
gUPPElab Guide

This document is a guide to the installation and basic usage of gUPPEcore and the associated gUPPElab package.
The first part is meant to serve as aid in compiling the software, and in adding user-defined modifications to
simulator, especially for users not familiar with work in Linux-like systems. The main part guides the user through
several worked-out examples of basic simulator applications.
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1 gUPPEcore Setup

1.1 Obtaining gUPPEcore

The gUPPEcore archive can be obtained from the gUPPEcore lab download page. The gUPPEcore download is a
compressed archive of the source code, tutorials and other files needed to use gUPPEcore. Extract the archive once
the download is complete. In the root of the extracted archive there is a README file that describes the content
found in the /src and /templates directories. The next few sections of this document will describe the compilation
and the basic usage of gUUPEcore. Once those sections have been read and compilation is complete it is highly
recommended that the new user work their way though the examples in the templates folder. The examples are
selected as to illustrate the usage of the simulator from the very basic toward more advanced.

1.2 gUPPEcore and gUPPElab components

This simulation software is meant to be customized by the user. As the name suggests, core capabilities that define
the generalized Unidirectional Pulse Propagation Equations are included in the library that comes with the software.
This core has several “interfaces” that allow users to define various modules, including initial conditions, medium
linear and nonlinear properties, and operators representing apertures, filters, lenses, axicons, etc. Experienced
users can also define their own transverse geometry and corresponding linear propagators (e.g. based on Beam-
Propagation Methods). These modules, here called user-defined add-ons, are invoked by the core during the
simulation. Thus, gUPPEcore is more a framework than a self-contained simulation engine.

Components needed to create a customized simulator executable:

• gUPPEcore library
... implements the underlying algorithms. It comes pre-compiled for Linux and OSX operating systems.

• MPI utilities
... wrap/hide the parallelization functions. This component is compiled by the user and linked against the
locally installed MPI implementation.

• User defined add-ons
... express user‘s idea of the physics to be captured by the simulation. They require simple code writing, and
must be compiled before linking all three components into a customized executable.

• Simulation “Lab”
... consists of a series of simulation templates that serve two purposes. First, they illustrate the usage of the
software, and second, each can be used as a point of departure for a “real” simulation project.

This figure gives a brief overview of how the differ-
ent components of gUPPEcore feed into each-other.
This manual is intended to instruct the user on the
gUUPEcore interface and user-defined extensions.

1
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1.3 Prerequisites

Summary:

Mandatory: Linux or OSX, MPI implementation (e.g. OpenMPI) & g++ compiler
Optional: Intel icpc compiler, Grace (xmgrace) & Python with numpy & matplotlib for visualization.

gUPPEcore must be compiled before it can be used. Prior to compilation the Linux or OSX system must have
an MPI implementation (such as the freely available OpenMPI) and either the GCC g++ or Intel icpc compiler.
The Intel compiler will generate more efficient binaries but is not generally freely available outside of an academic
setting (see Intel Education Offerings ).

Grace and Python are additional (optional) prerequisites used for the visualization of gUPPEcore data. The
scripts in the examples/templates folders uses both Grace and Python to quickly plot data.

gUPPElab
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gUPPEcore Compilation 3

1.4 Compilation

Summary:

1: Edit /src/loci file
• Specify compiler & set flags if necessary
• Specify mpiCC
• Set WRKDIR LOC

2: run make in /src directory

The compilation process creates executables for gUPPEcore, mpiutils and any user-created add-ons. The
primary executable one will interact with is compiled to .../bin/guppeCore.out. As the name suggests, this program
will only implement the core capabilities and will contain no customization. It is still a powerful optical pulse
simulator, and a large part of the work in the examples folder can be done with it.

Additional executables may need to be compiled for user add-ons. Instructions on how to use the primary and
add-on, or customized executables are available in the tutorials located in the /templates folder and in sections 2.3
& 2.5 of this document. In the /src folder there is a COMPILATION file that gives a summary of the instructions
for the compilation process. That information is also presented here:

Compilation of gUPPEcore assumes the mandatory prerequisites are installed. Prior to compilation the file
/src/loci must be edited. The lines containing the 4 variables CC, MPICC, FLAG & WRKDIR LOC should be
modified to hold the directory paths pointing to the c++ compiler, the MPI c++ compiler, compilations flags
passed to the compiler, and the working directory in which the gUPPElab resides, respectively. Example loci files
are located in the /src directory.

The CC variable is expecting the path and executable to be used for C++ compilation. If the compiler you
wish to use is visible from the PATH environmental variable then only the executable will need to be specified. See
man pages for ’which’, ’locate’ or ’find’ to find the path to the executable. Compatible compilers for gUPPEcore
are the GCC g++ and Intel icpc compilers. The Intel icpc compiler is recommended if it is available since in our
experience the resulting binary performance is significantly better.

The FLAG variable content will be passed to the compiler specified in the CC variable. If you are using the
g++ compiler then the last 2 options (-no-intel-extensions & -static-intel) will need to be commented out.

The MPICC variable is expecting the path and executable to the mpiCC compiler. The location of mpiCC can
also be found using ’which’, ’locate’ or ’find’. Often one has more than one MPI libraries installed on a computer.
This is where one specifies which is to be used to compile MPI utilities that come with this software. Note that
mpiCC is case sensitive: mpiCC is the MPI compiler for C++ code. mpicc is the compiler for C programs.
gUPPEcore requires the C++ compiler.

Finally, the root path of the extracted gUPPElab data will need to be written to the the WRKDIR LOC
variable. For example: WRKDIR LOC = /home/username/Downloads/gUPPElab 0.2. If you have spaces in the
directory names enclose the path with quotes or escape properly. The next 3 lines of the loci file use this path to
get the locations of the other directories needed during compilation. There is no need to change these unless you
have intentionally moved the folders they point to.

Once the initial loci edits have been saved you are ready to compile the gUUPEcore. Simply run the command
’make’ from a terminal in the /src directory. The compilation process will perform 3 compilations:

1. It will compile mpiutils (which contain calls to MPI parallelization functions) with your MPI installation

2. Then it will compile folder named ”addons” and place the executable in WRKDIR LOC/bin. This executable
is the core, and has no user-defined add-ons. This is used in most of the worked-out examples. The reason we
still need to compile (what are in fact “empty” functions) is that the core requires to have a list of add-ons
even if the list is empty in this case.

3. Finally it will visit all remaining folders addons... and compile executables within. These are user-add-on
examples and templates. For each, there is a corresponding templates/wrk 04X... folder which contains the
corresponding source and a simulation example.

gUPPElab



2 gUPPEcore Usage
2.1 Input Files

gUPPEcore utilizes input files to initialize simulation runs. The input file consists of several hierarchically organized
sections. These sections are populated with parameters that define the simulation. Parameters used will vary
between input files base on the simulation being run. The following sections/subsections, however, are mandatory
in any input file, even if not used:

gUPPE Parameters: All input files start with this line. This lets gUPPEcore know that it is to
expect all mandatory parameters below.

ODE Driver: Lets ODE solver know how to behave. Specifies output file base-name, ODE
method, ODE tolerances and propagation distance parameters.

UPPE observer: The UPPE observer is the simulation output controller. Options are set to
control the type an frequency of output report.

gUPPE Domain Parameters: This section defines the spatial & temporal ”box” (and associated properties)
that the simulation exists in.

Domain Temporal: Mandatory subsection of gUPPE Domain Parameters containing temporal
extent and properties.

Domain Spatial: Mandatory subsection of gUPPE Domain Parameters containing spatial ex-
tent and properties. May be 0, 1, 2 or 3 dimensional.

Initial conditions: A variable length vector of objects that define the initial simulation conditions.
For example, initial Gaussian beam definition.

Medium response: A variable length vector of objects that define the simulated nonlinear medium
response. For example, Kerr and Plasma responses.

UPPE Operator Prolog: Operators applied to initial field, as defined in the Initial conditions section,
prior to simulation run.

UPPE Operator Epilog: Operators applied to propagated field (after simulation).

The structure of the input file is intentionally rigid. The upside is that users can quickly copy-and-modify
previously used input files, and also compare (diff) different inputs and thus easily detect their differences. This
makes the work with inputs easier. The downside of this is that inputs may contain parameters that are not used
in the given simulation. See /templates/000 Inputs Explained or appendix B for an in-depth explanation of the
input file format.

2.2 Output Files

gUPPEcore produces output files that contain either information about the simulation or the data results of the
simulation. Output files that contain information about the simulation can be used to repeat or continue the
simulation. Files that contain the results of the simulation can be analyzed (through plotting or further data
processing) to examine the results of the simulation.

