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1

Two facets of simulation in extreme nonlinear optics

Simulations in nonlinear optics will in general reflect two facets of a modeling problem. The first
is related to the propagation part of Maxwell‘s equations, while the second relates to constitutive
relations which describe the response of a medium to electromagnetic fields. The first challenge is
to describe propagation-related evolution of the optical pulse, and the second is to come up with
suitable models of light-matter interactions. A comprehensive approach must therefore address
two computer modeling topics, namely Propagation Models, and Medium Models. We start with
the former.

1.1 Propagation Models

Form the model point of view, Maxwell‘s equations can be viewed as describing propagation
(as expressed in the curl equations), medium properties (in constitutive relation), and initial
constraints (expressed in the divergence equations). It is only natural to split an optical pulse
simulator framework accordingly. The “propagation part” of Maxwell‘s equations, namely

∇×H = +∂tD + J
∇×E = −∂tB (1.1)

has to be implemented into simulator core. In what follows we describe how this can be done
specifically in the context of nonlinear optics and without sacrificing any important physics.

Developments in nonlinear optics and particularly in optical filamentation over the last sesqui-
decade inspired a lot of efforts in computational methods aimed at ultrashort pulses. New regimes,
characterized by ultrafast dynamics, super-broad spectra, and approach to wave collapse, meant
that the traditional models based on envelope equations, and Nonlinear Schrödinger Equation in
particular, had to be replaced by more sophisticated approaches. While open problems remain in
emerging areas such as extreme nonlinear optics in structured media with complex geometries,
it is fair to say that at least for bulk media the central problem has been solved. State of the art
in simulation of femtosecond pulses reached a degree of maturity, and practitioners in the field
have a good grasp on proven techniques.

1.2 Nonlinear Medium Models

The medium related part of Maxwell system describes magnetic and electric properties in terms of
so-called constitutive relations. Throughout this course we restrict our attention to non-magnetic
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2 1 Two facets of simulation in extreme nonlinear optics

materials, so that we only need one relation that connects electric field intensity with electric
induction, and a second relation between intensity and the current density induced in the mate-
rial:

D = ε ∗E + PNL({E})
J = J({E}) (1.2)

Here, both nonlinear polarization PNL({E}) and current density J({E}) are “functions” of the
electric field. It is the purpose of the light-matter interaction model to implement these relations.
The current and polarization terms become sources in the propagation equations which drive
generation of new frequency components and spatial and temporal reshaping of the optical pulse
waveform.

Current situation in this area is rather different than that in dealing with the pulse propaga-
tion sub-problem. One can safely say that models to describe nonlinear interaction at time scale
of few femtoseconds are very far from satisfactory. There are several reasons this area seems lag-
ging behind the development of Propagation Models. The first and most important is that only
recently experiments begin to show that what became a standard model of optical filamentation
needs improvement. The standard model is essentially a collection of phenomenological compo-
nents that describe various aspects of the interaction between light and matter in filaments. It
is still believed to capture the picture qualitatively correct. However, as experiments become
increasingly more quantitative, gaps become more evident. The second important issue is that
first-principle models of light-matter interactions are “too slow” to be integrated into compre-
hensive ultrafast pulse simulations. It is therefore the grand challenge in this area to develop
self-consistent models which go back to first principles, but are at the same time computation-
ally manageable to a degree that will allow their application as integral parts of light-and-matter
simulators.

1.3 Brief overview: Standard medium model for femtosecond filaments

This first part of the course concentrates on pulse propagation modeling, and our discussion is
mostly independent of what exactly are the nature and a concrete implementation of light-matter
interaction we want to include. Nevertheless, it will be useful to provide a brief overview of the
“standard” way the model is set up for numerical experiments with optical filaments. This is the
purpose of this section.

1.3.1 Linear material properties: chromatic dispersion and losses

In general, accurate capture of linear properties of the medium in which an ultra-short pulse
propagates is crucially important for the modeling of all nonlinear interactions. Because the
Unidirectional Pulse Propagation Equation (UPPE) approach is spectral in nature, the only
potentially difficult issue is the availability of suitable experimental data to model frequency
dependent, complex-valued susceptibility. Within the bandwidth in which such data can be
obtained, the propagator will capture all linear propagation exactly.

We consider a nonmagnetic, dispersive medium with relative permittivity ε that is a function
of the transverse coordinates x, y and of the angular frequency ω

ε = ε(ω, x, y) , µ = µ0 . (1.3)

This medium specification implies z-invariant geometry (where z is the propagation direction),
and includes any dispersive homogeneous medium, such as air or water, as well as structured
fiber-like media such as photonic, microstructured and tapered optical fibers.
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1.3 Brief overview: Standard medium model for femtosecond filaments 3

In bulk media there is an important notion which appears in numerous places in derivation
and implementation of propagation equations. It is the dispersion relation for a plane wave
solution to Maxwell‘s equations, namely

Kz(ω, kx, ky) =
√
ω2ε(ω)/c2 − k2

x − k2
y (1.4)

where k‘s represent wave-numbers in corresponding transverse directions. We will often refer to
Kz as propagation “constant” despite the obvious fact that it is a function of frequency and of
two transverse wave-vector components.

In some special cases, permittivity that appears in the above equation can be understood
as an effective quantity related to a given mode. For example, to describe propagation of light
confined to an effectively two-dimensional, nano-scale thickens glass membrane, ε becomes an
effective permittivity dependent on the mode confined in the membrane waveguide. Propagation
in the plane of the membrane, is then described by usual “plane-wave” expansion with an effective
dispersion relation

Kz(ω, kx)eff =
√
ω2ε(ω)eff/c2 − k2

x (1.5)

and concrete ε(ω)eff depends on the guided mode, e.g TE or TM.
The important aspect of the approach we are going to discuss is that ε(ω) (or χ(ω)) is fully

incorporated in the model as a complex-valued function of frequency for all modes of propagation
represented in numerics, and the implementation ensures that all these modes exhibit exact
propagation properties.

1.3.2 Nonlinear medium response

Nonlinear effects are usually described in terms of polarization P through the material constitu-
tive relation:

D = ε0ε ∗E + PNL . (1.6)

The star in this formula represents a convolution integral with ε being the linear response func-
tion corresponding to the frequency dependent ε(ω, x, y) as described earlier. The non-linear
polarization is an “arbitrary” function of the electric field PNL = PNL(E). We will also include
a current density that is driven by the optical field

j = j(E) (1.7)

to describe interactions with plasma generated by the high-intensity optical pulse. It should
be noted that part of medium reaction to the presence of the light field included in the current
density may be linear. For example, if free electrons are present, for example generated by another
pump pulse, the corresponding current density induced will be linear in E.

The main physical effects that influence propagation of ultrashort, high-power light pulses
in nonlinear dispersive media include optical Kerr and stimulated Raman effects, free-electron
generation, defocusing by the generated free electrons and losses caused by avalanche and multi-
photon ionization (MPI). With minor modifications, models including these effects can be used
for description of ultra-short optical pulses propagation in gases, condensed bulk media, and in
conventional, microstructured, and tapered fibers as well as in ultra-thin silica “wires” and glass
membranes.

Form the design point of view and for implementation of an UPPE simulator, the important
aspect of medium models is that they are “prescriptions” to evaluate material reactions formu-
lated in the real space (as opposed to spectral space). That is, given the field history E(t) for a
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4 1 Two facets of simulation in extreme nonlinear optics

given spatial point, these algorithms calculate either polarization or current density as function
of time, and return their results to the solver core. The latter can invoke various modules that
evaluate the response independently across all spatial grid points and there is no need for the
core to “know” details of such calculations. A uniform communication interface between the core
and the response modules is the way to realize this separation in practice.

1.3.3 Optical Kerr effect

The optical Kerr effect is due to electronic response and causes local modification of optical
susceptibility

PNL = ε0∆χE (1.8)

which is proportional to light intensity I:

∆χ = 2nbn2I (1.9)

This is the most important effect responsible for the formation of femtosecond light filaments.
It causes increase of refractive index where intensity of light is higher, which in turn results in
further (self-) focusing of light. In the absence of other effects this would lead to a runaway effect
called self-focusing collapse.

Note that the intensity I above is a time-averaged quantity, and the frequency content of
PNL is therefore essentially that of the driving pulse. However, because bound electrons react to
external fields on atomic time-scales, electronic Kerr effect can be considered as instantaneous.
To our knowledge, actual response times have not been detected, e.g. in two-beam coupling
experiments, and are believed to be well below femtosecond. That is why a model can implement
this effect as reacting to the instantaneous value of an electric field. Importantly, this results in
a “new” source of third harmonic frequency.

1.3.4 Third harmonic generation

Consider an instantaneous (electronic) Kerr effect in an isotropic medium. The polarization
response that is third-order in E must be constructed solely from E taken at the given moment
in time, so there is a single vector to “work with.” Consequently, the only possible form of an
instantaneous third-order nonlinearity is

P inst = n̄2(E.E)E . (1.10)

Let us emphasize again, that this simple relation is the only possible for an instantaneous re-
sponse. As soon as there is memory, two frequency dependent components of third-order suscep-
tibility tensor are needed for full description. The frequency content of P inst consist of both the
fundamental frequency of E and its third harmonic. This is the main source of third harmonic
radiation observed in femtosecond filaments.

It is worthwhile to note that one can find in the literature also a quite different approach to
modeling the third-harmonic generation. In the works and simulations based on envelope pulse
propagation equations, several authors used two separate envelope functions, one for the funda-
mental frequency and one for the third harmonic generation. We emphasize that the two-envelope
method is incorrect and should be avoided, because situations are frequently encountered in which
spectra become extremely broad. Then the distinction between fundamental and third harmonic
is impossible, and any two-envelope parametrization is therefore non-unique and the model is
fundamentally inconsistent.
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1.3 Brief overview: Standard medium model for femtosecond filaments 5

1.3.5 Delayed response: stimulated Raman effect

Air is by a large part made of two-atomic molecules with different polarizibilities parallel and
perpendicular to their symmetry axes. This leads to a nonlinear effect which is referred to
as stimulated Raman effect, although recently the nomenclature acknowledges the fact that
reorientation of molecules plays a central role in it.

The interaction energy of a molecule in an external field is such that it prefers to align with
the field‘s direction. When a femtosecond pulse “hits” such a molecule, it excites rotational
motion; this is a stimulated Raman effect. Molecular rotation in turn changes the effective linear
polarizibility of the molecule as projected on the direction of the field. The latter then experiences
a modified index of refraction.

Because the interaction Hamiltonian is quadratic in field, the effect is of third-order. It is
therefore often considered a “companion” of the electronic Kerr effect. Taken a very different
microscopic origins, this may seem arbitrary, but one has to keep in mind that manifestations of
the two effects (i.e. self-focusing) are very difficult to distinguish in relatively longer pulses.

A proper, first-principles model would need to integrate quantum mechanical equations of
motion for a density matrix describing the rotation state of an ensemble of molecules. Note that
such a system is to be solved at each spatial grid location, and at each propagation step, and
it requires solutions of a moderat-size system of ordinary differential equations. Instead of this
(relatively) difficult calculation, the Raman effect is approximately parametrized with

∆χ(t) = 2nbn
R
2

∫ ∞

0

R(τ)I(t− τ)dτ , (1.11)

where R(τ) ∼ sin (Ωτ)e−Γτ is often sufficient for ultrashort pulses. It is a memory function
which represents the response of the system to an excitation by a very short impulse. This
simple formula has the advantage of easy implementation that avoids explicit calculation of the
convolution integral (1.11). Sometimes an even simpler, exponential memory function R(τ) ∼
e−Γτ has been used in simulations. If the actual memory function is sufficiently complex, as is
the case in silica for example, a numerical convolution approach may be better suited to calculate
the response ∆χ(t).

