using these limiting values the identities (13)
turn into

A∗

+
(z0, −ω, −ξ) =


∞

z0
dz ′∂zA+(z ′, ω, ξ)e2iβz′ (14)

B∗

+
(z0, −ω, −ξ) =


∞

z0
dz ′∂zB+(z ′, ω, ξ)e2iβz′ .

We can now compute the solutions using the UPPE approxima-
tion and then compute the integrals occurring in (14). If the cal-
culated values for A∗

+
(z0, −ω, −ξ) and B∗

+
(z0, −ω, −ξ) are small

compared to A+(z0, ω, ξ) and B+(z0, ω, ξ) we can be assured that
the UPPE approximation is accurate. If they are not small we can
use the identities (14) as the basis for an iterative scheme where
the negative frequency content at z = z0 is repeatedly updated
until the procedure converges to a fixed negative spectral content
at z0. Note that Eq. (14) does not contradict our statements made
after Eq. (10) since the assumption that there is no source at infinity
should and will constrain the possible amplitudes at z0.

3. The wave equation for the purely longitudinal mode

We will in this section show that the amplitude for the purely
longitudinal mode satisfies a certain wave equation in a plane
transverse to the beam axis. The traveling mode amplitudes
act as a source in this wave equation. The strength of the
source is determined by high intensity, short pulse length and
nonparaxiality.

In order to clarify the logic of our argument let us first consider
a simpler situation where there is only one transverse dimension.
The electric and magnetic fields are given by the components

E(z, x, t) = ej
B(z, x, t) = b1i + b2k.

The dynamical system for this case is

∂ze = ∂tb1 (15)

∂zb1 = ∂xb2 +
1
c2

∂t

1 + L + ηe2


e


∂zb2 = −∂xb1
with a constraint preserved by the dynamical system

∂xe + ∂tb2 = 0. (16)

The corresponding closed system for the electric field alone is

∂zze = −∂xxe +
1
c2

∂tt

1 + L + ηe2


e

. (17)

The question we ask is whether or not all solutions to (17) are
physical in the sense that for any solution e there exists an
electromagnetic field satisfying Maxwell’s equations and that has
ej as an electric field component. Since the constrained dynamical
system (15) is equivalent to Maxwell’s equations the question is if
for any solution of (17)we can find functions b1 and b2 such that the
dynamical system (15) and the constraint (16) are both satisfied.

Any solution to (17) is determined uniquely by the specification
of both e and ∂ze. The specification of ∂ze turns the first equation
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in (15) into a constraint on the magnetic field component b1. Thus
taking into account the constraint (16) we have the following
system of equations that has to be satisfied by the magnetic field
components

∂tb1 = ∂ze
∂tb2 = −∂xe.

We have a determinate system of two equations for the two
unknown magnetic field components that can be solved for all
choices of e and ∂ze. Thus we get the very unsurprising conclusions
that all solutions to (17) are physical.

When we apply the same logic to the beam Eqs. (5) and the
corresponding dynamical system (1) we get an overdetermined
system of equations for the magnetic field components. This
overdetermined system leads to a wave equation for the purely
longitudinal mode.

Any solution to the system (5) is uniquely determined by a
specification of e1, e2, e3, ∂ze1 and ∂ze2. The specification of ∂ze1
and ∂ze2 turns the first two equations in (1) into two constraints on
themagnetic field components. Taking into account the constraints
(2) we have the following system of equations that has to be
satisfied by the magnetic field components

∂tb1 = ∂ze2 − ∂ye3
∂tb2 = ∂xe3 − ∂ze1
∂tb3 = ∂ye1 − ∂xe2

∂xb2 − ∂yb1 =
1
c2

∂t

1 + L + η


e2
⊥

+ e23


e3

.

In this case we have four equations for the three magnetic field
components. The system is thus overdetermined and can only be
solved if the right hand side satisfies the constraint

∇
2
⊥
e3 −

1
c2

∂tt(1 + L)e3 = ∂xze1 + ∂yze2 +
η

c2
∂tt((e2⊥ + e23)e3).

If we now insert the mode expansions (9) and apply the constraint
(10) cancellations occur and we end up with the equation

∇
2
⊥
q −

1
c2

∂tt (1 + L) q = ∂ttN (18)

where

q(z, t, x) =
1

8π3


dωdξQ (z, ω, ξ)ei(ξ ·x−ωt)

N =
η

c2
((e2

⊥
+ e23)e3).

Note that if we assume thatN is the only source of q, in the absence
of N we should use the solution q = 0. In general the source
will depend on q so the wave equation is nonlinear. From (18) it
is evident that high intensity and short pulses will lead to a large
source and to a large contribution to the longitudinal field from q.
Taking the Fourier transform of (18) we get in the spectral domain

Q (z, ω, ξ) = −
ω2

β2
N(z, ω, ξ)

where

β2
=

ω

c

2
n2(ω) − ξ 2


.

