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This text is a brief recap of the basic properties of spatial solitons. In OPTI-583, we look at both
spatial and temporal solitons — the mathematics of the latter is in one-to-one correspondence with
what is summarized next.

0.0.1 Physical backround for spatial optical solitons

The equation to describe spatial soliton beam propagation is:
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It represents a beam propagating in one transverse dimension, and subject to self-focusing nonlinearity
due to optical Kerr effect. Single transverse dimension is an idealization, of course. In reality, the
beam would be confined to a planar waveguide, and n(ω) would be replaced by the effective index
of the fundamental mode — effective index approximation then results in the above propagation
equation. This dimensional reduction requires approximations; in particular one has to assume that
higher-order modes of the planar wave-guide are not excited. If this is in fact a good approximation
very much depends on the conditions, but even in high-contrast waveguides where higher order modes
are a possibility, the light propagates in the fundamental mode (if properly launched, of course) also
in the presence of nonlinear interactions. For the moment we accept this model as given.

Specifically for one transverse dimension, solutions exists in which the self-focusing effects are
balanced by diffraction. This balance is perfectly steady for the so-called fundamental soliton, and it is
“dynamic” for higher-order (which means higher energy or power in the beam) solutions. Higher order
solitons have the same spatial profile with the fundamental one at periodic propagation distances. This
is very convenient for our purposes, because it allows us to initialize higher-order nonlinear solutions
without explicit use of analytic formulas.

Before going further, note that the balance between the forces of diffraction and nonlinear focusing,
even if dynamic as in the case of higher-order solitons, is only made possible by the one-dimensional
character of the diffraction, and the fact that the intensity in the shrinking beam increases slower (as
a function of its transverse dimension) than it would in two (transverse) dimensions.

Fundamental solution
Solution for the fundamental soliton can be obtained easily from the following Ansatz
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Insert this into the propagation equation, and cancel some nonzero common terms that occur on both
sides, to get
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Once again, this is nothing but a solvability condition that determines the propagation constant and
thus chromatic dispersion properties of the soliton. For this to hold as an identity, both β, and A0

must be fixed such that the propagation constant equals the first term on the right, and the two
x-dependent terms cancel each other. The latter condition relates the intensity to the spatial width
of the soliton:
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Since we have two parameters, A0 and w, only constrained by one relation, there is a whole family of
fundamental solitons. The wider is the beam, the lower intensity is sufficient to hold it together and
compensate the diffraction.

This is a special case of fundamental (spatial) soliton. It provides a convenient way to test numerical
implementation of the pulse propagator. One question is whether numerics can “preserve” an initial
condition which coincides with this exact solution. This is what we will look at.

Another question is what happens if the initial beam has a bell shape but is not exactly the same
as the fundamental soliton. It can be shown that the soliton solution is rather robust: It will emerge
from the initial condition which will shed the excessive energy (beam power) and adjust its shape to
sech(x/w). HOwever, for the simulation to be able to handle such a dynamics, transparent boundary
conditions must be used. The radiation shed by the to-be soliton must be able to disappear through
the computational domain edge, leaving behind a properly formed soliton.

Higher-order solutions
Higher-order solitons can be initialized in a very similar way, because at certain distances, namely

when βz = π/4, they assume the same spatial shape as the fundamental one. We can simply start
simulation from this special position (thus renaming the origin of the z axis). However, one must
adjust the relation between the beam width w and its initial intensity A2
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Here N stands for the soliton number. If it happens to be an integer, a periodically repeating solution
will appear. This is yet another opportunity to put a nonlinear-pulse simulatir to a good-strength
test: Even without knowing the explicit functional form of the higher-order soliton, one can easily
tell if the numerical solution does what it should simply by inspecting if it creates a nice periodic-in-z
intensity pattern. The following is an example of the intensity profile in a third-order spatial soliton:

Spatial profile of the intensity in a third-order spa-
tial soliton. With the initial cross-section is identi-
cal to that of the fundamental soliton, the evolution
along the propagation distance is shown over a sin-
gle period. The periodicity of a numerical solution
offers a convenient test — inaccuracies in the inte-
gration of the evolution equation accumulate until
a departure from the strict periodicity becomes ob-
vious after a few soliton periods. This trend is more
obvious in higher-order solitons.

Of course, higher order soliton solutions are more difficult to simulate. Since they have more complex
profiles and richer dynamics, they require both finer spatial resolution and shorter integration step. As
a result, the computational effort needed to obtain even a couple of periods of a higher-order soliton
with a reasonable quality may be several times bigger than that required for a lower-order soliton.
The following figure illustrates these issues:
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Numerical simulation of higher-order solitons. The
upper panel shows the evolution of the intensity in
the fourth-order solution. The result clearly shows
the periodic structure, and only has minor devia-
tions from the strict periodicity (visible as a slight
asymmetry in the middle of the panel). The lower
panel shows an attempt to simulate the soliton of
order five. While the numerical solution exhibits
the characteristic features with multiple symmetric
intensity peaks across the transverse dimension, it
is clearly not periodic along z. Higher resolution
and a finer integration step would be necessary to
correct the problem.

Propagation at angle
If one adds a linear phase-shift to the initial condition spatial profile, the outcome of the evolution

is still a soliton, but one that propagates at an angle proportional to its phase-front tilt. This is
expressed through the formula
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where the first term describes the envelope moving with a constant transverse “velocity,” and the last
expression show the change in the propagation constant.

Simulations of the above waveform can be done in the spatial domain that utilizes (in gUPPEcore)
the one-dimensional AXIS LINEAR which has natural periodic boundary conditions. However, close-
to-soliton initial conditions will not converge to the true soliton because in such a “periodic box” there
is no way to shed the excess energy...

Computational Optics M. Kolesik, Fall 2015