Output files are either specified in the mpirun command (Section 2.3) or in the input file UPPE observer section
(Appendix B.2). Output files that are specified in the UPPE observer section are referred to as reports. There are
4 levels of reports. Each level of report is increasingly more computationally costly to produce. Level 1 reports are
global variables that do not take much preparation to write. Level 2 reports are 1D reports for a quick overview of
the simulation. Level 3 reports are 2D reports that are a little more computationally intensive to generate. Level
4 reports are essentially the entire field an are very computationally expensive to generate.

If a report is generated and how often it is generated is also specified in the UPPE observer section of the input
file. Each report has a Report# period distance value assigned that instructs gUUPE to write that report once the
propagation distance has been reached. For example, the Report2 Spatial Profile in Appendix B.2 will be prepared
and written to disk after every centimeter of propagation. See /templates/000 Outputs Explained or appendix C
for an in-depth explanation of the various reports.

4
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2.3 Running gUPPEcore

gUPPEcore is initiated by passing /bin/guppeCore.out and an input file to mpirun. The running program writes
into standard output, and this is usually directed to (or split by tee) a record file of the run. For example, a run
using 4 parallel processes started from a /template folder containing file inputA can be executed like this:

$ mpirun −n 4 . . / . . / bin /guppeCore . out inputA | t e e recA

The -n 4 tells mpirun to use 4 CPUs (or rather processor cores). The relative path to guppeCore.out is needed to
let mpirun know which of the executables to run (naturally, customized executables are run in the same way).

inputA is assumed to reside in the working directory, a path can be given if it does not. The standard output
of the simulation is piped into a tee which splits and directs the output onto screen and into a file called recA.
recA will be written in the working directory unless an alternate path is specified.

The record file recA is complete simulation record that can be used to recreate the simulation. Specifically, the
top of the record can be used as an input for an identical simulation. gUPPEcore additionally produces output
files that contain the results of the simulation (see section C for details).

Longer simulation runs are better executed without the standard output on the screen:

$ mpirun −n 4 . . / . . / bin /guppeCore . out inputA > recA

2.4 Scripts

The examples in the /templates directory can be initiated through a pre-written script. These scripts are usually
named runthis. They are provided to show a new user the order of action taken to execute a given example.
Of course the sripts can be used, but they may need to be edited prior to execution. Most of the scripts have
’MYmpirun’ and ’MYmpiplot’ variables defined. MYmpirun is simply the path to the ’mpirun’ that you want to
use on your system. This is similar to specifying mpiCC in section 1.4.

The worked-out example scripts will sometimes call a plotting program to visualize results. We use Grace
(Linux), QtGrace (OSX) or our own Python script for this. Of course, users need not use the scripts, they are not
part of gUPPEcore/lab and are only included for convenience. But if desired, the script should be edited to call
an appropriate plotting program.

MYmpiplot is the path to your xmgrace (a.k.a. Grace, QtGrace) executable. If you are not using xmgrace then
you will need to comment out lines that refer to Mympiplot.

Similarly, Mypython is the path to the python executable you wish to use. The python executable specified
must have access to the numpy & matplotlib modules to generate plots.

The other item to edit is the number of threads available for mpirun to use. This is set with the -n option
(ex: -n 4). Nominally this option should be set to match the number of cores on the computers processor (see
Linux command nproc). There may be other situations or scenarios where this is not the case. One scenario that
comes up in the template examples is the case where there are not enough data points to spread out to multiple
processors (or threads). In this case -n will be limited to 1. It may take some experimentation to determine the
optimal -n value for your configuration.

Other than setting these variables the scripts are fairly self-explanatory. The scripts usually run guppeCore.out,
optionally process the data and then produce some sort of plot to visualize the data.

gUPPElab
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2.5 User-defined Addons

The core capabilities of gUUPEcore target simulations in the field of optical filamentation. However, it is applicable
to many other general situations, such as nonlinear optics in waveguides. The most typical filamentaion scenarios
do not require any modifications, and the simulator can be utilized ”as is.” However, gUPPEcore is not meant to be
an ”application,” or an all-encomapasing simulation engine for femtosecond pulse propagation. Instead, it is left to
the user to define specific features of his/her simulation, such as initial conditions and nonlinear medium response
models. Yet, these modifications, or user-addons as we call them, should not require extensive coding experience,
as gUPPEcore provides an easy to use interface to do this. The figure in section 1.2 shows gUUPEcore scheme
and where user-defined addons fit into the scheme. Note that user-defined observables is not yet implemented. As
of version 0.2 users can define custom addons for initial conditions, propagators, material responses and pre/post
propagation operators.

The user will be required to edit text files that contain C++ code, but knowledge of C++ is not required to
edit these files. The user will mainly be defining variables and equations to be used. This will need to be done in
a specific format but shouldn’t be complicated once the process is understood.There are worked out examples in
the templates folder that show the implementation of each type of addon. What follows here is a general overview
of the user-defined addon implementation process.
There are 4 basic steps in defining a user-addon.

1. Define name for the addon in user addons.cc in the appropriate section.
2. Create an associated header (*.h) file that contains constants, variables & equations to be used.
3. Edit a Makefile and then compile the addon from the code files above.
4. Call the addon in the script that runs the simulation.

The following sections will go through each of these steps for a simple linear axicon. In this case we will treat the
axicon as a thin optical element that effects the phase of the propagating beam.

WARNING: gUPPEcore does not have a method of verifying that user-defined addons correspond
to real, physical situations. It is up to the users to ensure that what they are implementing is physical
and coded correctly.

2.5.1 File: user addons.cc

The first step is implementing the user addon is to let gUPPEcore know where to find information about the addon.
This is done in the user addon.cc file. There are examples of user addon.cc files in the addon subdirectories of
/src. In this file the user will need to specify 3 parameters. The first is the name of the header (*.h) file that will
contain the actual operator code. An example will be shown in the next section, for now we just need the name of
the file. The next parameter is the IDstring. The IDstring is the name that will be assigned to type id string in
the relevant section of the input file (see Appendix B). The final parameter is the className. The className will
be used in the *.h file that is discussed in the next section. For this example an axicon custom operator is being
defined. It will be defined using the following values:

IDstring: ”Axicon”
className: User operator axicon
file: user operator axicon.h

The name of the file will simply be included as shown in the code below on line 7. The IDstring and className
will have to be placed in the following bit of code:

g e t V i r t u a l C l a s s P t r ( s , ” IDst r ing ” , className ) ;

This bit of code will need to be placed in the appropriate class definition section of the code. In this example
we are defining an operator so it will go in the UPPE Operator section (see line 27 of the code listing below). If it
were a medium response class it would need to be inserted between lines 19 & 20. Or if it were an initial condition
class it would need to be inserted between lines 12 & 13. The return(0); must appear in all sections, regardless of
the situation.

gUPPElab
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user addon.cc for the axicon operator
1 #inc lude<uppe params incond . h>
2 #inc lude<uppe params response . h>
3 #inc lude<uppe params operators . h>
4 #inc lude<domain . h>
5
6 // inc lude here a l l your user−de f ined c l a s s headers
7 #inc lude ” u s e r op e r a t o r ax i c on . h”
8
9 // user−de f ined i n i t i a l cond i t i on c l a s s e s :

10 template<>
11 UPPEinitial_condition ∗ NameIdentifiedClassPtr_usr<UPPEinitial_condition >(char const ∗ s ) {
12 // in t h i s case we have no user−de f ined i n i t i a l c ond i t i on s
13 return ( 0 ) ;
14 }
15
16 // user−de f ined medium response c l a s s e s :
17 template <>
18 UPPE_params_nlresponse ∗ NameIdentifiedClassPtr_usr<UPPE_params_nlresponse >(char const ∗ s ) {
19 // in t h i s case we have no user−de f ined medium response s
20 return ( 0 ) ;
21 }
22
23 // user−de f ined operator c l a s s e s :
24 template <>
25 UPPE_operator ∗ NameIdentifiedClassPtr_usr<UPPE_operator >(char const ∗ s ) {
26 // in t h i s case we have one user−de f ined operator
27 _getVirtualClassPtr ( s , ”Axicon” , User_operator_axicon ) ;
28 re turn ( 0 ) ;
29 }
30
31 // user−de f ined SpatialDomain c l a s s e s :
32 template <>
33 gUPPE_Domain_Spatial ∗ NameIdentifiedClassPtr_usr<gUPPE_Domain_Spatial >(char const ∗ s ) {
34 // in t h i s case we have no user−de f ined SpatialDomains
35 return ( 0 ) ;
36 }
37
38 Params_Domain_UserDefined ∗ GetClassPtr_Params_Domain_UserDefined ( char const ∗ s ) {
39 // in t h i s case we have no user−de f ined SpatialDomain−Parameters
40 return ( 0 ) ;
41 }

user addon.cc code notes:

Line(s): Comment
1-4: Necessary header files from gUPPEcore. Should not be changed.