If the fields are highly nonparaxial, N(z, ω, ξ) will have nonzero
contributions in the spectral space (ω, ξ) where β is close to zero.
This will lead to an enhancement of the mode amplitude Q .

Thus high intensity,short pulses and nonparaxiality all sepa-
rately contribute to a source generating the mode Q that radiates
transversely away from the collapse region. These pulse proper-
ties often go together in physical situations but we only need one
of them to create a significant source for Q .
4. Weakly nonlinear envelope approximation

The purely longitudinal mode will remove energy from the
collapse region so it will evidently have a stabilizing effect. The
extent and specific characteristics of this stabilizing effect will be
found through large scale simulations of the evolution equations
for the mode amplitudes (12). However considering the equations
in the weakly nonlinear, paraxial and small bandwidth limit can
give some analytic insight into what will happen in the more
general setting. We will therefore consider this situation now.

We will in the following assume that the amplitude for the y-
polarized mode, B, is set to zero. This is not really a consistent
solution to the Eqs. (12) since any small amount of noise in the
B mode will be driven up by the nonlinear terms. However in
the simplified analysis we present here this possibility will be
disregarded; its presence or not will not change the nature of the
result we will present in this section.

Therefore themode equations that wewill solve approximately
are

2iβ∂zA + 2β2A = NL1 + iξ1NL3 (19)

∂zQ =
ω2n2(ω)

c2β2
NL3 − i

ξ1

β2
NL1 − i

ξ2

β2
NL2.

Observe that due to the constraints (8) we can write the mode
expansion for the remaining electric field components in the form

e1(z, t, x)

=
1

8π3


dωdξ{βA+eiβz

+ βA−e−iβz
}ei(ξ ·x−ωt) (20)

=
1

8π3


s


dωdξAseis(ξ ·x−ωt) (21)

e3(z, t, x)

=
1

8π3


dωdξ{−ξ1A+eiβz

+ ξ1A−e−iβz
+ Q }ei(ξ ·x−ωt)

=
1

8π3


s


dωdξ

1
β


−sξ1As

+
1
2
Q s


eis(ξ ·x−ωt) (22)

where s is a binary index with values +and −. We have here
defined for A

As
=


A if s = +

A∗ if s = −

and the same for Q s.
We use the multiple scale approach [21] assuming a leading

order for the amplitudes of the form

A(z, ω, ξ) =
1
ε2

A0


z,

ω − ω0

ε
,
ξ

ε


+ · · ·

Q (z, ω, ξ) =
1
ε2

Q0


z,

ω − ω0

ε
,
ξ

ε


+ · · · .

For the electric field components e1 and e3 this implies that to
leading order

e1(z, t, x)

=
1

8π3


s


dωdξAseis(ξ ·x−ωt)

≈
1

8π3


s


dωdξ

1
ε2

As
0


z,

ω − ω0

ε
,
ξ

ε


eis(ξ ·x−ωt)

=
ε

8π3


s


dΩdKAs

0(z, Ω,K)eisK·(εx)eisΩ(εt)e−isω0t

=


s

As
0(z, εt, εξ)e−isω0t + O(ε2) (23)
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and

e3(z, t, x)

=
1

8π3


s


dωdξ

1
β


−sξ1As

+
1
2
Q s


eis(ξ ·x−ωt)

≈
1

8π3


s


dωdξ

1
β


−

sξ1
ε2

As
0


z,

ω − ω0

ε
,
ξ

ε



+
1

2ε2
Q s
0


z,

ω − ω0

ε
,
ξ

ε


eis(ξ ·x−ωt)

=
ε

8π3


s


1
β


−sεΩ1As

0(z, Ω,K) +
1
2
Q s
0(z, Ω,K)


× eisK·(εx)eisΩ(εt)e−isω0t

=


s

Q s
0(z, εt, εξ)e−isω0t + O(ε2) (24)

where

A0(z, εt, εξ)

=
ε

8π3


dΩdKA0(z, Ω,K)eiK·(εx)eiΩ(εt)

Q0(z, εt, εξ)

=
ε

16β0
000π

3


dΩdKQ0(z, Ω,K)eiK·(εx)eiΩ(εt)

and where β0
000 = β(ω0, 0, 0).

Thus A0 and Q0 are of order ε and have variation of order one
on time scales and space scales of order 1/ε. We use a multiple
scale approach to find consistent approximations to Eqs. (19). The
application of themulti-scalemethod iswell knownand the details
will not be discussed in this paper. Here we will only make some
remarks on the size on the various nonlinear terms. In themultiple
scale approach we assume that

A0 =


v

εvA0v (25)

Q0 =


v

εvQ0v

where the A0v and Q0v are functions of multiple z scales zj = εjz
with j ≥ 0. The evolution of the leading order amplitudes A00 and
Q00 on the slow scales zj for j ≥ 1 are determined so as to render
the expansions (25) uniform on progressively longer length scales.