1.3.6 Multiphoton and avalanche ionization

Because of high light intensities occurring in femtosecond pulses, free electrons are generated by
Multiphoton Ionization (MPI), tunneling, and avalanche mechanisms. Then it is necessary to
account for the response of the optical field to the presence of a dilute plasma. Since the relevant
times scales are so short, electron diffusion and ion motion are neglected, and the free-electron
density ρ is usually obtained as a solution to an equation of the following form

∂tρ = aIρ+ b(I)− cρ2 . (1.12)

Here, I is the light intensity, a parametrizes the avalanche free-electron generation, and b(I)
represents the Multi Photon Ionization (MPI) rate that is a highly nonlinear function of the
intensity. The last term describes plasma recombination, and is often neglected in sub-hundred
femtosecond pulses.

Various representations exist for the ionization rate b(I). Frequently a power-law fit to ex-
perimental data or a theoretic formula result is obtained in the form

b(i) = σ

(
I

I0

)K
(1.13)
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6 1 Two facets of simulation in extreme nonlinear optics

where σ and K (not necessarily an integer!) are ionization cross section and (effective) multi-
photon order. Because filaments actually occur at intensities for which multi-photon ionization
crosses-over to tunneling regime, the effective order K is usually significantly lower than the
number of photons needed to bridge the band-gap of the material.

In extreme intensity regimes, when ionization rate is mostly due to tunneling, b is given
as a function of the electric field intensity. Then, because electrons are mostly generated at
moments when its amplitude reaches a maximum, a staircase-like temporal profile arises in the
free electron density and current. This gives rise to a secondary source of third (and higher)
harmonic generation which has recently been detected.

1.3.7 De-focusing by free electrons

In the spirit of a Drude model, it is assumed that a collective electron velocity v responds to the
optical field, and the total current density is governed by the following simple equation

d

dt
j(t) =

e2

me
ρ(t)E(t)− j(t)/τc (1.14)

where τc stands for the mean time between collisions experienced by electrons. Note that v
represents an average velocity induced in the ensemble of electrons by the driving field E, it is
not an individual electron velocity. This equation is solved together with (1.12) to capture effects
of free electrons on the propagation of the optical field, namely defocusing and losses.

Alternatively, one can treat free-electron induced effects as a susceptibility modification,
and lump them with the rest of P which in turn simplifies numerical calculation. The price
for this is that one must neglect the chromatic dispersion induced by free electrons. Then,
∂tP = j is interpreted as a time derivative of nonlinear polarization and its contribution to P
is approximated by

P = ε0∆χpla(ρ)E = ρ
ie2

meωR(1/τc − iωR)
E (1.15)

with ωR being a chosen reference angular frequency. It needs to be emphasized that this approxi-
mation completely neglects the plasma induced chromatic dispersion. This may be unacceptable
for some numerical experiments, for example pump-probe with fundamental and second har-
monic. In such a case, only the current density based description can properly reflect the fact
that the second harmonics is experiencing four times weaker de-focusing caused by free elec-
trons. However, in many filamentation modeling scenarios, susceptibility based formulation gives
results in practical agreement with those obtained from the more accurate model based on J .

It is worthwhile to note that in the framework described so far, electrons interacting with a
light pulse are treated as either bound (in their respective atoms and molecules) or completely
free and oblivious to the presence of their parent ions. These free electrons are described in
terms of a Drude model which is more suitable for true plasma. Here we have to keep in mind
that during the first few tens of femtoseconds there is not enough time for plasma to establish
itself as a collective ensemble of electrons and ions. Moreover, electrons liberated from atoms
and molecules are likely to interact with the parent ions - this effect, which among others leads
to High-Harmonic Generation, is completely neglected. These are obviously the issues the “next-
generation” modeling will have to account for.

1.3.8 Multiphoton ionization losses

Losses caused by multiphoton ionization are usually incorporated as either an equivalent current
or an imaginary susceptibility contribution that extracts the energy needed for the free-electron
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1.3 Brief overview: Standard medium model for femtosecond filaments 7

generation from the optical field:
J loss.E ≈ b(I)Eg (1.16)

Here we equate the rate of energy loss suffered by the field with the rate of free electron generation
multiplied by an estimated energy cost Eg of one free electron.

Note that although this is a universally utilized approximation in the femtosecond pulse
propagation area, it is a very crude model, very likely not adequate when the pulse spectrum
broadens in such a way that new frequencies carry a significant portion of its energy. In such
a situation the absorption losses as well as MPI generation rates should be frequency selective.
This is just one aspect in which the currently standard medium model is less than satisfactory.
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2

Maxwell’s Equations: The reduction problem

The Maxwell’s equations, while efficiently solved by numerical solvers in many areas of com-
putational electromagnetics, are rather ill suited for straightforward computer simulations of
nonlinear phenomena in optical pulses of ultra-short duration which deliver TW-scale powers.
The following sections explain why is it that direct Maxwell solvers are of limited utility in ex-
treme nonlinear optics. We review various ways this problem has been dealt with in traditional
nonlinear optics. We then formulate what we call the “Maxwell reduction problem,” which con-
sists in trading the Maxwell system for an effective framework tailored to the pulse propagation
context.

2.1 Numerical solvers of Maxwell’s equations

Throughout the several past decades, formulation of pulse propagation problems in nonlinear
optics has been most often based not directly on the physical fields that appear in Maxwell’s
equations, but on the so-called envelope equations. These are designed to eliminate the fast os-
cillatory temporal and spatial variations related to the central frequency and wavenumber of a
carrier light wave. Effectively, physical fields are represented by slower evolving complex-valued
envelopes. The rationale behind such approximations is twofold. First, envelope equations are
natural and accurate approximations to Maxwell’s equation in many situations characteristic of
nonlinear optics, and provide a useful theoretic basis for building models for phenomena such
as harmonic generation. Second, such equations make it feasible to simulate many nonlinear
phenomena with sufficient accuracy. While numerical methods for direct simulation of Maxwell’s
equations have been available, a closer look at the problem will quickly reveal that in a typical
nonlinear propagation context direct Maxwell’s solvers are of little practical use. One may ques-
tion this statement and argue that cheap, widely available computing power will surely make the
direct attack feasible in the nearest future. Actually, the answer is still negative, and it is the
intent of this section to demonstrate that the development of better theoretic models underlying
numerical simulators is a much more viable strategy than waiting for the computer power to
catch up with our requirements.

So, let us briefly review, the general properties of direct Maxwell solvers in order to understand
the implications for description of nonlinear pulse propagation. We will restrict ourselves to the
so called Finite Difference Time-Domain (FDTD) solvers because they are the most common
representatives of direct Maxwell solution methods. However, the discussed issues are relevant
to Maxwell’s equations simulators in general.

First, let us consider memory requirements. A direct solver works over a fixed spatial domain,
and evolves the grid-based representation of the electric and magnetic fields in discrete time
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10 2 Maxwell’s Equations: The reduction problem

steps. As a rule of thumb, for accurate simulations one typically needs about 30 grid points per
wavelength in space. About the same number of time-steps must be executed per a single wave
oscillation. Such a resolution may be practically achievable for radio- or micro-waves and small
simulated volumes (as measured in units of cubic wavelengths). But in the optics context, these
resolution requirements translate into sub-micrometer spatial, and sub-femtosecond temporal
resolution. If an optical pulse beam is only one centimeter wide, and propagates over a laboratory-
scale distance of only a few meters, a single snapshot of the field will require of the order of 1020

field-variables to store in the memory. Moreover, for each meter of propagation, each of these
variables must be updated through tens of millions of integration steps! No matter how fast
typical computer memory and performance continue to increase, it becomes clear that a brute-
force approach in an optics context is not going to be feasible in any foreseeable future.

The second property which practically disqualifies direct solvers for nonlinear propagation is
numerical dispersion. Similar to natural light waves, phase and group velocities of “numerical
waves” depend on their frequency - they exhibit so-called numerical dispersion. It is of course
a general property of each and every numerical method which simulates wave propagation that
the actual wave properties differ from the desired ones because of the discrete nature of the sim-
ulation. More precisely, the true relation between wave propagation velocity and its frequency,
which is usually called the dispersion relation, is replaced by an artificial one which is significantly
different. Typically, a discrete numerical method can only mimic correct dispersion properties
of waves for small frequencies. As a consequence, only a very small fraction of the bandwidth
which is available to the numerics can actually be utilized. This artificial deformation of the nat-
ural relation between the wave velocity and its frequency is very restricting in all discretization
schemes for Maxwell’s equations, This is because numerical dispersion depends on the grid reso-
lution, and is in general extremely strong from the point of view of nonlinear optics. For example,
a “numerical vacuum” simulated by a direct solver will typically exhibit chromatic dispersion
orders of magnitude larger than gases and comparable to water or other transparent condensed
media. Surely, these unwanted effects decrease in magnitude as we increase the grid resolution.
But to get them fully under control, the required resolution would be enormous. Because in the
simulation of nonlinear optics it is absolutely crucial to capture the chromatic dispersion very
accurately, this problem becomes extremely serious.

Last but not least, it turns out that in direct solvers it is actually quite difficult to implement
models of nonlinear and dispersive media. The origin of the problem is that dispersion and often
also nonlinearity are connected to some kind of memory in the medium. This does not mesh well
with the fact that a direct solver scheme is naturally designed to store only a single temporal
snapshot of the EM field. If the reaction of the medium at any given point depends on the
history of the local field, we must keep sufficient information about this history available to the
numerical solver. This can easily multiply the memory needs. The problem gets even worse once
we consider that the frequency-dependent properties of the model media are also plagued by
numerical dispersion. The artificial “deformation” of the actual numerical medium response can
be significantly different from the targeted frequency-dependent properties for the same reason
we pointed out for the linear wave propagation.

Thus, it is clear that the direct numerical solution of Maxwell’s equations is not feasible
for many nonlinear optic phenomena. Next, we will have a look back into the recent history
and review how this problem has been by-passed through the use of envelope equations. As a
prototype of envelope equations utilized in optics, we first turn our attention to the so called
Nonlinear Schrödinger Equation.
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2.2 The workhorse of nonlinear optics: Nonlinear Schrödinger
Equation

As the name suggests, this equation is closely related to the Schrödinger equation of quantum
mechanics. Apart from the nonlinearity, the two are almost equivalent. Indeed, paraxial diffrac-
tion of a continuous-wave optical beam is the same as the quantum-mechanical spreading of the
wave-packet of a free particle. Moreover, the nonlinear term can be often interpreted as a “po-
tential” that appears in the quantum mechanical version of the equation. However, nonlinearity
turns the optical version into a much richer equation. In fact, its applications in physics go way
beyond optics and apply to nonlinear dispersive waves in general. This is the reason behind the
enormous amount of NLS-related research in both mathematics and physics communities.

The mathematical form of the Nonlinear Schrödinger Equation (NLS) is rather simple:

∂zA =
i

2k0
∆A− k′′

2
∂ttA+

iω0n2

c
|A|2A .

Here, A represents the complex envelope of an optical pulse centered around the carrier angular
frequency ω0. The first term on the right-hand-side, with k0 standing for the propagation constant
corresponding to the carrier frequency, describes diffraction. The next term captures chromatic
dispersion, with k” being the group velocity dispersion. The nonlinear term represents the optical
Kerr effect in which the nonlinear modification of the refractive index is simply proportional to
the light intensity. The latter is here expressed by |A|2, and n2 is the so-called nonlinear index
of the medium.