7: Name of header file that user addon will be written in.
10-14: Empty definition of intial condition addon. Must be included even though not used.
17-21: Empty medium response addon. Must be included.
24-29: Properly defined operator addon for axicon example. IDstring and className assignment code from

discussion above.
32-41: Empty spatial domain addon. Note there are 2 sections of code. See worked-out example 3.8.

In summary, user addon.cc requires minimal changes for each addon, and serves to provide to gUPPEcore with a
list of all user-defined classes.

2.5.2 File: *.h

This is the header file where the user addon is computationally defined. See addon directories in the /src folder
for other header file examples. If you are familiar with C++ programming you know that this file may be broken
down in to several files. For this minimal example will put all of the code that is required to define our axicon in
this file.

In this example we will create a simple thin axicon. It changes the phase of the incident pulse as it passes
through the axicon. The amount of phase change is dependent on where the beam interacts with the axicon along
its radius. The geometry used in this implementation is shown in the figure below.

gUPPElab
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Simple axicon geometry where:

• γ is the ”axicon angle”

• d is the axicon diameter

• n is the axicon refractive index

• r =
√
x2 + y2 is radial position in the x-y plane

• h(r) is the phase accumulating distance

• ω is the pulse frequency

• c is the speed of light

From this geometry we find that the total phase change for a ray passing through at radius r is:

φ(r) = k · h(r) = ω
c · [R+ (R− r)(n− 1)] tan(γ)

Implementation of this phase change is shown in the function starting on line 22 below. Line 29 below shows the
code implementation of h(r). Line 33 shows φ(r). The basic algorithm for applying this phase change is shown
in lines 31-34. On line 31 we iterate over all polarization states (defined by numC passed to us by gUPPEcore).
Then, on line 32, for each polarization we loop through all of the frequencies present in the pulse. Line 33 shows
the calculation of the phase change as the imaginary part of a complex exponential. Finally line 34 stores the result
of each polarization & frequency specific phase change in a block of memory to be used by gUPPEcore.

user operator axicon.h
1 #i f n d e f o p e r a t o r a x i c o n h
2 #de f i n e o p e r a t o r a x i c o n h
3
4 #inc lude<s t d l i b . h>
5 #inc lude<uppe constants . h>
6
7 // every operator i s der ived from UPPE operator :
8 c l a s s User_operator_axicon : pub l i c UPPE_operator {
9 pub l i c :

10
11 namdbl t ;
12 namdbl d ;
13 namdbl n ;
14
15 User_operator_axicon ( ) {
16 SetName ( ”Axicon” ) ;
17 IncludeParameter ( t , ”Axicon Angle [ radian ] ” ) ;
18 IncludeParameter ( d , ”Diameter” ) ;
19 IncludeParameter ( n , ” Index” ) ;
20 }
21
22 void Operate ( comple ∗ target , i n t numC , i n t dimO , const double ∗omega , double x , double y ){
23 i n t o , c ;
24 comple phs ;
25 double hr ;
26 double r = sqrt ( x∗x + y∗y ) ;
27 double R = d . v ( ) / 2 ;
28
29 hr = ( R + ( R−r )∗ ( n . v ()−1))∗ tan ( t . v ( ) ) ;
30
31 f o r ( c=0;c<numC ; c++) {
32 f o r ( o=0;o<dimO ; o++) {
33 phs = exp ( comple ( 0 . 0 , − omega [ o ]∗ hr/ cnst_c ) ) ;
34 target [ o∗ numC + c ] ∗= phs ;
35 }
36 }
37 }
38 } ;
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39
40 #end i f // op e r a t o r a x i c o n h

user operator axicon.h code notes:

Line(s): Comment
1,2 & 46: These define the axicon operator to gUPPEcore. The name used with #ifndef and #define needs to be

the same. The name used with #endif is an optional comment but will minimize confusion if it is kept
the same or omitted.

4: Should always be included.
5: Optional. This file contains commonly used constants such as cnst c in line 39. If you want to be sure

to use the same constants that the rest of gUPPEcore uses then include this file.
8: The class name ”User operator axicon” must be className that is defined in user addons.cc. The rest

of this line must remain the same.
9: Everything below this public declaration is available outside of this class.

11-13: Public variables. In this case we create constant doubles d, t & n which will be used to hold the axicon
parameters.

15-20: This section defines the named variables that are used by the addon. Specifically these are the items
that are required to be in the input file if the user-addon is being used. This will be seen in the usage
section of this example.

22-37: This is where the operator implementation algorithm is defined.

As the listing shows, the core of the add-on action is encoded in the function called Operate. Every addon that
belongs to the operator class must have this function defined. Its parameters have the following meaning:

target is the pointer to the array(s) on which the operator acts
numC is the number of (polarization) components
dimO is the number of active frequencies the spectral field amplitude is sampled on
omega is the array of active frequencies
x, y are transverse coordinates

Line 34 shows how one can access the spectral amplitude corresponding to the angular frequency omega[o] and
the polarization component c. So in the body of Operate, simply visit all spectral amplitudes and modify them
to reflect the action of your operator. In this case, we merely add propagation phase onto the spectral amplitude,
this phase being dependent on the radius calculated form x,y.

2.5.3 Addon Compilation

To begin compilation gather user addon.cc, *.h and a Makefile (from the /src/addon* directory) all into the same
folder. The Makefile will look similar to the one below:

1 # spec i f y appropriate va lues here :
2
3 CC = /usr /bin /g++
4 MPICC = /usr /bin /mpiCC
5 FLAG = −O3 −Wall −Wno−deprecated −pedant ic
6
7 INCL = −I . . / . . / in c lude −I .
8 XLIBS = −L . . / . . / bin −l guppecore − l f f tw3 − l g s l − l g s l c b l a s
9 LIBS = −L . . / . . / l i b −l guppempiut i l s −l guppecore − l f f tw 3 − l g s l − l g s l c b l a s

10
11 ################################################################
12
13 OBJS = user addons . o
14
15 a l l : c l ean exe c l e a n a l l
16
17 c l ean :
18 rm −f ∗ . o ∗˜ core ∗ ∗ . out
19
20 c l e a n a l l :
21 rm −f x∗ ∗ . o l i b ∗ . a
22
23
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24 %.o : %.cc %.h
25 ${CC} ${FLAG} −c $< −o $@ ${ILOC} ${INCL}
26
27 %.o : %.cc
28 ${CC} ${FLAG} −c $< −o $@ ${ILOC} ${INCL}
29
30 exe :
31 ${MPICC} ${FLAG} −o guppeA . out user addons . cc ${INCL} ${LIBS}

Makefile notes:

Line(s): Comment
3 & 4: These 2 lines will be familiar if you have compiled gUPPEcore. They should be set to the same values

in section 1.4.
5: Compiler options that probably do not need to be changed. If these options seem to be giving you

trouble then refer to section 1.4 for the compiler options you previously used in your loci file.
7-9: These are path definitions that are used later in the Makefile. They most likely will not need to be

changed. The primary situation where they would be changed is if the indicated folders are not in the
../../ relative path. You may have to change the relative path in these lines so the compiler can see the
folders.

13: This should only be changed if you did not use the user addons.cc naming convention.
15 - 30: Does not need to be edited in most situations.

31: This line only needs to be changed if you want a custom name for you executable or if you did not
name your file user addons.cc.

Ones the Makefile is saved run ”make” from within this directory. This will compile the addon to the specified
name in the current directory. If you wish you may copy the compiled executable to the simulation directory that
contains your input file. The next section will assume that the executable and the input file are in the same folder.

2.5.4 Addon Usage

Once you have the addon compiled you must instruct gUPPEcore to use it. This is done by editing your script
that runs gUPPE to use the newly compiled addon and placing the newly required values into your Input file. To
use your newly created addon replace ”guppeCore.out” in your script with the name of the addon executable. For
example, if your input file and your executable are in the same directory you would change:

${MYmpirun} −n 16 guppeCore . out input | t e e r ec

to:

${MYmpirun} −n 16 guppeA . out input | t e e r ec

You will also need to edit the input file. At a minimum you will have to assign your ”IDstring” to type id string
under the section of the input file where your addon is used. There may be other values that you need to set in
this section depending on how you implemented your addon. To use the axicon operator with a 1/2◦ axicon angle
we add the operator and associated name parameters to the UPPE Operator Prolog section of the Input file as
shown:

UPPE Operator Prolog
num. o f i t e m s 1

t y p e i d s t r i n g Axicon
Axicon
Axicon Angle [ rad ian ] 0 .0087
Diameter 5
Index 1 .5

Once the input file and script are updated you are ready to perform the custom simulation. Note that it is
entirely up to the user to ensure that they results they get are valid.