From Eqs. (19) we get for the fastest z scale the system

2iβ0
000∂z0A00 + 2(β0

000)
2A00 = 0

∂zQ00 = 0

and thus we have

A00(z0, z1, . . . , Ω,K) = B00(z1, . . . , Ω,K)eiβ
0
000z0

Q00(z0, z1, . . . , Ω,K) = C00(z1, . . . , Ω,K).

From (23) and (24) it is evident that

NL1 = O(ε3).

For the terms of NL3 we have the orders

∇⊥


e2
⊥

+ e23

· e⊥ = O(ε4)

2e23∇⊥ · e⊥ = O(ε4)

∂z

e2
⊥


e3 = O(ε3).

Thus overall the nonlinearity NL3 is of order ε3. However when
we use the multiple scale method, only the terms in NL1 that have
the same variation at the fastest scale z0 as A00 will contribute to
the evolution of A00 on the slower scales z1, z2, . . . . The effects
of the other terms will average to zero on the slower scales. For
NL3 the same logic applies and the only terms that will contribute
to the evolution of Q00 on the slower scales z1, z2, . . . are terms
that are constant on the fastest scale z0. Therefore the only terms
from ∂z


e2
⊥


e3 that will contribute are terms in e2

⊥
where the fast

oscillation eiβ
0
000z0 cancels. But then ∂z of those terms is not of

order one but of order ε. So the terms from ∂z

e2
⊥


e3 that actually

contribute to the slow evolution of Q00 are all of order ε4. The
second equation in (19) then shows that Q will vary on scales
z4 = ε4z and higher. This tells us that in order to get a consistent
approximation to the system (19)wemust apply themultiple scale
method at least up to order ε4.

The nonlinearities of the system (19) are composed of NL1 and
NL3 and applying the same kind of logic as above we are lead to the
simplified system

2iβ∂zA + 2β2A = NL1 (26)

∂zQ =
ω2n2(ω)

c2β2
NL3

where we have removed all terms that cannot contribute to the
slow evolution.

Applying the multiple scale method to this system gives us the
following amplitude equations:

∂zA = −β0
100∂tA−iβ0

200∂ttA − iβ0
020∇

2
⊥
A

+ β0
102∂t∇

2
⊥
A + β0

300∂tttA

+ iα1

6|A|

2
+ |Q|

2 A − α2∂t

6|A|

2
+ |Q|

2 A


(27)
∂zQ = −α3∂z |A|Q

where α1, α2 and α3 are positive real constants and where

β0
ijk =

1
i!j!k!

∂
i+j+k
ωξ1ξ2

β


ω=ω0,ξ1=0,ξ2=0

are the Taylor coefficients of the propagation constant.

4.1. Transverse modulational instability

It is well known that the culprit behind the small scale
filamentation of intense laser pulses is the transversemodulational
instability. In order to see the effect of the longitudinal mode
on transverse modulational instability we consider the simplest
possible situationwherewe have only diffraction and nonlinearity.
Including all terms in the amplitude equations change the details
of the conclusions presented in this section but not their essence.
Thus we consider the system

∂zA = −β0
100∂tA − iβ0

020∇
2
⊥
A + iα1


6|A|

2
+ |Q|

2 A (28)
∂zQ = −α3∂z |A|Q.

The system has exact solutions of the form

A = A0eik0zei(ξ0·x−ω0t)

Q = Q0

where

k0 = β0
100ω0 + β0

020ξ
2
+ α1(6|A0|

2
+ |Q0|

2).

These solutions represent an infinitely broad laser beam.
Wenow introduce a small perturbation on these exact solutions

A=(1 + a)Aeik0zei(ξ0·x−ω0t)

Q = (1 + c)Q0.

Inserting these solutions into Eqs. (28) and retaining only terms
of first order in a and qwe get the system
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∂za = −β0
100∂ta + 2β0

020ξ0 · ∇⊥a − iβ0
020∇

2
⊥
a

+ iα1

6|A0|

2(a + a∗) + |Q0|
2(c + c∗)


∂za∗

= −β0
100∂ta

∗
+ 2β0

020ξ0 · ∇⊥a∗
+ iβ0

020∇
2
⊥
a∗

− iα1

6|A0|

2(a + a∗) + |Q0|
2(c + c∗)


∂zc = −α3|A0|

2(c + c∗)

∂zc∗
= −α3|A0|

2(c + c∗).