Equations of the same form, often with different dimensions of the Laplacian, arise in many
areas of physics. In optics, NLS is a prototype equation to describe pulse propagation in nonlin-
ear, dispersive transparent media. Taken its simplicity, it may come as a surprise that it captures
a wealth of nonlinear phenomena in fibers and bulk media alike. Often, this equation works quali-
tatively very well even beyond the “boundaries” given by the paraxial and quasi-monochromatic
assumptions under which it is supposed to be valid. That is just one reason this and related
equations continue to receive significant attention in the mathematical and physical literature.

We will discuss one of the many ways to derive this important equation in Section 4, where
we also specify precisely the physical assumptions that are necessary for its validity. However, at
this point it is instructive to be just a little more specific about the relation between the complex
amplitude A and its real physical field counterpart E. For simplicity, we restrict ourselves to to
a one-dimensional, scalar case of linearly polarized light. Usually, the relation between the two
quantities is written as

E(x, t) = A(x, t)e−iω0t+ik0x + c.c. .

Here, ω0 and k0 are the carrier frequency and wavenumber, and the purpose of the oscillatory
exponential is to account for the fast changing carrier-wave of the field. The complex amplitude
A then can be viewed as a modulation of the carrier. This of course only makes sense if the
modulation speed is small in comparison to the angular frequency ω0. Said in an equivalent way,
the spectral content of A(x, t) must be narrow in comparison with ω0. And this is where the need
to improve this equation originates: In modern nonlinear optics, we often deal with waveforms
E(x, t) which change their amplitudes significantly within a single oscillation of the carrier.
In such a situation even the carrier frequency becomes an ill defined notion. This motivated
researchers to propose a number of improved equations which were intended specifically for the
modeling of ultra-fast optical pulses. And that is the topic of the next section.
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12 2 Maxwell’s Equations: The reduction problem

2.3 Beyond the Nonlinear Schrödinger Equation: Correction terms

With the advent of relatively afordable femtosecond lasers and the subsequent accelerated ex-
pansion of nonlinear optics into the ultra-fast domain, it became evident that NLS is a rather
crude model to describe phenomena such as supercontinuum generation. A single-color optical
pulse “explosively” broadening its spectrum such that it can cover the whole visible region and
beyond is arguably one of the most spectacular effects in nonlinear optics. Intuition alone tells
us that describing such extreme events in terms of envelopes is not realistic. Moreover, it turns
out that the white light generation, as the supercontinuum is often called, is an extremely robust
and universal phenomenon. The ubiquitous nature of such a nonlinear interaction underlines the
need to “go beyond the NLS” and introduce better pulse propagation models.

Researchers therefore developed a whole family of equations which include the so-called cor-
rection terms. These are modifications to the NLS equations intended to make it more robust,
and especially applicable to very short-duration, high-intensity optical pulses. Some of these
“corrected” propagation equation will be described in the next chapter in connection to our
nonlinear pulse propagation model. Here, we would like to restrict ourselves to a single example
to give the reader an idea about what types of corrections are possible to improve the NLS. The
following is the Nonlinear Envelope Equation (NEE), developed by Brabec and Krausz:

∂zA+ v−1
g ∂tA = iD(i∂t)A+

i

2kR
(1 +

i

ωR
∂t)
−1∆⊥A+

ikR

2ε0n2
b(ωR)

(1 +
i

ωR
∂t)P

Similarly to NLS, NEE is an envelope equation, but it is formally free of the quasi-monochromatic
approximation. Therefore it is much better suited for very short duration pulses. Without going
into details, let us note some of the corrections that take this model well “beyond the NLS”. The
first is the occurrence of the dispersion operator D on the right hand side of the equation. This
is a formal infinite series in temporal derivatives, ∂t:

D(ω − ωR) =
∞∑

n=2

(
∂nk

∂ωn

)

ω=ωR

(ω − ωR)n

n!
(2.1)

Setting aside the questions of how to properly define and implement such an operator, let us just
say that this can in principle take into account chromatic properties of the medium in a wide range
of frequencies. Linear medium properties, specifically its frequency-dependent index of refraction
and loss, are encoded in the dispersion operator through the infinite series of coefficients in (2.1).
The important point to note is that in comparison with NLS, NEE has a sufficient “number of
parameter slots” (in contrast to only two in NLS) to incorporate a detailed medium description.

Another correction to note is the inverse operator in front of the diffraction Laplacian. This
is the so-called spatial-temporal diffraction correction term and it takes into account the depen-
dence of diffraction on the color of light. This reflects the well known fact that the longer the
wavelength, the more the light diffracts and bends around obstacles.

Yet another important correction stands in the front of the nonlinear polarization P: It
is called the self-steepening term which is responsible for strong generation of new spectral
components in the trailing edge of a propagating pulse. Intuitively, this correction term can be
viewed as a modification of the propagation velocity which depends on the “local” light intensity.
The higher the intensity, the slower the propagation. This makes the intensity peaks to lag behind
their pedestals, and consequently steepens the trailing edge of the pulse. In turn, the steep edge
represents a wide spectral content. This correction is to a large degree responsible for capturing
generation of the blue-shifted light as observed in many experiments.

In comparison to NLS, the Nonlinear Envelope Equation is a very realistic model. Our super-
ficial look at it already makes it evident that its robust numerical implementation requires close
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2.4 The reduction problem 13

attention to the correction terms. More importantly, it is fair to say that the original derivation
of the equation was based on intuitive, but, strictly speaking, unjustified arguments. This is
the case for a whole number of corrected equations presented in both optical and mathematical
literature. The discussion in later sections will identify cases in which weak arguments resulted
in rather poor equations: in one example, physicists were misled by intuition and possibly by
their desire for equations easily implemented in numerics which in turn lead to an outright in-
correct model. Mathematicians, on the other hand, may be willing to sacrifice realistic models
to ones described by “nice” (for example integrable) equations which, however, may turn out to
be utterly unsuitable to the very application they were meant for. The celebrated Short Pulse
Equation serves as an example here. Because of built-in assumptions, which may seem benign
at a first superficial look, this equation can not capture generic behaviour of short pulses in
supercontinuum generation in optical fibers. Lessons like these lead us to ask an important ques-
tion; what kind of qualities do we need to require of our pulse propagation model if it has to
aspire to be a truly realistic model applicable in extreme nonlinear optics? We address this in
the following.

2.4 The reduction problem

Thus, we have identified the problem of “Maxwell reduction,” which means to replace the full
set of equations for electromagnetic field with a reduced set capable of handling the extreme
conditions encountered in modern nonlinear optics. Specifically, this requires:

• Capability to capture, without any approximations, linear propagation regimes in transparent
media, i.e. in media with relatively small, but frequency-dependent absorption, but with
potentially complex chromatic dispersion “landscapes.”

• Capability to handle spatio-temporal waveforms with extremely wide spectra extending over
several octaves of frequency. For this it is necessary to work on the level of physical fields,
and avoid introduction of envelopes and related artificial parameters (such as the carrier
frequency that appears in envelope propagation equations).

• It is important to implement such models of light-matter interactions that can be valid over
broad bandwidth and exhibit “long” response memory (i.e. dependence on the history of the
driving field).

• It is crucial that the pulse evolution equations can be implemented in a numerically efficient
way that allows simulations of nonlinear pulse propagation over laboratory-scale distances.

Unidirectional Pulse Propagation Equations represent the first approach to put this problem
on firm mathematical ground. They are effective Maxwell solvers designed for the pulse propaga-
tion context, i.e. especially for situations in which the light propagates in a well defined direction.
This can be achieved without sacrificing physics, while eliminating the practical limitations of
the direct Maxwell solvers described in the beginning of this section. The next section is devoted
to derivation of various forms of Unidirectional Pulse Propagation Equations.
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3

Unidirectional Pulse Propagation Equations

In this chapter, we outline the key steps in deriving a physically self-consistent and robust ultra-
short pulse propagator that resolves the underlying optical carrier-wave while also enabling prop-
agation over many meter propagation lengths. Our goal is to retain the full rigor of Maxwell’s
equations while reducing the problem complexity by constraining the model to unidirectional
propagation. As our immediate interest is in very short-duration and high-intensity pulse propa-
gation in which the induced nonlinear polarization can have significant impact on the dynamics,
we will need to accurately capture the very broad spectral landscape that the pulse experiences
during its interaction with a host dielectric material. In many cases, the spectral super-broadening
is such that the generated bandwidth exceeds the underlying carrier frequency, i.e ∆ω/ω0 >> 1.
In this regime, we expect the Nonlinear Schrödinger Equation (NLSE) to fail. Many attempts
have been made to derive nonlinear envelope models that go beyond NLSE. We discuss some of
these, and we show explicitly how each can be seamlessly derived from the Unidirectional Pulse
Propagation Equation (UPPE).

3.1 Time-propagated and space-propagated equations

Most of the pulse propagation problems in nonlinear optics are solved in one of two formulations:
Either the numerical evolution proceeds along the time coordinate, or it follows, or “propagates”
the wavepacket along one of the spatial coordinates, usually chosen as z, in the direction of the
laser beam. In the first case, termed “time-propagated evolution,” one has an initial condition
(i.e. some description of the electric and magnetic fields) specified in all space for a given initial
time. The evolution is calculated along the time axis, and naturally reflects the structure of the
Maxwell’s equations. In the second case, termed “z-propagated evolution,” the initial condition
is given as a function of the local pulse time and of the transverse coordinates (w.r.t. propagation
direction). The numerical evolution proceeds along the propagation axis. From the mathematical
point of view, this case is an initial value problem very much the same way the t-propagated case
is. However, from the physical point of view this is a rather subtle issue because the true “initial”
condition requires knowledge of the total field in the past and in the future. This includes the
light which may be nonlinearly “reflected” from the focal region of an experiment. Only if we
can assume that this is sufficiently weak, we can solve the corresponding initial value problem.
We will refer to the corresponding propagation models as time- and z-propagated equations.

The z-propagated approach is much more common in nonlinear optics simulations based on
envelope equations, and is often related to Nonlinear Schrödinger Equation. On the other hand,
the time-propagated approach is common for solvers based on direct integration of Maxwell’s
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16 3 Unidirectional Pulse Propagation Equations

equations. The time-propagated versions of UPPE are more suitable for tight-focusing scenarios
when the non-paraxial effects start to play a role. On the other hand, the z-propagated equations
are easier to use in situations that allow us to neglect the longitudinal field components as
contributing sources of nonlinear material responses. That is the main reason the z-propagated
approach is more common, specifically in nonlinear optics.

First we focus our attention on the time-propagated UPPEs, because this approach is concep-
tually simpler. We start with derivation which is based on a formal projection technique designed
to separate what we call forward and backward propagating optical field components. We discuss
its numerical implementation in Section 4, while its relation to previous envelope models will be
discussed together with the z-propagated methods later in the next section.

Most of the room in what follows is devoted to the z-propagated approach. Since the general
derivation method, while straightforward in principle, is rather involved, we first show a simple
one-dimensional example of scalar propagation equation. This will reveal the mathematical na-
ture of certain assumptions one has to adopt; these are important in that they select from the set
of all Maxwell’s equations solutions those that fall into the “category of pulsed beams.” We then
follow with the general case, which is subsequently specialized to equations in the homogeneous
bulk media and to wave-guide, or fiber-like structured “media.”