For further examples of user-addons please see the user-addon worked-out examples and the /src directory in
the gUPPEcore download.
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3 Worked-Out Examples
The /templates directory contains worked out simulation examples. It is highly recommended that users familiarize
themselves with Inputs Explained (Appendix B) & Outputs Explained (Appendix C) prior to working through the
examples. Each of these directories has an informative README text file or pdf which describes a few aspects of
the input and output control, simulation execution and result interpretation.

The example folders are broken up into two groups. The first group concentrates on the basic usage (i.e. without
user customizations). It is recommended that users inspect these exercises in the order shown below.

• /templates/wrk 010 Test Linear Propagation

• /templates/wrk 020 Supercontinuum In Water

• /templates/wrk 021 Supercontinuum Microstructured Fiber

• /templates/wrk 031 Filament In Gas Radial

• /templates/wrk 032 Filament In Gas 3D

The second group contains simulation templates (input files) for situations which require user-defined customiza-
tion. Description of how various user-defined objects and capabilities can be added to the framework can be found
in the corresponding folders in the source directory (src). Commented source files implement examples which can
be easily adapted to specific needs. Of course, arbitrary number of user-defined add-ons can be combined.

• /templates/wrk 040 User-Addons-Operators-Multiple-Filaments

• /templates/wrk 041 User-Addons-Medium-Response

• /templates/wrk 042 User-Addons-Initial-Conditions

• /templates/wrk 043 User-Addons-Propagators

• /templates/wrk 044 User-Addons-Operatorsfy2

11



gUPPElab worked-out examples 12

gUPPElab simulation example/template content:

• README.pdf gives the description of the example. Each lab concentrates on a small number
of issues related to the usage of gUPPEcore, and interpretation of results. With the less
experienced users in mind, it may also discuss potential pitfalls.

Together, these descriptions play the role of the user manual. It is therefore best, especially
for the first-time users, to visit the example directories in the suggested order.

Note that discussion of the underlying physics in these descriptions is only rudimentary.
While most of the included simulation scenarios are realistic, they only serve as a backdrop
for illustration of gUPPEcore capabilities.

• inputXY: Input file(s) for the simulation.

• recXY: Files that record all simulation outputs. They can be used to re-create the given
simulation exactly. They also hold some useful outputs.

• SIMDIR: Directory storing most of the simulation outputs. Note that this folder ships
empty. Users must execute the simulation to re-create its content (which may require a lot
of storage).

• runthis: Script(s) to illustrate control of a sequence of simulations. Other scripts may illus-
trate execution of massively parallel jobs.

• extract observables: Script(s) that illustrate how, and from where to obtain observable quan-
tities.

• genPlots.py: (Optional) Python script to generate plots from simulation data. Can be run
on its own or called from the runthis script.

• PLOTS: (Optional) Directory for storing plots generated from simulation output. Like
SIMDIR this folder is initially empty and may require significant disk space to store plots.

The following subsections contain the README files from each of the templates. These doc-
uments may be found individually in each template folder.

gUPPElab Simulation template
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3.1 Linear Gaussian Beam Propagation
Testing Linear Propagation, Analytic vs. Simulated Solutions & Computa-
tional Domain Parameters

gUPPEcore usage illustrated in this example:

• setup for different geometries of the computational domain

• simulation execution

• using observer-generated files for visualization

Computational issues illustrated:

• This package shows a useful way to test linear propagators

Physical context:

• Femtosecond pulse propagating in a linear medium

• Comparison to an analytic Gaussian pulsed beam solution

Input files

All input files initiate simulations with a Gaussian pulse propagating in a linear medium.

• inputA: Radially symmetric simulation using DOMAIN RADIAL with AXIS RADIAL.

• inputAcmp: Comparative run: Performs no propagation. It only saves its initial condition
that is the analytic solution “propagated analytically” to the same distance as the final
distance reached in the simulation starting from inputA. Results of the two runs should be
very close.

• inputB: Radially symmetric simulation, using AXIS RADIAL. The difference from run A is
that there are two field components in run B. Each is a different pulsed Gaussian, propagating
independently. This setup thus tests usage and observation of computational domains with
multiple (polarization) components.

• inputBcmp: Comparative run producing target solution for run B. It works the same way as
inputAcmp.

• inputC: Fully spatially resolved simulation, using DOMAIN LINEAR x LINEAR. This tem-
plate also propagates two field components with initial parameters that are the same as in
run B. We can thus test radial and 3D solutions against each other.

• inputCcmp: Comparative run producing target solution for run C.
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• inputD: Fully spatially resolved simulation, using DOMAIN LINEAR x LINEAR. This is
nominally same run as C, but using different temporal domain and resolution. Illustrates fine
points of comparison with an analytic target solution, namely that the reference frequency,
together with phase and group velocities must match exactly those utilized by the analytic
solution.

• inputDcmp: Comparative run producing target solution for run D.

Linear propagator test

gUPPEcore implements several initial-condition waveforms. One of them is a pulsed Gaussian
beam which can be instantiated at an arbitrary propagation distance. We use this feature here
to construct a simple testing procedure for the linear propagator associated with each Spatial
Domain.

The idea is to start form an analytic solution Analytic(z = 0) and save profiles of the numer-
ically propagated waveform Numerical(z = zstop). Then a run with Analytic(z = zstop) serving
as an initial condition is executed without any propagation. It saves the “result” which can be
subsequently compared with the data from the previous simulation.

The difference between the two runs is easiest to see by executing diff on the two input files.
For example diff inputA inputAcmp produces:

Listing 3.1: Input-file difference: diff inputA inputAcmp

1 < base name SIMDIR/A
2 −−−
3 > base name SIMDIR/Acmp
4
5 < z s t op 1 .00
6 −−−
7 > z s t op 0 .00
8
9 < p u l s e d i s t a n c e 0

10 −−−
11 > p u l s e d i s t a n c e 1 .00

This listing of differences highlights the differences in parameters that realize the procedure out-
lined above. Simulation A propagates the initial condition numerically to a final distance of
1 meter, while simulation Acmp applies analytic formula for the initial condition calculated for
the distance of 1 meter.

Domain axis objects and spectral transforms

As shown in the input files, AXIS objects “define” the geometry of the computational domain.
Besides providing the frame of reference, axes also hold the corresponding Hankel (AXIS RADIAL)
and FFT (AXIS LINEAR and AXIS TEMPORAL) spectral transforms. This is why they must
be initialized with some care.

The linear spatial domains are defined in sections like this one:

Listing 3.2: X×Y computational domain setup

1 Domain Spatial
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2 domain type DOMAIN LINEAR x LINEAR
3
4 D o m a i n l i n e a r x l i n e a r
5
6 Domain axis x
7 a x i s t y p e AXIS LINEAR
8 rea l−s p a c e s i z e 0 .015
9 number o f po ints 192

10 i n i t t y p e 2
11
12 Domain axis y
13 a x i s t y p e AXIS LINEAR
14 rea l−s p a c e s i z e 0 .015
15 number o f po ints 192
16 i n i t t y p e 2

There are two important parameters above: First, the number of grid points that populate the
linear axis must be compatible with FFT, namely it must factorize into small primes. The fastest
performance is still obtained with number of points being a power of two.

The second parameter of importance is the init type. It controls how much time will the FFTW
library spend on selection of the optimal algorithm for the requested number of points and given
hardware. Most of the time we use value of two for it.

The spatial domain for radially symmetric simulations is defined as in:

Listing 3.3: Radial computational domain setup

1 Domain Spatial
2 domain type DOMAIN RADIAL
3
4 Domain radial
5
6 Domain axis
7 a x i s t y p e AXIS RADIAL
8 rea l−s p a c e s i z e 0 .01
9 number o f po ints 500

10 i n i t t y p e 0

The only less-then-obvious parameter here is the init type. The value zero represents the
order of the underlying Hankel transform (which is used for spectral transform in the linear
propagator). While higher-order Hankel transforms can be used to simulate vortex beams, the
zero value is required for all radially symmetric simulations without angular momentum. Note
that this meaning is different form that of the same-name parameter that appears in the temporal
domain definition.