Taking the Fourier transform of this system we get

ka+ = β0
100ωa+ + 2β0

020ξ0 · ξa+ + β0
020ξ

2a+

+ α1

6|A0|

2(a+ + a−) + |Q0|
2(c+ + c−)


ka− = β0

100ωa− + 2β0
020ξ0 · ξa− − β0

020ξ
2a−

− α1

6|A0|

2(a+ + a−) + |Q0|
2(c+ + c−)


c+ = −α3|A0|

2∂z(c+ + c−)

c− = −α3|A0|
2∂z(c+ + c−)

where for simplicity we have defined

a+ = â(k, ω, ξ)

a− = â∗(−k, −ω, −ξ).

The system can be written more simply as

pa+ = β0
020ξ

2a+ + q(a+ + a−) (29)

pa− = −β0
020ξ

2a− − q(a+ + a−)

where

p = k − β0
100ω − 2β0

020ξ0 · ξ

q = 2α1|A0|
2(3 − 2α3|Q0|

2).

The system (29) has a nontrivial solution only if

p2 = (β0
020)

2ξ 4
+ 2qβ0

020ξ
2

and from the definition of the propagation constant (6) we observe
that

β0
020 = −

1
β0
000

so we can write

p2 =


1

β0
000

2

ξ 2(ξ 2
− 2qβ0

000).

From this it is evident that a perturbation with transverse
wavenumber ξ will experience exponential growth along the beam
axis if

ξ 2 < 2qβ0
000 = r|A0|

2(3 − 2α3|Q0|
2)

where r = 2α1β
0
000. This formula show clearly that the effect of the

longitudinal mode in this approximation is to restrict the range of
wavenumbers that experience transversemodulational instability.

4.2. The defocusing lens property

The self-focusing collapse of a intense laser pulse happens
because the refractive index is intensity dependent

n(I) = n0 + n2I.

Such an index acts as a focusing lens that increases the intensity
which in its turn focuses more strongly and so on without end
in the ideal case. We will now see that the presence of the
longitudinal mode adds a term to n(I) that acts as a defocusing
lens. What happens will then be a competition between these two
lensing effects. Using as in the previous subsection the simplest
version of the amplitude equations we have

∂zA = −β0
100∂tA − iβ0

020∇
2
⊥
A + iα1


6|A|

2
+ |Q|

2 A (30)
∂zQ = −α3∂z |A|Q.

Observe that the last equation can be solved explicitly. In fact we
have

∂zQ = −α3∂z |A|Q

⇓

∂z |Q|
2

= −2α3∂z |A| |Q|
2

⇓

|Q|
2

= De−α3|A|

where D in general can be any function of the transverse
coordinates and time. The amplitude equation for A now becomes

∂zA = −β0
100∂tA − iβ0

020∇
2
⊥
A + iα1


6|A|

2
+ De−α3|A|


A.

This corresponds to the existence of a intensity dependent
refractive index of the form

n(I) = n0 + n2I + n3e−2α3
√
I ,

where n3 is somenewparameter that can depend on the transverse
coordinates. Since the intensity is higher close to the beam axis
than far away from the beam axis during a collapse, the last term
is smaller on the beam axis than further off the beam axis. This
means that, by itself, it will act as a defocusing lens in the sameway
that the term n2I , by itself, acts as a focusing lens. Taken together
the system is still focusing; the effect of the Q mode is to make it
somewhat less focusing.

The last two subsections show that in the limiting case we have
been discussing the effect of the longitudinal mode is to make
the system less prone to filamentation instability and self-focusing
collapse.

5. Summary

We have in this paper investigated the effect of the existence
of a longitudinally polarized mode traveling transversely to the
beam axis. We have seen that in the weakly nonlinear envelope
case the mode tends to make the beam propagation less prone
to filamentation and self-focusing collapse. We have furthermore
shown that in the general case the mode obeys a dispersive
wave equation in the transverse coordinates that is driven by the
amplitudes for the modes traveling along the beam axis and also
by the mode itself in general. The longitudinal mode will thus
transport energy away from the collapse and therefore in general
the mode will tend to make the system less prone to collapse.
The mode can also give a new insight into the collapse dynamics
if it can be detected experimentally. The existence of the mode
and the existence of the effects discussed in this work is not in
question, butwhether the effect is of a size thatmakes it significant
for the evolution of the collapse and filamentation processes and
experimentally detectable is a question that can only be decided
by large scale numerical simulations and actual experiments.

However for the numerical solution of (12) we are faced with
a calculation involving time and three space dimensions. Adding
to this the presence of a very extensive support in spectral space,
the numerical calculations appear daunting. There is however a
simplified situation involving TM fields in a slab geometry that
havemany of the same features as the full system discussed in this
paper, including the transversely propagating longitudinal mode.
This system is much more amenable to numerical simulations and
results from these simulations will be reported in a forthcoming
publication.
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