3.2 Derivation of T-propagated Unidirectional Propagation Equation

The version of UPPE that is numerically evolved along the time axis is termed a t-propagated
equation. It is, strictly speaking, a pair of equations, each describing a component of the optical
field with a “prevailing” direction of propagation. The derivation is based on the notion of a
projection which selects only the forward (or backward) propagating part of the field. It must
be emphasized that the forward-backward split is formally exact. However, approximations are
necessary for reducing the system into unidirectional equation, which we do by assuming that
the nature and strength of the nonlinear response is such that it can be accurately calculated
from the forward field component only. This in turn implies that the gradients of the nonlinearly
modified medium properties are changing on length scales large in comparison to wavelength.

In the next Section, we describe the projector and its properties in detail. We then use it to
derive the time-propagated UPPE.

3.2.1 Projection operators for forward and backward propagating fields

Consider general electromagnetic field E(r, t) H(r, t) and the corresponding induction, D(r, t),
for a homogeneous nonmagnetic medium characterized by its frequency dependent susceptibility
χ(ω).

Let us denote E(k), H(k) and D(k) the spatial Fourier transforms of the corresponding
fields, e.g.

D(k) = F{D(r)}(k) D(r) = F−1{D(k)}(r) (3.1)

In the Fourier representation, i.e. the spatial spectrum space, we can define the following opera-
tors

P±
(
D(k)
H(k)

)
=

1

2

(
D(k)∓ sgn(kz)

1
ω(k)k ×H(k)

H(k)± sgn(kz)
ω(k)
k2 k ×D(k)

)
. (3.2)

The reader will notice that this pair of operations is diagonal in the wave-vector k, and is closely
related to the properties of plane-wave solutions of linearized Maxwell’s equations. Next we show
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3.2 Derivation of T-propagated Unidirectional Propagation Equation 17

that P± have the properties of projectors onto forward and backward propagating fields; they
must be idempotent in a certain sense, and have to constitute a decomposition of unity.

Obviously, the two operators P± provide a unity decomposition

P− + P+ = 1 (3.3)

which follows directly from their definition.
Further, one can show that as long as they act over the divergence-free subspace, they behave

as projectors, namely P2 = P. To see this, let U ,V be two arbitrary divergence-free vector fields,
which satisfy ∇.U = ∇.V = 0. Then

P±P±
(
U(k)
V (k)

)
= 1

2 P±
(
U(k)∓ sgn(kz)

1
ω(k)k × V (k)

V (k)± sgn(kz)
ω(k)
k2 k ×U(k)

)
=

1
4

(
U(k)∓ sgn(kz)

1
ω(k)k × V (k)

V (k)± sgn(kz)
ω(k)
k2 k ×U(k)

)
+

1
4

(
∓sgn(kz)

1
ω(k)k × [V (k)± sgn(kz)

ω(k)
k2 k ×U(k)]

±sgn(kz)
ω(k)
k2 k × [U(k)∓ sgn(kz)

1
ω(k)k × V (k)]

)
=

1
4

(
U(k)∓ sgn(kz)

1
ω(k)k × V (k)

V (k)± sgn(kz)
ω(k)
k2 k ×U(k)

)
+

1
4

(
∓sgn(kz)

1
ω(k)k × V (k)

±sgn(kz)
ω(k)
k2 k ×U(k)

)
−

1
4

(
1
k2k × k ×U(k)
1
k2k × k × V (k)

)
=

1
2

(
U(k)∓ sgn(kz)

1
ω(k)k × V (k)

V (k)± sgn(kz)
ω(k)
k2 k ×U(k)

)
−

1
4

(
1
k2kk.U(k)
1
k2kk.V (k)

)
=

1
2

(
U(k)∓ sgn(kz)

1
ω(k)k × V (k)

V (k)± sgn(kz)
ω(k)
k2 k ×U(k)

)
=

P±
(
U(k)
V (k)

)
(3.4)

Since the radiation fields D,H are divergence free, the above calculation shows that P± act as
projectors on these fields, with P±P± = P±.

Finally, it is easy to check that P+ leaves invariant any plane wave solution to Maxwell’s
equations that propagates with kz wave-vector component larger than zero (in the positive
z-direction): At the same time, it “annihilates” all plane waves propagating in the negative z-
direction. To show this, we use the fact that in a plane wave there is a definite relation between
the electric and magnetic fields:
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18 3 Unidirectional Pulse Propagation Equations

(
D(k)
H(k)

)
=

(
− 1
ω(k)k ×H(k)
ω(k)
k2 k ×D(k)

)
. (3.5)

Acting with P± on both sides of this equation one obtains

P±
(
D(k)
H(k)

)
=

1

2

(
D(k)∓ sgn(kz)

1
ω(k)k ×H(k)

H(k)± sgn(kz)
ω(k)
k2 k ×D(k)

)

=
1

2

(
(−1∓ sgn(kz))

1
ω(k)k ×H(k)

(+1± sgn(kz))
ω(k)
k2 k ×D(k)

)

=
+1± sgn(kz)

2

(
D(k)
H(k)

)
(3.6)

Here, the right-hand-side is either zero or equal to the original field, depending on which direction
the plane wave propagates. Naturally, it follows the same way that P− leaves invariant the back-
ward propagating plane waves while cancelling all forward waves. Therefore, we can summarize
that P± each project out from an arbitrary radiation field the component that propagates in the
positive (negative) z-direction.

3.2.2 T-propagated UPPE as a projection of Maxwell’s equations

The time-propagated UPPE describes the electric induction rather than the electric field inten-
sity. The rationale behind this is that D is divergence free in the absence of free charges, but
this is not the case for E. From

0 = ∇.D = ε ∗ ∇.E +∇.P ,

we can see that the divergence of the electric vector field is essentially the opposite of that
of the polarization. The latter in general possesses a non-zero divergence due to the nonlinear
interactions. For example, consider the optical Kerr effect, for which the modification of the index
of refraction is proportional to the light intensity. Because of the spatial profile of the latter, the
divergence of the polarization is

∇.P ∼ ∇.(n2IE) = n2∇I.E + n2I∇.E

From this and the previous equations we can see that the gradient of the intensity gives rise to
the non-zero divergence of the E field. That is why D is a more natural partner for H as both
vector fields are divergence free.

The use of the electric induction D as the primary representation of the electromagnetic field
is similar in spirit to the approach utilized in many numerical solvers of Maxwell equations which
evolve D and calculate E from a given (nonlinear) constitutive relation at each step

D = εoε ∗E + PNL (3.7)

Here, the D field is supposed to be known in the whole space from previous calculations or from
an initial condition. PNL characterizes the medium nonlinearity and is usually specified in terms
of a function of the electric field. Consequently, the above equation must be solved for the electric
field intensity that becomes a function of the electric induction.

We will use the constitutive relation in the Fourier representation
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3.2 Derivation of T-propagated Unidirectional Propagation Equation 19

D(k) = εoε(ω(k)) ∗E(k) + PNL(k) , (3.8)

where ω(k) is defined implicitly as an angular frequency of a plane wave with a wave-vector k,
ω(k)2ε(ω(k)) = k2.

To isolate the linear part of the Maxwell’s equations from the nonlinear, let us introduce a
notation for the linear and nonlinear electric field as a function of induction:

EL(k) =
1

ε0ε(ω(k))
D(k) (3.9)

ENL(k) = E(k)−EL(k) =
1

ε0ε(ω(k))
PNL(k) . (3.10)

It must be emphasized that these equations are not expressions of any physics, but merely
definitions of the two auxiliary electric vector fields. The reader should note that because the
right hand side of the first definition contains the full vector D, the quantity EL(k) can not
be understood as the “electric field in the linear regime.” Rather, the subscript is only meant
to indicate that it is the linear formula which is used to calculate the electric field from the
induction.

Next we use this formal splitting of the electric field intensity in the Maxwell’s equations
written in the Fourier (plane-wave expansion) domain:

∂t

(
D(k)
H(k)

)
=

(
ik ×H(k)
−i
µ0

k ×E(k)

)
≡
(

ik ×H(k)
−i
µ0

k ×EL(k)

)
+

(
0

−i
µ0

k ×ENL(k)

)
. (3.11)

Now let’s act on this equation with P+ to project out what we will call the forward propagating
component of the pulse.

∂t

(
Df(k)
H f(k)

)
≡ ∂tP+

(
D(k)
H(k)

)
= P+

(
ik ×H(k)
−i
µ0

k ×E(k)

)

≡ P+

(
ik ×H(k)
−i
µ0

k ×EL(k)

)
+ P+

(
0

−i
µ0

k ×ENL(k)

)
(3.12)

The first term on the right-hand side is simple to evaluate,

P+

(
ik ×H(k)
−i
µ0

k ×EL(k)

)
= −iω(k)

(
Df(k)
H f(k)

)
(3.13)

because our projector is diagonal in the plane-wave basis which in turn is the eigen-basis of
Maxwell’s equations in a homogeneous medium. If this equality seems counterintuitive at first,
one has to keep in mind that EL(k) does contain contributions from nonlinear interactions. A
straightforward evaluation of both sides of this equation proves that it holds.

The second term on the right-hand-side of 3.12 is transformed by applying the definition of
the projector and performing a straightforward calculation:

P+

(
0

−i
µ0

k ×ENL(k)

)
=

(
i

2µ0ω(k)k × k ×ENL(k)
−i
2µ0

k ×ENL(k)

)

=

(
iω(k)
2k2 k × k × PNL(k)
−ic2

2ε(ω(k))k × PNL(k)

)
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=

(
i
2ω(k)PNL(k)− i

2ω(k)kk
k2 .PNL(k)

−ic2
2ε(ω(k))k × PNL(k)

)
(3.14)

After inserting expressions (3.13,3.14) into Eqn. (3.12), the first (electric induction) equation
becomes the time-propagated UPPE:

∂tDf(k) = −iω(k)Df(k) +
i

2
ω(k)

[
PNL(k)− 1

k2
k k.PNL(k)

]
. (3.15)

Note that the magnetic field equation doesn’t provide anything new after the projection. One
can check that it can be obtained from the induction equation the same way as the magnetic
field is obtained from induction in the plane wave.

In the same way one can obtain the UPPE equation for the backward propagating field
component

∂tDb(k) = +iω(k)Db(k)− i

2
ω(k)

[
PNL(k)− 1

k2
k k.PNL(k)

]
. (3.16)

The two UPPE equations are coupled through their polarization terms, because PNL(k) im-
plicitly depends on the total electric field. We emphasize that at this stage this equation pair
is still exact; we have not made any approximations so far. However, neither of the equations
is unidirectional yet. To get there, we have to adopt an approximation which will de-couple the
forward and backward equations. Specifically, we will restrict ourselves to those regimes in which
it is sufficient to use only the forward propagating electric field to evaluate an approximation for
the total nonlinear polarization. In other words, we require

PNL(k) ≡ PNL(Df + Db,k) ≈ PNL(Df ,k) (3.17)

which means that the nonlinear polarization is calculated from the forward propagating compo-
nent of D only, and the second UPPE for Db can be dropped. This means that the contribution to
the nonlinear response from the backward propagating field must be negligible. This is somewhat
implicit definition of the one-directional propagation regime, and it is difficult to say a-priori if
in a concrete situation this approximation holds. On the other hand, in practice this is actually
the assumption which underlines much of the work in the laboratory; it is “known” or rather
assumed based on experience that the nonlinear focal regions do not produce strong backward
radiation.

While form the practical point of view we know that the above uni-directional approximation
is safe to use in practical simulations, the precise characterization of “admissible solutions” is
a difficult open mathematical problem. Maybe even more importantly, it is also safe to assume
that sooner or later the extreme nonlinear optics research will create scenarios in which the
backward-directed radiation will not be negligible. On the theoretic level, this question was
already posed for the nonlinear Helmholtz equation exhibiting a self-focusing collapse, and it was
demonstrated that both directed field components become significant in the collapsing solution.
Thus, the detailed understanding of how two UPPE equations couple in the presence of nonlinear
interaction is of great interest.