The number of grid points need not be any special value. The Hankel transform is a full-matrix
operation with a pre-calculated and stored matrix. Its precise size is therefore not as important
as in the FFT case. However, users must keep in mind that the computational complexity scales
with the square of the number of points.
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Execution of simulations
gUPPEcore is parallelized with MPI, and must therefore be started with the program mpirun

which comes with the given MPI implementation. In this example, we have included several
scripts, e.g. runthisA, which show how the simulation set up in this folder may be executed.
Typically, standard output produced is stored in “record file” (e.g. recA). One reason for doing
this is that the top portion of such a record can be subsequently used to reproduce the original
simulation. Script runthisA contains a line that executes the simulation as (with the path to
mpirun held in an auxiliary variable):

Listing 3.4: Simulation execution, command line

1 mpirun −n 4 . . / . . / bin /guppeCore . out inputA > recA

Note that the number of requested mpi processes should not exceed the number of physical
CPU cores available. Users should therefore pay attention to the values specified in the attached
scripts, and modify these appropriately.

Using observer-output files

Outputs generated by gUPPEcore are organized into Reports, and these come in four different
levels. Level one produces observables that are inexpensive in terms of numerical effort and disk
space they require. They are scalar global values directed to the standard output, and will be
illustrated in subsequent simulation templates. In this example we concentrate on Report level
two. Its output consist of files which hold “one-dimensional” data.

Two kinds of outputs from Report level two are utilized here, namely the temporal and spatial
profiles of the optical electric field. From the record files, e.g. recA and recAcmp, one can see
that Report 2 number 10 occurred at z = 1.0 which is the same distance Report 2 number zero
occurred in the comparative run. Thus, one needs to compare field profiles:

SIMDIR/A T c0 10 r 0 vs SIMDIR/Acmp T c0 0 r 0
for the temporal slice, and

SIMDIR/A S c0 10 r 0 vs SIMDIR/Acmp S c0 0 r 0
for a view along the radius of the domain.

Script runthisA and similar indicate which files hold the data for comparison in each pair of
simulations. Users who have installed xmgrace grapher can execute these scripts to see the plots.
Users utilizing other plotting tools should note that the format of these and similar output files
is described in the folder 000 Outputs Explained.

Pitfalls
The idea of this example is to set up simulations that demonstrate that the numerically prop-

agated waveform produced by the simulator are in close agreement with the analytic solutions.
This indeed happens with the parameters given in these examples.

However, it is rather easy to obtain results that will show a gap between the numerical and
analytic solutions. In most cases this will be because the linear propagators used in gUPPEcore
are spectral and non-paraxial, and produce essentially exact solutions, while the analytic solution
is a paraxial, and monochromatic approximation.

Runs D and Dcmp illustrate yet another possibility. The time-domain dispersion section holds
parameters for the reference frequency/wavelength, and displays group and phase refractive index
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(for this wavelength). These values must coincide with their counterparts in the Gaussian initial
conditions. A mismatch will cause the the frame of reference to “slide” and the resulting solution
will appear translated in the local pulse time, thus not matching the analytic one. Experimentation
with the input values in inputD and inputDcmp should illuminate this issue.

In particular, the reference wavelength of the temporal domain must be set to the same value
as in the analytic Gaussian solutions. The temporal domain utilizes a grid with the extent and
number of points specified in the AXIS sub-section. These in turn determine which angular
frequencies appear in the numerical spectrum. While a specific reference frequency is requested
in the input file, it will be adjusted to the nearest active frequency given by the domain. This is
usually of no practical consequence, because the numerical spectrum is normally quite dense, and
the reference frequency is only used to obtain the value of the moving-frame velocity. It therefore
has no influence on the simulation results beyond keeping the simulated pulse close to the center
of the temporal computational domain. However, in the present case, even a small deviation from
the wavelength of the analytic solution would cause walk-off between the analytic and numerical
frames of reference. The consequence would be apparent temporal shift of the simulated pulse,
and disagreement with the target solution.

The input files in this simulation template were set up such that the appropriate reference
wavelength was “read of” from the output of a trial run. The value was then inserted into the
initial condition section to specify the wavelength of the analytic solution. Users are invited to
experiment with the relevant parameters...
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3.2 Femtosecond Supercontinuum Generation in Water
Angularity Resolved Spectra Extraction & Medium Susceptibility Tabulation

gUPPEcore usage illustrated:

• typical femtosecond pulse simulation setup

• extraction of angularly resolved spectra

Illustrated computational issues:

• Medium susceptibility tabulation

Physical effects:

• Femtosecond filament dynamics in water, characterized by dispersion-driven temporal pulse
splitting.

• Relation between dynamics and chromatic dispersion on one side and the structure of angu-
larly resolved spectrum on the other.

Input files

• inputA: Femtosecond pulse loosely focused on the entrance of a water sample. The central
wavelength of the pulse is 800 nm.

• inputB: This is a comparative run with 520 nm central wavelength. It also uses an adjusted
window of active frequencies (compare temporal axis sections).

Simulation execution

Two scripts, runthisA and runthisB can be used in a Linux environment to execute the simu-
lations. The scripts set an auxiliary variable holding an absolute path to the appropriate mpirun
program — user will need to adjust this appropriately. With the mpirun selected, each run is
started as follows:

Listing 3.5: Simulation execution, command line

1 \${MYmpirun} −n 16 . . / . . / bin /guppeCore . out inputA > recA &

Standard output is redirected into a “record file”, recA in this case, which is subsequently utilized
to extract certain global quantities, such as maximal on-axis pulse intensity.

Extracting global quantities from the record file

Script extract observables shows how to obtain values of on-axis intensity, pulse energy, integra-
tion step-size, maximal plasma density, and linear plasma density as functions of the propagation
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distance. The resulting files, such as InteA.dat are subsequently used to produce figures like this
one:

Intensity maxima in femtosecond filamen-
tation in water: Each is generated by self-
focusing collapse that is arrested by tem-
poral pulse splitting. Chromatic dispersion
plays an important role in water and con-
densed media in general. This figure il-
lustrates how different wavelength result in
quantitatively different dynamics.

Another global quantity we want to show here is the pulse energy evolution with the propagation
distance:

Pulse energy evolution reveals the increased
role of water absorption at longer wave-
length (run A). The steep energy decrease
sections in these plots reveal losses due to
ionization — they only occur at highest
intensities. The gradual energy decrease
in the longer-wavelength run is caused by
wavelength-dependent linear absorption.

Since gUPPEcore is a spectral solver in the time dimension, it has the capability to account for
arbitrary wavelength-dependent dispersion and linear losses. Both are incorporated through the
complex-valued susceptibility tabulation invoked in the input file, in this case it is waterchi.tab.
This is an example of tabulation that the user needs to prepare for working with a new medium.

The tabulation must hold the susceptibility as a function of angular frequency (first column).
Both real (second column) and imaginary (third column) parts of the susceptibility must be
present, even when the imaginary part is zero. It is important that the table is dense, because
it is interpolated inside the simulator. Also, when working with experimental data to obtain
a susceptibility table, one must ensure that the tabulation is sufficiently smooth. One way to
test if the noise in the table is acceptable is to plot the group-velocity dispersion obtained by a
finite-difference approximation from the corresponding propagation constant.

Extracting angular-spectrum arrays from multiple files

The script extract observables also illustrates one way to extract data needed to plot angularly
resolved spectra. gUPPEcore stores two-dimensional arrays separated into ranks. Rank labels
depend on the number of parallel MPI processes used in the given simulation, which was 16 in the
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present example. Most of the time, only a subset of these “partial data sets” are used, and this
is why we keep them separated. But here we want to show how to join the whole set together if
needed. For instance:

Listing 3.6: Concatenating data files for angularly resolved spectra

1 cp SIMDIR/ A KO c0 8 r ∗ .
2 rename r r 0 A KO c0 8 r ?
3 cat A KO c0 8 r ∗ > A K Omega spc
4 rm −f A KO ∗

In the first line, angularly resolved spectra created in the Report labeled with number 8 are copied
into the working directory. At this point they are separated into files, one for each individual MPI
parallel process, and we need to join them in order to create one large rectangular array for
plotting. But first, we add zero in the names of those files named A KO c0 8 r ? where ? stands
for a wild-card representing one character. This occurs in line two, and ensures that the files are
naturally “ordered” by their file-names. The next line simply concatenates them into a single
larger file. This is where the user could choose to use only certain “slices” of the computational
domain, for example to reduce the size of the array in case that the “action” only occurs in the
central portion of the domain. For simplicity, we use slices from all MPI process ranks. The result
is an array stored in A K Omega spc which we use to plot the spectrum shown in this report. Run
B is processed in the same way...