To summarize this part, we have obtained a propagation equation for pulsed beam-like solu-
tions of Maxwell’s equations with minimal approximations. The adjective “minimal” means that
any uni-directional propagation equations will, in some form use the approximation expressed in
Eqn. (3.17). It also means that other optical pulse propagation models can be obtained as ap-
proximations to the t-propagated UPPE. We will discuss several such examples in the following
Chapter.
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3.3 Derivation of Z-propagated Unidirectional Propagation Equation

The UPPE version which is numerically evolved along a spatial direction, say z, is quite similar
to its t-propagated counterpart discussed in the previous sections. Not only the mathematical
form of the equation is formally the same, but, as we will see shortly, also the approximation
which makes it possible to separate two counter-propagation directions is equivalent. However,
derivations are rather different, and so far there is no proof that the two approaches are math-
ematically equivalent. In this case, the derivation is based on expansion into linear propagation
modes of the system, and on a coupled mode equation that describes the evolution of a set of
complex-valued spectral amplitudes. Similarly as in the t-propagated version, we end up with
a formally exact pair of equations, one for each direction of the laser beam. Reduction into
a uni-directional system requires that nonlinear response does not generate strong backward
component.

It can be shown explicitly that while the pair of forward and backward evolution equation is
formally exact as long as they are solved together, the set of all UPPE solutions is smaller than
the set of all solutions to Maxwell’s equations. It is interesting to note that similar reductions
is not encountered for the t−propagation. This is one of the reason we believe that the two
approaches are in fact not mathematically equivalent.

The most important “ingredient” in unidirectional evolution equations is the separation, or
elimination of the wave-form portion which propagates in the opposite direction. To emphasize
this, and also to make full derivation easier to digest, we start with a simplified case of one-
dimensional Maxwell’s equations with a fixed, linear polarization of the electric field. This is
of course equivalent to a scalar one-dimensional wave propagation. This simple case is free of
notational complications while it still contains all important steps of the fully vectorial treatment.

In the subsequent section, we start by derivation of the coupled mode equations which consti-
tute a common starting point for all “specialized” z-propagated Unidirectional Pulse Propagation
Equations.

3.3.1 A warm-up exercise: One-dimensional Maxwell’s equations

The one dimensional Maxwell’s equations reduced to linearly polarized electric field can be
written as

−∂zH = ∂tE + ∂tP
−∂zE = ∂tH (3.18)

where z is the “optical axis” and E and H are implicitly understood to be orthogonal to each
other and to z. This system has harmonic waves as solutions in the linear regime when P = 0:

Eλ(ω, z, t) = E0 exp [−iωt+ iλk(ω)z] Hλ(ω, z, t) = λH0 exp [−iωt+ iλk(ω)z] ω > 0 λ = ±1

The direction “indicator” λ selects forward and backward (or left and right) propagating waves.
We can use these as a basis in which to express our full, nonlinear solution as

E =
∑

µ=±1

∫
dΩAµ(Ω, z)Eµ(Ω, z, t) H =

∑

µ=±1

∫
dΩAµ(Ω, z)Hµ(Ω, z, t)

Here, Aµ(Ω, z) are spectral amplitudes for which we have to find an evolution equation. Taking
(3.18) and multiplying with the above basis functions we get

Eλ∂zH = −Eλ∂tE − Eλ∂tP
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Hλ∂zE = −Hλ∂tH (3.19)

In these equations and in following formulas, we assume that the arguments of Eλ and Hλ are
ω, z, t.

We now add these two equations and collect terms that constitute full derivatives:

∂z[EλH +HλE] = −∂t[EλH +HλE]− Eλ∂tP (3.20)

The next step is to integrate over the whole domain perpendicular to the direction of propagation.
In this simplified case it means the t domain alone. We can see that after t integration, we obtain
boundary terms at past and future temporal infinity. To get rid of these, we will restrict our
solution space to those functions which satisfy

lim
t→±∞

[EλH(z, t) +HλE(z, t)] = 0 (3.21)

This condition eliminates the middle term in (3.20), and the rest can be transformed as follows.
First, in the left-hand side we use the fact that the basis solutions are orthogonal, and after time
integration they eliminate the sum over Ω and the modal index µ:

∫
dt∂z[Eλ(ω, z, t)H +Hλ(ω, z, t)E] =

=

∫
dt∂zEλ(ω, z, t)

∑

µ=±1

∫
dΩAµ(Ω, z)Hµ(Ω, z, t)+

+

∫
dt∂zHλ(ω, z, t)

∑

µ=±1

∫
dΩAµ(Ω, z)Eµ(Ω, z, t) =

= 2λE0H0∂zAλ(ω, z) (3.22)

On the right-hand side of (3.20), the polarization term yields essentially a Fourier transform

−
∫
dtEλ(ω, z, t)∂tP = iω exp [−iλk(ω)z]P̂ (ω, z)

Collecting both sides, we arrive at an evolution equation for spectral amplitudes:

∂zAλ(ω, z) =
iω

2λE0H0
exp [−iλk(ω)z]P̂ (ω, z) (3.23)

To obtain a corresponding equation for the electric field, we recall that

Êλ(ω, z) = Aλ(ω, z) exp [iλk(ω)z]

and expressing its z derivatives using the evolution equation for the spectral amplitudes (3.47)
we have:

∂zÊλ(ω, z) = iλk(ω)Êλ(ω, z) + iλ
ω

2E0H0
P̂ (ω, z)

This is a pair of equations for forward and backward (λ = ±1) propagating fields. The two are
coupled through the polarization which depends on their sum. Explicitly,

P (z, t) = P [E+(z, t) + E−(z, t)] .

where the concrete functional form of this dependence is not important for the present purpose,
but as an example one can consider the instantaneous Kerr nonlinearity for which the polarization
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is simply proportional to the cube of the electric field (for more examples, see introductory
sections of these notes):

P (z, t) = P [E+(z, t) + E−(z, t)] ∼ [E+(z, t) + E−(z, t)]3

We should note that as soon as nonlinear polarization exhibits memory effects the above expres-
sion does not capture the most general form of cubic nonlinearity in isotropic media.

The above derivation illustrates the scheme we will use in the next section to derive the
general, fully vectorial Unidirectional Pulse Propagation Equation. The important point to note
here is that in the course of derivation we had to restrict the space of our solutions by the
condition (3.21). This means that the UPPE solution set is smaller than the set of all Maxwell’s
equations solutions. However, within the admissible subspace, unidirectional equations are exact,
as long as we can solve them simultaneously while always calculating the nonlinear polarization
term from the total field.

So let us have a look at the assumption (3.21). What it says is that for every fixed location z
along the laser beam axis, if we wait for a sufficiently long time, the field at this location will tend
to zero. In other words, light energy will dissipate into positive and negative z-infinities. This is
certainly very benign condition in the context of pulse propagation, because this is exactly what
happens to localized pulsed wavepackets - they eventually disappear from our sight. On the other
hand, one can easily think of an example which does not satisfy (3.21): a pulse trapped within a
perfect cavity filled with a loss-less medium. Obviously, its field will continue to exhibit in-cavity
values which will not tend to zero at long times (they may not have such limits, of course). Of
course, a perfect cavity is an extreme idealization, as is the notion of a loss-less medium which
must be also dispersion-less and therefore in fact a vacuum. Thus we see that while there is a
condition on the UPPE solutions, it is not practically restricting. Situation will turn out to be
completely analogous in the fully three-dimensional case discussed in the next section.

3.3.2 Maxwell equations as a boundary value problem for pulsed beam propagation

As a first step in derivation of various versions of UPPE, we derive an exact coupled-modes
system of equations. Electromagnetic fields of a light pulse propagating along the z axis can be
expanded into modal contributions that reflect the geometry of the waveguide (we can consider
a homogeneous medium as a special case of the latter).

E(x, y, z, t) =
∑

m,ω

Am(ω, z)Em(ω, x, y)eiβm(ω)z−iωt

H(x, y, z, t) =
∑

m,ω

Am(ω, z)Hm(ω, x, y)eiβm(ω)z−iωt (3.24)

Here, m labels all transverse modes, and an initial condition Am(ω, z = 0) is supposed to be given
or calculated from the known field values at z = 0. Note that the above expansion is valid for the
transverse components only, and that the modal index m is a short hand for all quantities which
are required to specify a unique propagation mode. For example, in a homogeneous bulk medium,
the eigen modes are the well known plane waves, and the index m represents polarization, two
transverse wavenumbers, and a binary value selecting the forward or backward direction of
propagation.

To save space, the following short-hand notation will be used below

Em ≡ Em(ω, x, y)eiβm(ω)z−iωt

Hm ≡ Hm(ω, x, y)eiβm(ω)z−iωt . (3.25)
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We consider a non-magnetic medium (µ = µ0) with a linear permittivity ε(ω, x, y) that
doesn’t depend on the propagation coordinate z which coincides with what we consider forward
and backward propagation direction. Note that the permittivity or, equivalently, the index of
refraction may depend on the transverse coordinates x, y. That would be the case for example in
a micro-structured waveguide, or in a hollow-core fiber or capillary; at this first stage, we want to
treat bulk media and fiber-like geometries together. Later we will “branch” and derive separate,
specialized equations for waveguides and for bulk media.

The starting point of our derivations is of course the Maxwell’s equations:

j + ∂tP + ε0∂tε ∗E = ∇×H
−µ0∂tH = ∇×E (3.26)

where the star represents a convolution so that the term is a short hand for

ε0∂tε ∗E = ε0∂t

∫ ∞

0

dτε(τ)E(t− τ)

Here ε(τ) is the temporal representation of frequency-dependent permittivity ε(ω). The same
notation will be used for both quantities, and their arguments will serve to distinguish them
where needed.
As a first step, we scalar-multiply Maxwell’s equations by complex conjugate modal fields

E∗m.(j + ∂tP ) +ε0E∗m.∂tε ∗E = E∗m.∇×H
−µ0H∗m.∂tH = H∗m.∇×E . (3.27)

Using the formula b.(∇ × a) = ∇.(a × b) + a.(∇ × b), we transform both right-hand sides to
obtain

E∗m.(j + ∂tP ) + ε0E∗m.∂tε ∗E = ∇.[H × E∗m] + H.[∇× E∗m]
−µ0H∗m.∂tH = ∇.[E ×H∗m] + E.[∇×H∗m] . (3.28)

Now we can take advantage of the fact the modal fields themselves satisfy the Maxwell’s equations

∇× E∗m = −µ0∂tH∗m
∇×H∗m = ε0∂tε ∗ E∗m , (3.29)

and therefore the previous equations can be written as

E∗m.(j + ∂tP ) + ε0E∗m.∂tε ∗E = ∇.[H × E∗m]− µ0H.∂tH∗m
−µ0H∗m.∂tH = ∇.[E ×H∗m] + ε0E.∂tε ∗ E∗m (3.30)

Next, we subtract the two equations and collect terms that constitute full time derivatives

E∗m.(j + ∂tP ) + ∂t[ε0E∗m.ε ∗E] = ∇.[H × E∗m]− ∂t[µ0H∗m.H]−∇.[E ×H∗m] . (3.31)

Now we integrate over the whole xyt domain. Note that all terms except the first and ∂z, which
is implicit in the ∇. operator, are derivatives that give rise to “surface terms” after integration
over x, y, t. These surface terms are supposed to vanish far from the axis of the laser beam, as
well as in past and future temporal infinities. Intuitively, admissible solutions include spatially
and temporally localized pulse-like solutions, which we are interested in. As a consequence, the
only surviving derivatives will be ∂z:

∫
E∗m.(j + ∂tP )dxdydt = ∂z

∫
z.[H × E∗m]dxdydt− ∂z

∫
z.[E ×H∗m]dxdydt (3.32)
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Here and in what follows, t integrations are understood like this:
∫

dt ≡ 1
T

∫ +T/2

−T/2 dt where

T is a large normalization “volume,” and integrals over x, y are understood in a similar way.
This will give us a convenient way to obtain the correct normalization and “translate” it into
implementation which will be in terms of numerical Fourier transforms.
Because only transverse field components enter the above equation, we can use our modal ex-
pansion here (recall that those are only valid for transverse vector components):

∫ E∗m.(j + ∂tP )dxdydt =
∂z
∫
z.[
∑
n,Ω An(Ω, z)Hn(Ω)× E∗m(ω)]eiβn(Ω)z−iΩte−iβm(ω)z+iωtdxdydt

−∂z
∫
z.[
∑
n,Ω An(Ω, z)En(Ω)×H∗m(ω)]eiβn(Ω)z−iΩte−iβm(ω)z+iωtdxdydt .

(3.33)

Integration over time gives a Kronecker delta between angular frequencies, δΩω, which in turn
reduces the sum over Ω:

∫ E∗m.(j + ∂tP )dxdydt =
∂z
∫
z.[
∑
nAn(ω, z)Hn(ω, x, y)× E∗m(ω, x, y)]eiβn(ω)ze−iβm(ω)zdxdy

−∂z
∫
z.[
∑
nAn(ω, z)En(ω, x, y)×H∗m(ω, x, y)]eiβn(ω)ze−iβm(ω)zdxdy .

(3.34)

Collecting like terms results in an equation

∫
E∗m.(j + ∂tP )dxdydt = ∂z

∑

n

An(ω, z)eiβn(ω)ze−iβm(ω)z×
∫

z.[Hn(ω, x, y)× E∗m(ω, x, y)− En(ω, x, y)×H∗m(ω, x, y)]dxdy . (3.35)

At this point we are going to use a general property of electromagnetic modal fields which
constitute an orthogonal basis: all radiative waveforms can be expressed as their linear combi-
nations. To calculate such expansions, one can utilize the following orthogonality relation

∫
z.[Em ×H∗n −Hm × E∗n] dxdy = 2δm,nNm(ω) (3.36)

Here Nm(ω) is a normalization constant, whose explicit functional form has to be derived for
each concrete set of modes.

Orthogonality of modes is used to reduce the sum over n in (3.35)

∫
E∗m.(j + ∂tP )dxdydt = −∂z

∑

n

An(ω, z)eiβn(ω)ze−iβm(ω)z2δm,nNm(ω) , (3.37)

and we finally obtain an evolution equation for our expansion coefficients:

∂zAm(ω, z) = − 1

2Nm(ω) XY T

∫ +T/2

−T/2
dt

∫ +Y/2

−Y/2
dy

∫ +X/2

−X/2
dx×

e−iβm(ω)z+iωtE∗m(ω, x, y).[j(x, y, t) + ∂tP (x, y, t)] (3.38)

This is the starting point for the z-propagated unidirectional equations. In the following sections,
we will specialize this to the case of bulk media and then continue on with waveguides.
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3.3.3 Z-propagated UPPE for homogeneous media: General case

In this section, Eq. (3.38) is specialized for the case of a homogeneous medium. This is done by
inserting explicit expressions for a given family of modal fields.

In bulk media, field modes are plane waves, They can be labeled by transverse wavenumbers
kx, ky, by a polarization index s = 1, 2, and by a ± sign signifying the direction of propagation
along the z direction. So the index m, which we used to label modes in the preceding section, is
actually a list:

m ≡ kx, ky, s,± . (3.39)

The following notation will be used for the frequency- and wavenumber-dependent propagation
constant of a plane wave characterized by its angular frequency ω:

βkx,ky,s,±(ω) ≡ kz(ω, kx, ky) =
√
ω2ε(ω)/c2 − k2

x − k2
y , (3.40)

Electric and magnetic amplitudes in plane waves are mutually determined by the Maxwell’s
equations. We fix them as

Ekx,ky,s,± = es exp [ikxx+ ikyy ± ikz(ω, kx, ky)] (3.41)

Hkx,ky,s,± =
1

µ0ω
k × Ekx,ky,ω,s,± . (3.42)

We can choose one of the amplitudes (the electric one in this case) arbitrarily, and the choice will
be naturally reflected in the modal normalization constants, but is otherwise inconsequential.
The polarization of modal fields is determined by polarization vectors es=1,2 which are of unit
length and are normal to the wave-vector

k = {kx, ky, kz ≡
√
ω2ε(ω)/c2 − k2

x − k2
y} . (3.43)

Using the above formulas, it is straightforward to calculate the modal normalization constant

2Nkx,ky,s,±(ω) =

∫
z.[Em ×H∗m −Hm × E∗m] dxdy =

2z.[es × (k × es)]
1

µ0ω
= ±2kz(ω, kx, kz)

1

µ0ω
(3.44)

Nkx,ky,s,±(ω) = ±kz(ω, kx, kz)
µ0ω

. (3.45)

Now we can insert expressions for modal fields and the corresponding normalization constant
into coupled mode equation Eq. (3.38) to obtain

∂zAkx,ky,s,±(ω, z) = ∓ωµ0

2kz
e∓ikzz

∫
dxdydt

LxLyT
ei(ωt−kxx−kyy)×

es.[j(x, y, z, t) + ∂tP (x, y, z, t)] (3.46)

The above integral is nothing but a spatial and temporal Fourier transform, so one can write it
down in the spectral domain as

∂zAkx,ky,s,+(ω, z) =
ω

2ε0c2kz
e−ikzzes.[iωP kx,ky (ω, z)− jkx,ky (ω, z)] . (3.47)
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This is the propagation equation that will actually be solved numerically because it is cast in
terms of the slowest variables our propagation problem has. We can see that the only source of
evolution in spectral amplitudes is nonlinearity.

For those who prefer to see evolution equations for electric fields proper, we express the above
in terms of the electric field rather than in terms of modal expansion coefficients. From a modal
expansion, the transverse part of the electric field is

E⊥kx,ky,+(ω, z) =
∑

s=1,2

e⊥s Akx,ky,s,+(ω, z)eikz(kx,ky,ω)z , (3.48)

and therefore its z derivative reads

∂zE
⊥
kx,ky,+(ω, z) = ikz(kx, ky, ω)E⊥kx,ky,+(ω, z)+∑

s=1,2

e⊥s ∂zAkx,ky,s,+(ω, z)eikz(kx,ky,ω)z (3.49)

Using Eq. (3.47), we obtain the full-vectorial UPPE for a homogeneous medium:

∂zE
⊥
kx,ky,+(ω, z) = +ikzE

⊥
kx,ky,+(ω, z)+

∑

s=1,2

e⊥s es .[
iω2

2ε0c2kz
P kx,ky (ω, z)− ω

2ε0c2kz
jkx,ky (ω, z)] (3.50)

This is an exact system of equations that describes evolution of modal amplitudes along the z-
axis for the forward propagating field. Of course, an analogous equation holds for the backward
propagating component:

∂zE
⊥
kx,ky,−(ω, z) = −ikzE⊥kx,ky,+(ω, z)−

∑

s=1,2

e⊥s es .[
iω2

2ε0c2kz
P kx,ky (ω, z)− ω

2ε0c2kz
jkx,ky (ω, z)] (3.51)

This pair of equation is exact and completely analogous to the pair of z-propagated equations
discussed in the previous section. Because the nonlinear polarization in these equations results as
a response to the complete electric field, they can’t be used to calculate the forward field in iso-
lation (i.e. without its backward propagating counterpart). The equation becomes unidirectional
only when the following approximation can be adopted:

P (E), j(E)→ P (Ef ), j(Ef ) (3.52)

In other words, to obtain a closed system which is restricted to a single direction and which can
be solved numerically, we must require that nonlinear polarization can be calculated accurately
from only the forward propagating field. This means that UPPE is only applicable when the
back-reflected portion of the field is so small that its contribution to the nonlinearity can be
neglected.

3.3.4 Z-propagated UPPE: Simplified, practical version

Eq. 3.50, with nonlinear polarization approximated by Eq. 3.52 can easily become a rather large
system to solve numerically. This is especially true for experiments with wide-beam multi TW
lasers. Fortunately, in most cases transverse dimensions of resulting structures remain relatively
large in comparison to wavelength, and further approximations are possible. For example in
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femtosecond filamentation in gases, the typical diameter of the filament core is about hundred
micron which dimension is large in comparison with the laser wavelength. Consequently, the
longitudinal vector component of the electric field is much smaller than the transverse (x, y)
components, and can be neglected in calculation of the nonlinear medium response. It thus
makes sense to take advantage of this fact to obtain a simpler equation.
Concretely, one can neglect the z components of the field and polarization vectors. In such a
situation the sum over polarization vectors reduces approximately to unity

∑

s=1,2

e⊥s es ≈ 1 . (3.53)

To see this, it is enough to recall that the left-hand side constitutes a projector onto the wave-
vector (recall that these vectors are mutually orthogonal). As the wave-vector is pointing in the
direction almost parallel to the beam axis, it is also approximately a unity “operator” in the
vector subspace spanned by x, y.

Replacing the transverse projection by unity, the full UPPE simplifies into an equation for
transverse component(s)

∂zEkx,ky (ω, z) = ikzEkx,ky (ω, z) +
iω2

2ε0c2kz
Pkx,ky (ω, z)− ω

2ε0c2kz
jkx,ky (ω, z) ,

kz =
√
ω2ε(ω)/c2 − k2

x − k2
y . (3.54)

This is the most useful form for practical calculation, and is therefore called simply UPPE in the
following. While we write it as a scalar equation, it should be understood that it is in general
coupled to its counterpart governing the other polarization. The two polarization components
of the electric field both contribute to the nonlinear polarization and this is how they become
mutually coupled.
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3.4 Other propagation models as approximations of UPPE

The previous section showed the the Unidirectional Pulse Propagation Equations can be rigor-
ously derived under very general assumptions. They are based on a single approximation, an that
is that nonlinear interaction between light and matter occurs in such a regime that the medium
response to the field can be calculated with sufficient accuracy from only the forward-going field
component. Because this is how all one-way pulse propagation equation include nonlinearity, one
can expect that other types of equations can be derived from UPPE. We want to demonstrate
this in what follows. We will in fact show a universal scheme to derive all other propagation
models.

The first purpose of this section is to illustrate that what we have identified as the Maxwell
reduction problem in Introduction, has been receiving a lot of attention in the literature for many
years. Researchers proposed a number of various solutions and new results continue to appear
in the literature.

The motivation for such research is obviously different in different research communities.
The optics community is mostly interested in practical wave propagation solvers as tools to
utilize in experimental and theoretic work. But there is also an applied mathematics community
which studies these equations as weakly nonlinear systems, not necessarily restricted to the
optical contexts. The goal is a rigorous analysis of resulting equations rather than their practical
application. These divergent interests are, in our opinion, one of the reasons why the Maxwell
reduction problem still enjoys attention of researchers.