The resulting files A K Omega spc and B K Omega spc then can be used to visualize the dis-
tribution of the pulse energy in the angularly resolved spectrum. Here we used a simple Matlab
script PlotKOspc.m to produce the following picture:

Angularly resolved supercontinuum spec-
trum (run B). This figure illustrates the
“native” representation of the optical wave-
form in gUPPEcore. One half of this map
represents the array that holds the complex-
valued spectral amplitudes. Here we show
the spectral-power map in log scale. This
kind of plot is useful to check that the
whole spectrum is safely contained within
the computational box. The X-like features
in this spectrum reflect pulse-splitting dy-
namics: Each extended feature is created
by one of the “daughter” pulses.

An easier, and more practical way to inspect spectral properties of the evolving pulse waveform
is with the angularly integrated spectra. These are generated by the gUPPEcore built-in observer
(user must switch their output selector “on” in the input file) in the Report-level 2. The next
picture compares the spectra obtained at propagation distances after the first pulse splitting event
in each case:
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Angle-integrated supercontinuum spec-
tra. Pulse with the central wavelength
of 520 nm (run B), generates a more
symmetric spectrum, because the chro-
matic dispersion “landscape” is more
symmetric than that around 800 nm
wavelength used in simulation A. The
wings of these spectra correspond to the
extended features evident in the angu-
larly resolved spectrum (previous fig-
ure).

Here we have plotted data stored in files SIMDIR/A FFS c0 10 r 0 and SIMDIR/B FFS c0 8 r 0.
String “FFS” indicates (see folder “000 Outputs Explained”) that these files hold both on-axis
(second column) and angularly integrated (third column) log-scale spectra as functions of angular
frequency (first column). The report index (10 in case of run A) can be associated with the
propagation distance by inspecting the record file. For example recA shows a line with REP2:
10 0.0100184 which means that the Report-level 2 was executed at the propagation distance of
0.0100184 meters. From recB, the propagation distance at which the run B spectrum was recorded
was 0.00801558 meters.
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3.3 Femtosecond Supercontinuum Generation in a Microstructure Fiber
Fiber Geometry, Optical Field Normalization & Imported Medium Properties

gUPPEcore usage illustrated:

• Simulation setup for a fiber-like geometry

• Import of tabulated chromatic medium properties

Computational issues illustrated:

• Different fields in ultra-short pulse propagation simulation prefer different optical-field nor-
malizations. In particular, normalization to peak power is often used for simulations of fibers
and waveguides. The convention adopted by gUPPEcore is the same as in bulk media, be-
cause the fiber geometry is treated as a special case of a “bulk medium” with chromatic
dispersion equivalent to that if the simulated fiber.

Physical background:

• Femtosecond supercontinuum dynamics in fibers.

• Soliton fission mechanism, and soliton self-frequency-red-shift.

Input files

• inputA: 800 nm wavelength, 100 fs duration pulse propagating in a silica strand with radius
of 400 nm.

• inputB: The same as run A, but with observer report period(s) set up for frequent outputs in
order to allow smoother visualization of various quantities versus propagation distance. To
ensure that the propagation distance sampling is equidistant, the step type is set to fixed in
the ODE Driver section. With this input, the ODE solver performs a fixed-step integration.

• inputC: Physically equivalent to run A, but realized with a radial spatial domain. This serves
as a comparative simulation run.

Simulation template setup

1. Spatial computational domain for fiber-like geometry

Fiber geometry can be simulated with gUPPEcore capabilities in two equivalent ways. One
is using the radial spatial domain with a single radial-grid sampling point, the other utilizes an
X × Y domain with a single point in each transverse dimension.

The following is partial listing of inputA, showing the section that defines the spatial compu-
tational domain:
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Listing 3.7: 1. Spatial computational domain mimicking a fiber

1 Domain Spatial
2
3 domain type DOMAIN LINEAR x LINEAR
4
5 D o m a i n l i n e a r x l i n e a r
6
7 Domain axis x
8 a x i s t y p e AXIS LINEAR
9 rea l−s p a c e s i z e 2 .0 e−06

10 number o f po ints 1
11 i n i t t y p e 0
12
13 Domain axis y
14 a x i s t y p e AXIS LINEAR
15 rea l−s p a c e s i z e 2 .0 e−06
16 number o f po ints 1
17 i n i t t y p e 0

Here we have set two linear axes, each with a single grid point. The real-space size should be
selected such that the resulting area represent the effective fiber area. The value requested for
init type is irrelevant, because the spectral transform along each spatial dimension reduces to an
identity operation.

In the next listing, it is the radial domain that “simulates” the fiber. This is part of the inputC
file:

Listing 3.8: 2. Spatial computational domain mimicking a fiber

1 Domain Spatial
2
3 domain type DOMAIN RADIAL
4
5 Domain radial
6
7 Domain axis
8 a x i s t y p e AXIS RADIAL
9 rea l−s p a c e s i z e 2 .0 e+06

10 number o f po ints 1
11 i n i t t y p e 0

Note that in this case the init type must be set to zero.
Simulations with both of the above geometries are essentially equivalent, as they both realize a

0× 1-dimensional domain. Users can check this by comparing the results of the two “equivalent”
runs defined by input files inputA and inputC.

2. Dispersion properties associated with the temporal domain

gUPPEcore associates the dispersion properties of a medium with the temporal computational
domain. The following listing shows the corresponding section of the input:
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Listing 3.9: Dispersion properties

1 T Domain Dispersion
2 lambda re f e rence 800 .0 e−09
3 omega re f e rence 2 .34572 e+15
4 omega min 1 .3 e+15
5 omega max 8 .5 e+15
6 index phase −1.32107
7 index group −1.34471
8 gvd −9.8345e−26
9 s u s c e p t i b i l i t y f i l e 0 s i l i c a s t r a n d c h i 0 . 4

The relevant named parameter here is in the last line, and specifies the name of a file that holds
tabulation of the susceptibility for the medium we want to simulate. Note that the user must
specify one table for each field component carried by the computational domain (single component
in this case), even if all field components experience the same chromatic dispersion.

The susceptibility file must be a human-readable, consisting of three columns. The first column
is the angular frequency, followed by the real and imaginary parts of susceptibility in the second
and third columns. The tabulation must be sufficiently smooth, with typical number of sampling
points from a few hundred to two thousand. Most often a susceptibility table is generated from a
Sellmeyer formula. When the temporal axis is instantiated, its dispersion properties are initialized,
and this is when the susceptibility table is read and interpolated onto the grid of active frequencies.

Note that when one wants to simulate pulse propagation in a fiber, the susceptibility table
should contain the effective susceptibility that accounts for both the material properties and
geometry of the fiber. In this example, we have calculated the propagation constant for the
fundamental mode of of silica strand (in air) as function of angular frequency, β(ω) from which
the effective susceptibility is straightforward to obtain and tabulate.

Generated spectrum illustration

In this simulation template, we have directed all output files generated by the built-in gUP-
PEcore observer into folder SIMDIR. These files are not shipped with the the gUPPElab, as the
whole lab would take much longer to download. Thus, users must re-run most of the simulations,
and re-create the files in SIMDIR.

Here we have used outputs stored in files SIMDIR/A FFS c0 XX r 0 with XX = 20, 25, 30
corresponding roughly to propagation distances of 200, 250, and 300 mm. Note that when we
simulate propagation in a fiber there is no difference between the on-axis and angularly integrated
spectra stored in such files.

The following figures illustrate the evolution of supercontinua generated from the red-shifted
solitons which split-up from the input pulse. The initial pulse undergoes a series of “oscillations”
during which a solition-like pulse is “emitted” from it. This soliton subsequently experiences two
effects that contribute to the resulting shape of the supercontinuum spectrum. First is the self-
frequency red shift, which is caused by the Raman effect. The second is emission of dispersive
waves which appear in these figures as the long-wavelength feature in the vicinity of 1100 nm
wavelength. It is caused by the reaction of the to-be-soliton to its propagation medium which is
not exactly NLS-like.
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Supercontinuum generation in a nanometer-
sized silica strand. The three main peaks
in these spectra correspond to: Input pulse
wavelength (800 nm), temporal soliton (red-
shifted upon propagation), and dispersive
wave radiation emitted from the soliton.

Supercontinuum (log-scale spectral power
shown) evolution with the propagation
distance. The “diagonal” feature is the
self red-shifted soliton spectral peak.