The second purpose of the Section is to bring various derivations and different version of
propagation equations “under one roof.” We present a unifying view as a means to elucidate
exactly what approximations went into original derivations. The reader might expect that as-
sumptions behind an equation should be be clearly established, but it is actually not the case;
derivations often suffer from lack of control over the neglected terms or effects. This is why we
consider useful to discuss some successful propagation models along with a couple of examples
when the results turn out to be “less than solid.” This should give our reader “tools” to evaluate
the plethora of propagation models scattered over the literature of last ten years.

3.4.1 General method to obtain pulse propagation models from UPPE

Several types of unidirectional propagation equation appear frequently in the literature on non-
linear optics. The most important examples are Non-Linear Schrödinger (NLS) equation [?],
Nonlinear Envelope Equation [?] (NEE), the First-Order Propagation equation [?] (FOP), For-
ward Maxwell’s equation [?] (FME), and several other equations that are closely related to these.

In this section, we explain a unified method which will be subsequently used to derive several
of the light-pulse propagation equations. The main benefit of re-deriving known equations from
a common starting point while using the same method, is that it allows us to compare physical
assumptions and approximation underlying different equations. It also reveals relations between
equations which may not be obvious either because of their apparently different form, or because
of different methods used in the original derivations.

It is instructive to break the derivation procedure into several steps. As a first step, we adopt a
scalar, one-component approximation and write the Unidirectional Pulse Propagation Equation
in the following form:

∂zEkx,ky (ω, z) = iKEkx,ky (ω, z) + iQPkx,ky (ω, z) (3.55)

where

K(kx, ky, ω) =
√
ω2ε(ω)/c2 − k2

x − k2
y (3.56)
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is the linear field propagator in the spectral representation, and

Q(kx, ky, ω) =
ω2

2ε0c2
√
ω2ε(ω)/c2 − k2

x − k2
y

(3.57)

will be called nonlinear coupling term. In most cases, the concrete form of the nonlinear polar-
ization P is unimportant, and we will assume that it can be specified in terms of an algorithm
which accepts the electric field (in general as a function of time), at a given spatial location as
its input.

Let us note that this one-component, or scalar representation can be still understood as a
description of a single polarization in a coupled system describing two transverse vector compo-
nents of an optical field. While each equation appears scalar, the two become coupled through
the polarization term, for example due to the nonlinear birefringence. These coupling effects can
play a role even if a laser beam is much wider than the light wavelength, and can lead to a
rich polarization dynamics within femtosecond filaments. What is neglected at this step is the
longitudinal part of the electric field. That only becomes important when the beam focuses to
a size comparable with wavelength. However, in the naturally occurring filaments such extreme
focusing is never achieved, because self-focusing collapse is always arrested either by chromatic
dispersion or by the free-electron induced de-focusing. Thus, for many practical purposes, the
above representation is sufficiently rich and accurate.

In the second derivation step, we replace couplings K and Q by suitable approximations.
In most cases, they are closely related to Taylor expansions in frequency and in transverse
wavenumbers. It is at this stage that artificial parameters are introduced into a propagation
model (a typical example is the reference frequency). It is important to keep in mind that
“knowledge” extracted from simulations should not depend on such degrees of freedom. In this
respect, we aim to show that the improvements introduced into pulse evolution equations can
be often viewed as corrections which (partially) restore the invariance of a model with respect
to these free-will choices.

Having chosen our approximations for the linear and nonlinear coupling, we are still in the
real-field representation. However, most of the published models are written using envelopes.
Thus, in the next step, we obtain envelope equations. To do this, one can expresses the field in
terms of an envelope by factoring out the carrier wave at a chosen reference angular frequency
ωR with the corresponding wave-vector kR = K(0, 0, ωR):

E(x, y, z, t) = A(x, y, z, t)ei(kRz−ωRt) (3.58)

A similar factorization is of course introduced for the nonlinear polarization P (x, y, z, t) as well.
The final step consist in transforming the equation from the spectral- to the real-space rep-

resentation. Mathematically, this is nothing but a Fourier transform, and the following standard
replacement rules for differential operators provide quick and easy way to do this transformation:

(ω − ωR)→ i∂t ikx → ∂x iky → ∂y ∂z → ik(ωR) + ∂z (3.59)

Finally, in most cases we also transform to a frame moving with a suitable group velocity such
that the pulse remains close to the center of the computational domain.

3.4.2 Derivation of Non-Linear Schrödinger Equation from UPPE

The Nonlinear Schrödinger Equation (NLS) is a prototype propagation equation ubiquitous in
the nonlinear optics, and its importance can hardly be overstated. It is therefore only natural
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to start our model discussions with this equation. It is also the simplest case to illustrate the
derivation method outlined above, and an opportunity to point out some important issues which
are also relevant in other pulse propagation models.

Following the general procedure, we replace the K and Q “coefficients” with their appropri-
ate approximations. We denote by kR = k(ωR) the reference wavenumber corresponding to an
“arbitrarily” chosen reference frequency ωR, and take

K(kx, ky, ω) =
√
ω2ε(ω)/c2 − k2

x − k2
y

≈ kR + v−1
g (ω − ωR) +

k
′′

2
(ω − ωR)2 − 1

2kR
(k2
x + k2

y) (3.60)

This is a second-order Taylor expansion in ω − ωR and in kx, ky. It should be noted that the
parameter ωR has nothing to do with the solution of the equation and in particular it does not
need to be equal to the central frequency of the simulated optical pulse. In fact, below we give
a very good reason why it should not, and why simulation runs obtained for different choices
should be compared to asses their robustness. The point is that this is an example when an
artificial parameter, originally absent from Maxwell’s equations, makes its way into a theoretical
model. Such a parameter must be regarded as a “gauge variable” from whose concrete choice
all physical results must be independent. This is never the case, strictly speaking. In practice,
we choose a value and this choice has a measurable effect on the numerical solution: this is a
consequence of the equation not being strictly invariant. A blessing in disguise is that both the
accuracy of the numerical solution, as well as the robustness of the propagation equation itself,
can and should be “measured” in how big or small these unwanted parameter-dependencies are.
Clearly, the NLS equation will be manifestly dependent of our choice for the reference frequency
in the above approximation of K, and its solutions will inherit the same. In the next subsections,
it will become evident that the so called correction terms introduced into the NLS equation can
be actually viewed as corrections which eliminate at least partly the dependence of the equation
on ωR.

Now, let us return to our derivation. In the nonlinear coupling coefficient, we neglect all
variable dependencies and replace it with its value at the reference frequency and zero transverse
wavenumbers:

Q(kx, ky, ω) =
ω2

2ε0c2
√
ω2ε(ω)/c2 − k2

x − k2
y

≈ ωR

2ε0n(ωR)c
(3.61)

In the context of the Nonlinear Schrödinger Equation, the nonlinear polarization term only
accounts for the instantaneous optical Kerr effect. The polarization envelope is usually expressed
in terms of the light intensity I and of the field-envelope A:

P = 2ε0n(ωR)n2IA (3.62)

Inserting this into (3.55,3.58) we obtain

∂zA = +iv−1
g (ω − ωR)A +

ik
′′

2
(ω − ωR)2A− i

2kR
(k2
x + k2

y)A+
iωR

c
n2IA (3.63)

The NLS is usually written in units suitable for the given geometry, be it a fiber or a bulk
medium. In the latter, it is customary to normalize the envelope amplitude such that |A|2 = I.
Using rules (3.59) we finally obtain the NLS equation:

(∂z + v−1
g ∂t)A =

i

2kR
∆⊥A−

ik
′′

2
∂ttA+

iωR

c
n2|A|2A (3.64)
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The above derivation shows explicitly what approximations need to be adopted to obtain NLS:
Approximating K to second order in frequency and transverse wavenumber amounts to the
paraxial, and quasi-monochromatic approximations for the linear wave propagation. The ap-
proximation in the nonlinear coupling Q also requires a narrow spectrum in order to be able to
represent Q by a constant.

Despite the underlying assumption of a narrow spectrum, NLS is in practice often pushed
into a regime with significant spectral broadening. This immediately invites a question: which
portion of the simulated spectrum can be correct?

One characteristic feature of NLS and of other envelope equations is the reference frequency.
It is usually chosen equal to the central frequency of the initial pulse, and beginner‘s implementa-
tions often hard-code this particular choice in the program. This is not necessary, and not even a
good practice. It is useful to keep in mind that ωR is a free parameter, and as such it provides an
opportunity to test the robustness of obtained simulation results. Comparative runs with small
variations in reference frequency will readily reveal which parts of simulated spectra “react” to
these changes - these are artifacts and only the stable, robust portions of the solution can be
accepted. This is naturally applicable to any pulse propagation model that contains artificial
parameters not present in the original Maxwell’s equations.

3.4.3 Nonlinear Envelope Equation

Nonlinear Envelope Equation [?] is a paraxial equation with some additional approximations
related to chromatic dispersion.

Once again, we follow the general procedure and approximate the linear propagator by its
paraxial version:

K(kx, ky, ω) =
√
ω2ε(ω)/c2 − k2

x − k2
y ≈ +k(ω)− c

2ωnb(ωR)
(k2
x + k2

y) (3.65)

This is the second-order (paraxial) Taylor expansion in transverse wavenumbers with an addi-
tional approximation. Namely, we replaced nb(ω)→ nb(ωR) in the denominator of the diffraction
term, and thus partly neglected chromatic dispersion.

Further, the first term in the above approximation, which is an exact propagation constant
for a plane wave propagating along the z axis, is re-expressed as a sum of its two lowest-order
Taylor expansion terms plus the rest:

k(ω) = k(ωR) + v−1
g (ω − ωR) +D(ω − ωR) (3.66)

where

D(ω − ωR) =
∞∑

n=2

(
∂nk

∂ωn

)

ω=ωR

(ω − ωR)n

n!
(3.67)

This is formally exact and can be practically implemented in the spectral domain without further
approximations, but sometimes a finite number of series expansion terms is used to fit the linear
chromatic dispersion of a medium or of a waveguide.

Next, we approximate the nonlinear coupling term. Unlike in NLS, we preserve the frequency
dependence exactly, but neglect the transverse wave-number dependence:

Q(kx, ky, ω) ≡ ω2

2ε0c2
√
ω2ε(ω)/c2 − k2

x − k2
y

≈ (ω − ωR) + ωR

2ε0cn(ωR)
(3.68)

Here, as in the free propagation term, we neglect the chromatic dispersion of the background
index of refraction.
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After inserting the above approximations for K and Q into the original UPPE, we obtain

∂zA = iv−1
g (ω − ωR)A+ iD(ω − ωR)A

− ic

2ωRn(ωR)
(1 +

ω − ωR

ωR
)−1(k2

x + k2
y)A

+
iωR

2ε0cn(ωR)
(1 +

ω − ωR

ωR
)P (3.69)

Finally, transforming into the real-space representation, we arrive at NEE

∂zA+ v−1
g ∂tA = iD(i∂t)A+

i

2kR
(1 +

i

ωR
∂t)
−1∆⊥A+

ikR

2ε0n2
b(ωR)

(1 +
i

ωR
∂t)P (3.70)

Thus, approximations underlying the NEE are paraxiality both in the free propagator and in the
nonlinear coupling, and a small error in the chromatic dispersion introduced when the background
index of refraction is replaced by a constant, frequency independent value in both the spatio-
temporal correction term and in the nonlinear coupling term. Note that the latter approximations
are usually not serious at all.

An important point is that NEE should not be implemented in the form it was originally
introduced. Handling higher order time derivatives any other way than spectral would necessarily
cause additional numerical dispersion which may spoil linear propagation properties. However,
if implemented in a spectral representation, NEE transforms into another propagation model
discussed latter in these notes. Readers should be aware that authors in the literature sometimes
claim to use NEE even if, in the above sense, they are not.

As in all envelope equations a reference frequency and a reference wave-number appear in
the NEE. They are normally chosen equal to the central frequency and wave-number of the
input pulse. But as we pointed out in connection to NLS, one has to keep in mind that these
quantities are artificial and arbitrary “gauge” parameters which do not appear in the Maxwell’s
equations. Consequently, numerical solutions should not depend on how the reference is chosen.
In other words a propagation equations should be “reference-frequency-invariant.” While NLS is
manifestly dependent on the reference choice, NEE is nearly invariant although ωR appears in it
several times. To appreciate this consider the spatio-temporal focusing correction term (operator)
ω−1

R (1 + 1
ωR
∂t)
−1 It seems to depend on the reference ωR, but it is in fact proportional to ω−1 as

long as it is implemented in the spectral domain which allows to include all orders of the series
expansion. Note that this (approximate) invariance is only achieved in the infinite order, and can
be properly implemented only in the spectral representation. Truncating operators at a finite
order of series expansion breaks the invariance and causes undesirable artifacts. We illustrate
this point in the following example.

3.4.4 Partially corrected NLS

The Partially Corrected NLS (PC-NLS) equation can be viewed as a “simplification” of NEE. It
is derived from the UPPE in the same way, with one additional step. Namely, the following first
order series expansion is applied in the correction term of the free propagator in Eqn.(3.69):

(1 +
ω − ωR

ωR
)−1 ≈ (1− ω − ωR

ωR
) (3.71)

This step is meant to make it easy to implement a numerical solver in the real space, as it results
in the equation that only contains “simple” differential operators in the real-space representation:

∂zA+ v−1
g ∂tA = iD(i∂t)A+

i

2kR
(1− i

ωR
∂t)∆⊥A+

ikR

2ε0n2
b(ωR)

(1 +
i

ωR
∂t)P (3.72)
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While it may seem that the Partially Corrected NLS is essentially NEE with a “little more”
approximation, this equation is not to be recommended. Because of the arbitrary truncation of
an infinite series, the dispersion properties of the linear part of this equation are unphysical.
While the PC-NLS provides better-than-NLS approximation around the reference frequency
ωR, its dispersion properties become rather pathological around ω ≈ 2ωR where its diffraction
term changes sign as a consequence of the truncated correction factor. Artifacts in the angular
distribution of the spectrum can be observed at high frequencies beyond ω ≈ 2ωR. Consequently,
this equation is only applicable in the same regime as the NLS, namely when the spectrum of
the pulse remains relatively narrow.

3.4.5 First-order propagation equation

The previous three examples represented field envelope propagation equations. Next we discuss a
non-envelope, First-Order Propagation equation (FOP), introduced by Geissler et al. [?]. Though
it resolves the carrier wave, this equation is equivalent to NEE from the point of view of the
approximations required for its derivation as we shall see shortly. Following the original authors,
we neglect linear chromatic dispersion in order to obtain the same equation as Geissler et al.

In Eqn.(3.54) , we approximate

K(kx, ky, ω) ≡
√
ω2/c2 − k2

x − k2
y ≈

ω

c
− c

2ω
(k2
x + k2

y) (3.73)

Note that the corresponding approximation made in NEE reduces to the present case if there is
no linear chromatic dispersion (vacuum).

Similarly,

Q(kx, ky, ω) ≡ ω2

2ε0c2
√
ω2/c2 − k2

x − k2
y

≈ ω

2ε0c
(3.74)

is the same approximation as the one in NEE only with vacuum in the role of the linear medium.
Thus, the propagation equation obtained with these expressions is

∂zEkx,ky,ω =
iω

c
Ekx,ky,ω −

ic

2ω
(k2
x + k2

y)Ekx,ky,ω +
iω

2ε0c
Pkx,ky,ω (3.75)

which is equivalent to Eqn. (2) of Ref. [?].
When transforming into the real-space domain, ω−1 gives rise to an integral over time, and

we arrive at the FOP equation

(∂z +
1

c
∂t)E(r⊥, t) =

c

2
∆⊥

∫ t

−∞
dτE(r⊥, τ)− 1

2ε0c
∂tP (r⊥, t) (3.76)

Comparing the derivation steps for NEE and FOP it becomes clear that despite of rather different
ways they were originally derived, these two equations become equivalent in a non-dispersive
medium.

3.4.6 Forward Maxwell Equation

Another non-envelope equation free of any reference frequency is the Forward Maxwell Equation,
introduced by Husakou and Herrmann [?]. Although it was written in a vector form, it was derived
from the wave equation with a neglected ∇∇.E term. That is why vector nature of light is not
captured completely correctly. The result is a “two-component” equation rather than a true
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vectorial one. The polarization scrambling terms only come from the nonlinear polarization term
in the equation. One can therefore derive the equation component-by-component in the same
way as previous propagation equations.

The linear propagator and the nonlinear coupling approximations are similar to those used
for NEE:

K(kx, ky, ω) =
√
ω2ε(ω)/c2 − k2

x − k2
y ≈ k(ω)− c

2ωnb(ω)
(k2
x + k2

y) (3.77)

and

Q(kx, ky, ω) ≡ ω2

2ε0c2
√
ω2ε(ω)/c2 − k2

x − k2
y

≈ ω

2ε0cnb(ω)
(3.78)

The only difference from NEE is that here chromatic dispersion of the index of refraction is
correctly preserved.

The resulting equation is then obtained by transforming to the real space in transverse
coordinates only, keeping the spectral frequency-time representation:

∂zE(x, y, ω, z) = ik(ω)E(x, y, ω, z) +
i

2k(ω)
∆⊥E(x, y, ω, z) +

iµ0ωc

2nb(ω)
P (x, y, ω, z) (3.79)

This equation is equivalent to FME Eqn.(2) of Ref. [?]. A small difference is that we have not
transformed the equation to the coordinate frame moving with the vacuum light velocity. The
reason is that in a strongly dispersive medium it is necessary to use the frame that moves with
a suitable group velocity.

Formulas (3.78) and (3.65,3.68) show that there is very little difference between FME and
NEE. Because of the operator series expansion, the only acceptable way to solve NEE is in
the spectral domain. But there, the correct frequency dependence of the background index of
refraction can be easily taken into account - but that is when NEE becomes FME.

3.4.7 Maxwell’s equations versus Wave equation in pulse-propagation

This subsection is devoted to the relation between the Unidirectional Pulse Propagation Equa-
tions and the wave equation. Naively, one may think that because the wave equation follows
directly from the Maxwell’s equations, we should be able to derive from it all pulse evolution.
Several previously published results discussed in previous subsections were obtained just like
that. One motivation for what follows is to demonstrate that such an approach has an inherent
problem, and that is the fact that a one-way equation must not be equivalent to the wave equation!
To start, we recall that the total field is a sum of left- and right-propagating components:

E(r, t, z) = E+(r, t, z) + E−(r, t, z) (3.80)

where each is expressed through Fourier amplitudes in transverse space (r) and time:

E+(r, t, z) =

∫
Ê+(k, ω, z)e−iωt+ik.rdk2dω E−(r, t, z) =

∫
Ê−(k, ω, z)e−iωt+ik.rdk2dω

(3.81)
The following is the total nonlinear polarization. Its functional dependence on the electric field
is irrelevant for now; it may include the optical Kerr effect (i.e. self-focusing), the defocusing
induced by free electron, the nonlinear losses due to multiphoton and avalanche ionization, and
other effects...

P (r, t, z) =

∫
P̂ (k, ω, z)e−iωt+ik.rdk2dω (3.82)



M
.K
O
LE
SI
K
O
PT
I5
47
/5
83

36 3 Unidirectional Pulse Propagation Equations

(We assume that the linear portion of polarization has been included in the mediums frequency-
dependent permittivity ε(ω), and therefore it does not appear explicitly in our equations. ) The
nonlinear polarization serves as a source for one-way propagating fields:

∂zÊ
+(k, ω, z) = +ikz(ω, k)Ê+(k, ω, z) +

iω2

2ε0c2kz(ω, k)
P̂ (k, ω, z) (3.83)

∂zÊ
−(k, ω, z) = −ikz(ω, k)Ê−(k, ω, z)− iω2

2ε0c2kz(ω, k)
P̂ (k, ω, z) (3.84)

where kz(ω, k) =
√

ω2ε(ω)
c2 − k2 is a short-hand for the plan-wave propagation constant.

It is shown next that the unidirectional propagation equations give together a total field which
satisfies the wave equation, while the single forward (or backward) propagating component does
not. First, let us evaluate the ∂zz term in two ∂z steps:

∂zE
+(r, t, z) =

∫
∂zÊ

+(k, ω, z)e−iωt+ik.rdk2dω (3.85)

after using the propagation equation to express the z-derivative in the spectral representation
one gets

∂zE
+(r, t, z) =

∫ [
+ikz(ω, k)Ê+(k, ω, z) +

iω2

2ε0c2kz(ω, k)
P̂ (k, ω, z)

]
e−iωt+ik.rdk2dω (3.86)

Add to this its backward-going counterpart to get the derivative of the total field. Note that the
polarization terms cancel each other, and a forward-backward field difference appears:

∂zE(r, t, z) = ∂z(E
+(r, t, z) + E−(r, t, z)) =

=

∫ [
+ikz(ω, k)(Ê+(k, ω, z)− Ê−(k, ω, z))

]
e−iωt+ik.rdk2dω (3.87)

From here, we take the second z-derivative to obtain:

∂zzE(r, t, z) =

∫ [
+ikz(ω, k)(∂zÊ

+(k, ω, z)− ∂zÊ−(k, ω, z))
]
e−iωt+ik.rdk2dω (3.88)

which, after using the propagation equations once again, and grouping into terms of total field
and polarization, yields:

∂zzE(r, t, z) =

∫ [
−kz(ω, k)2Ê(k, ω, z)− ω2

ε0c2
P̂ (k, ω, z)

]
e−iωt+ik.rdk2dω (3.89)

Having evaluated the ∂zz term, we continue on with the remaining, transverse part of the
Laplacian:

(∂xx + ∂yy)E(r, t, z) =

∫
−(k2

x + k2
y)Ê(k, ω, z)e−iωt+ik.rdk2dω (3.90)

The remaining piece of the wave equation is the temporal derivative, which is also written in the
spectral domain:

∂ttε ∗ E(r, t, z) =

∫
−ω2ε(ω)Ê(k, ω, z)e−iωt+ik.rdk2dω (3.91)

Now, put everything together to form left-hand side of a wave equation. In the process, terms
corresponding to the linear propagation cancel out, and only the nonlinear polarization survives:
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(∂zz + ∂xx + ∂yy)E(r, t, z)− 1/c2∂ttε ∗ E(r, t, z) =∫ −ω2

ε0c2
P̂ (k, ω, z)e−iωt+ik.rdk2dω =

1

ε0c2
∂ttP (r, t, z) (3.92)

On the right-hand side of the above equation, we find exactly what there should be, namely the
second temporal derivative of the polarization. We have shown that the sum of the forward and
backward solutions to the UPPE obeys the wave equation. Importantly, it is also evident that
each of the one-way fields alone does not. This observation explains the difficulties encountered
in derivation of previous pulse propagation equations which started from the wave equation, and
worked with a single amplitude representing the one-directional field. A prime example is the
Nonlinear Envelope Equation which was obtained for the price of more or less arbitrary neglecting
a number of undesirable terms. Now we can see that this was a consequence of an attempt to
satisfy, with a single envelope solutions, an equation which in fact must not be satisfied...