The physical mechanism underlying this supercontinuum dynamics is has been described in
detail in PRA 82 (4), 045802 (2010) for a micro-structure fiber with properties closely resembling
those of the nano-meter size silica strand used for the present example.
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3.4 Femtosecond Filament in Gas: Radial Coordinates
Time Domain & Extraction of Global Quantity

gUPPEcore usage illustrated:

• extraction of global quantities from the simulation record file

Computational issues illustrated:

• Usage and potential pitfalls of time-domain boundary guard

Physical background:

• Femtosecond filament dynamics in gases (air in this case)

• Standard optical filamentation model

Input files

• inputA: 800 nm wavelength, 30 fs Gaussian pulse with ∼ 2mJ energy, loosely focused to 2.5 m
distance. Temporal domain guard is applied after every 0.1 m propagation (this is specified
in the third line of section Domain Temporal. The role of the guard is to eliminate radiation
that reaches the edge of the computational domain (in the temporal dimension).

• inputB: The same as above, but the temporal domain size is increased from 400 fs in run A to
600 fs in run B. At the same time, resolution has been increased from 2048 to 4096 temporal
grid points.

Simulation template setup

There are two pre-defined simulation runs in this simulation template. Run A is using what is
a rather minimal computational domain, while run B utilizes somewhat larger temporal domain.
Files inputA and inputB hold the respective inputs.

The goal here is to appreciate the role of the domain boundary. When optical filamenta-
tion occurs, it is accompanied by creation of new spectral components. This light subsequently
propagates with different group velocities and gradually walks off from the main “parent” pulse.
Eventually, the supercontinuum radiation reaches the temporal domain boundary.

When it happens, there are two options, from the computing pount of view. First, one can stop
the simulation at this point to avoid potential artifacts. This should be the preferred approach.
However, sometimes one really needs to propagate further. For those “emergencies,” gUPPEcore
implements a boundary guard that can be invoked periodically, and which eliminates radiation in
the vicinity of the domain edge.

The two runs in this package illustrate the associated effects.

Global observables
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gUPPEcore simulation run is typically executed such that a full standard output is stored in
“record file” (recA and/or recB in this case). One reason for doing this is that the top of such a
record can be subsequently used to reproduce the original simulation. Script runthisA contains a
line that executes the simulation as:

Listing 3.10: Simulation execution, command line

1 ${MYmpirun} −n 16 . . / . . / bin /guppeCore . out inputA > recA &

where the variable MYmpirun stores the path pointing to the appropriate mpirun. Lines of recA
that start with REP1 carry a listing of global quantities measured as functions of propagation
distance. For example this line from recA

Listing 3.11: Extracting global observables from a record file

1 REP1: 0 .116 0 .025 16466 5.49915 e+15 0.00184568 1 .3412 e+09 1841.13

reports global quantities measured at z = 0.116m. In the left to right order they are: propaga-
tion distance, proposed integration step, grid-index of the temporal observation point, maximal
intensity, pulse energy, maximal plasma number density, and total linear plasma density.

Script extract observables shows how the values can be extracted for subsequent visualization
and analysis:

Listing 3.12: Extracting global observables from a record file

1 #!/ bin /bash
2
3 grep REP1 recA | cut −d” ” −f2 , 5 > InteA . dat
4 grep REP1 recA | cut −d” ” −f2 , 6 > EnerA . dat
5 grep REP1 recA | cut −d” ” −f2 , 7 > DensA . dat
6 grep REP1 recA | cut −d” ” −f2 , 8 > PlasA . dat

and similarly for run B. For user less familiar with Linux utilities, let‘s just note that the first
command, grep, extracts all lines that contain “header” REP1. The result is then fed (through
pipe |) into command cut which is instructed to extract specified fields or columns (separated by
space).

As a result, we extract a set of two-column files that hold the propagation distance in the first
column (second field from left in the output of the grep command). Meaning of the second column
in these output files is as follows: maximal intensity (in units specified in the observer section of
inputA), total pulse energy estimate, maximal plasma density (in m−3), and linear plasma density
(in 1/m).

The XXXX.dat files are used in the following figures to visualize the results of this simulation.
The first two figures compare maximal light intensity, and two measures of free electron generation,
respectively. The good agreement between data from runs A and B suggests that the temporal
domain size is sufficient. However, the third figure reveals that the temporal domain guard extracts
measurable energy from the computational domain. This is less significant in run B because the
domain is larger and it thus takes longer for high- and low-frequency light to walk off from the
main pulse and reach the computational domain edge (where it gets “annihilated” by the domain
guard). This illustrates that one has to be careful when applying boundary guard. Situations
with broad spectra may require a guard to keep the domain reasonably small, but caution must
be exercised to use only data that has not been affected by the action of the guard. For example,
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in the present case, the proper way to deal with radiation spreading away from the main pulse is
to simply increase the temporal domain size until the guard becomes unnecessary.

Maximal intensity versus propagation dis-
tance. Re-focusing typical of optical fem-
tosecond filaments in gases manifests as
the second “peak.” The intensity is
clamped by the simultaneous effects of
plasma-induced de-focusing, diffraction,
and ionization losses all competing with
self-focusing nonlinearity due to optical
Kerr effect. Two runs (A,B) with differ-
ent temporal domain parameters are com-
pared in this plot.

Free electron (“plasma”) generation in the
femtosecond filament. Maximal number
density is shown in units of 1022 per cu-
bic meter, and the linear density is in units
of 1014 freed electrons per meter of prop-
agation distance. The latter quantity is a
measure of total electron yield. The ratio
of the two densities measures the effective
area of the plasma column. The agreement
between runs A and B is obviously good also
for the electron densities.

Pulse energy recorded in two “nominally
identical” simulation runs. The sharp drop
around z ≈ 2m is due to multi-photon ion-
ization losses. The more gradual energy de-
crease that follows is due to temporal spread
and “leakage” of energy outside of the tem-
poral domain. Steps in the curve corre-
spond to point at which the guard was in-
voked. Run B was executed with a wider
domain in order to lessen this issue.

gUPPElab Femtosecond filament in gas, radially symmetric case



Femtosecond filament simulation, full spatial resolution 29

3.5 Femtosecond Filament in Gas: 3D Spatial Coordinates
Large-scale Simulations & Coordinate System Comparison

gUPPEcore usage illustrated:

• execution of large-scale simulations (more than a billion of degrees of freedom)

• parallel scaling

Computational issues illustrated:

• Observation-focus issues, comparison of radial and 3+1D simulations

Physical background:

• Femtosecond filament dynamics in gases

• Standard optical filamentation model

Input files

• WARNING: This simulation template contains a large-scale simulation which should not be
attempted with more MPI processes that there are physical CPU cores on the given computer.

• inputXY: 800 nm wavelength, 30 fs Gaussian pulse with ∼ 2mJ energy, loosely focused to
2.5 m distance. Temporal domain guard is applied after every 0.1 m propagation (this is
specified in the third line of section Domain Temporal. The role of the guard is to eliminate
radiation that reaches the edge of the computational domain (in the temporal dimension).

• Note: This set up is nominally the same as in the example with the radially symmetric
solution.

Simulation template setup

The purpose of this example is two-fold. Because the physical parameters are chosen equal
to those in the previous, radially symmetric simulation example, users have the opportunity to
compare the corresponding inputs and verify the proper way to setup “equivalent” simulations for
radially symmetric situation on one side and a fully spatially resolved simulation on the other.

The second purpose is to illustrate the efficiency of parallel scaling in gUPPEcore. The same
simulation is executed with an increasing number of parallel processes, and we show that the
parallel speed-up is close to optimal.

Moreover, this template provides an example of a job-submission script that will be typically
required when using gUPPEcore on a large cluster with a queuing system.

Global observables, comparison with radially-symmetric simulation
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Script extract observables is utilized to obtain on-axis intensity versus propagation distance. It
works the same way as in the previous example(s). Because the simulation is nominally equivalent
to that in the radially symmetric case (see wrk 031 Filament In Gas Radial), one should expect
equivalent results. This is indeed the case, but users may be surprised that plots of the on-axis
intensity reveal a small difference between the two runs. This is illustrated in the following figure:

Femtosecond filament in air. The appar-
ent difference between the on-axis intensi-
ties produced by fully resolved and radi-
ally symmetric simulations is due to the fact
that the built-in gUPPEcore observer has a
different observation focus in the two cases.
In the radial case, it produces the data for
the grid point closest to, but not on the axis,
while the focus is in the exact center for the
3+1D run.

The issue to keep in mind is that the actual points of observation are different. While the
3+1D simulation does have a grid point exactly located on the axis, the radial simulation does
not. This is because the spectral solver utilizes the Hankel transform, and with it the radial grid
which can’t place a grid point at r = 0. Thus, the gap between the two curves is nothing but a
variation of the solution between two close-to-axis points of observation.

Observation of the radial grid point closest to the axis is sufficient for most practical purposes.
Should users require accurate on-axis observables, they can be obtained by extrapolation to r → 0.
For example, one could use first two radial points, together with the requirement that the on-axis
value of the radial derivative must vanish.

It is left to the user to inspect other global quantities, such as the pulse energy, linear plasma
density (integrated over the transverse cross-section), and the maximal on-axis plasma density.
The first two show the expected agreement between the two simulations, while to on-axis plasma
density value exhibits the same issue as the on-axis intensity.

All in all this example confirms that the spectral solvers used by gUPPEcore for radially
symmetric and full 3+1D geometries are both reliable.

There are other simulation templates included in gUPPElab that utilize spatially resolved trans-
verse computational domain. In particular wrk 042 User-Addons-Initial-Conditions is a closely
related example in which the radial symmetry imposed in the present case is broken by the per-
turbation applied onto the initial pulsed beam. In wrk 041 User-Addons-Medium-Response, which
models the Anderson localization of light, it is the weak disorder of the medium that requires a
fully resolved approach.

Parallel performance

Of course, it makes no practical sense to simulate a radially symmetric solution with a full
spatial resolution as we do it in this example. It takes more than a billion variables to describe
the pulse waveform in the spectral space (and much more in the real space!) with full resolution.
Consequently, the numerical effort required to solve the problem is incomparable. However, this
is an example meant to showcase the parallel performance in gUPPEcore, while providing, at the
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same time, a comparison test for the usage of different spatial domains. Moreover, the setup of
this exercise can be easily adopted to situations without symmetry.

The parallelization model built-in in the gUPPEcore is based on the domain decomposition and
Message Passing Interface. Its implementation is relatively simple, and aims mainly at smaller
and medium-scale applications of this simulation framework. Nevertheless, the performance is
very good as is illustrated in the following figure.

Parallel scaling in simulations performed
with 96, 120, and 168 CPU cores and on
UV2000 from Silicon Graphics with the to-
tal of 196 cores. The red line indicates the
ideal behavior.

Our computational experience with parallel gUPPEcore jobs indicates that the parallel effi-
ciency remains very good with up to 250 processes. We have not tested this simulation framework
on clusters larger than that.
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3.6 User Addons: Multiple Filamentation in High-Power Pulses
Pertubation Operator Addon, Checkpoints & Domain Size Issues

gUPPEcore usage illustrated in this example:

• using checkpoints to store a simulated wave-form snapshot

• using checkpoints to restart simulations

• extending gUPPEcore by adding a simple perturbation operator, used to modify the initial
pulse

• this is a 3+1D simulation (relatively large-scale, with 27 million degrees of freedom) run on
a personal workstation

Computational issues illustrated:

• domain-size issues, and related artifacts at long propagation distances

Physical context:

• Multi-filamentation regime

Input files

• inputA: The first simulation in a series of three. Simulates the first ten meters of propagation,
and stores a checkpoint-file to be used by the subsequent run (inputB) as its initial condition.
The initial pulsed beam is Gaussian, with additional perturbation, which is implemented in
this folder. The perturbation represents an imperfect beam, and induces a multi-filamentation
regime.

• inputB: The only difference from the previous input file (execute: diff inputA inputB) is that
it specifies that a checkpoint file(s) produced by the previous simulation is to serve as its
initial condition. Note that only the base of the checkpoint file-name(s) must be given in the
input, followed by the index (number) which specifies which of the checkpoints to use. In
this case, there is only one, labeled zero.

• inputC: This simulation starts from the checkpoint generated by inputB run. The sequence
A,B,C thus “models” a piece-wise approach to a larger simulation. Having stored checkpoints
at certain distances allows to adjust simulation parameters (for example those that control
observation and how frequently is it done) between different segments.

Checkpoint usage

Checkpoint files serve to record the exact state of the simulated waveform. Note that there
is no practical way to create a checkpoint outside of the simulator. First, we need to instruct
gUPPEcore to produce a checkpoint:
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Listing 3.13: Directing a simulation to produce checkpoints

1 I n r e p o r t 4 :
2 Report4 per iod 5e+24
3 Check point out [ y/n ] y

Note that the second line simply states “yes” but does not specify any file names. This is because
the names of files that collectively constitute a checkpoint are derived from the base-name of the
given simulation run. Each MPI process stores its own slice of the total computational domain.
This means that the checkpoints can be only re-used with the same number of parallel processes.
Needless to say, the size of the computational domain also must not change between the different
runs.

The first parameter in the above listing specifies how often is Report level four, which is nothing
but saving checkpoint files, executed. Here we specify an effectively infinite distance which means
that no checkpoints will be produced during the simulation. Only a single one, at the very end of
the simulation run, will be saved.

To utilize it in the subsequent simulation, one needs to include the following in the input file:

Listing 3.14: Directing a simulation to start from a checkpoint

1 I n i t i a l c o n d I n i t i a l c o n d i t i o n s
2 CKPT in SIMDIR/A CKPT 0

The name consists of the string equal to the base-name of the previous simulation run, followed
by an index (here it is 0) which specifies which checkpoint set is to be read.

Note that the above directive is followed by what seems to be, and in fact is, an full initial
condition specification. But it is unimportant, because the content of the checkpoint, if one is
indeed read, takes precedence and replaces the initial condition. This is an example of having
parameters in the input file which are ignored in the end. This may be confusing for new users,
but on the other hand it makes different files easier to compare and in general to work with.

An important feature of checkpoints in gUPPEcore is that they do not store any “auxiliary”
information, for example current integration step or propagation distance. All quantities other
than the optical field snapshot are retained in the record files produced by the simulation.

Execution of simulations

gUPPEcore is parallelized with MPI, and must therefore be started with the program mpirun
which comes with the given MPI implementation. In this example, we have included script runthis,
which shows how the simulation set up in this folder should be executed:

Listing 3.15: Simulation execution, from a script

1 #!/ bin /bash
2
3 #e d i t to s e t appropr ia t e mpirun
4 MYmpirun=/home/ k o l e s i k / icpc−openmpi/ bin /mpirun
5
6 #c l ean the s imu la t i on d i r e c t o r y
7 rm −f SIMDIR/A ∗
8 rm −f SIMDIR/B ∗
9 rm −f SIMDIR/C ∗
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10
11 ${MYmpirun} −n 16 guppeA . out inputA > recA
12
13 ${MYmpirun} −n 16 guppeA . out inputB > recB
14
15 ${MYmpirun} −n 16 guppeA . out inputC > recC

Usually, the standard output produced is stored in “record file” (e.g. recA). One reason for doing
this is that the top portion of such a record can be subsequently used to reproduce the original
simulation. Each of the above commands must finish before the next starts automatically. In
practice, the three would be started manually, after inspection of the results produced by the
preceding run.

Invoking user-defined capabilities

There are several classes of objects that can be implemented by the user and plug into the
simulator. In this worked-out example, a simple perturbation is imposed “on top” of the initial
condition. It is an example of an operator. Operators can be invoked in two stages of the
simulation, either before or after the main simulation loop:

Listing 3.16: Input section: Invoking a user-defined operator

1 UPPE Operator Prolog
2 num. o f i t e m s 1
3
4 t y p e i d s t r i n g Perturbat ion
5 Perturbat ion
6 rng seed 345
7 number 100
8 amplitude 0 .5
9 box x 0 .012

10 box y 0 .012
11 c o r r l e n g t h 0 .010
12
13 UPPE Operator Epilog
14 num. o f i t e m s 0

As indicated in this input snippet, there can be an arbitrary number of operators applied in the
epilogue and/or prologue. Their implementation follows the same scheme, which is illustrated in
this folder:

Implementing user-defined capabilities

All user-defined additions to gUPPEcore must behave as any other object that the simulator
knows. They are required to be derived from the objects that carry named parameters, i.e. Named-
ParameterList class (users should inspect the parameter input output.h in the include folder), and
must implement certain functions depending on their purpose.

There are two components to all user-defined additions. The first is the source included in
user addons.cc. Its purpose is essentially to provide a list of used-defined classes, and assign to
each a name which will identify the class in the input. Users have to compile this, and link it
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with the gUPPEcore library to obtain a modified executable. There are four areas which allow
additions: Initial conditions, Operators, Medium-response plug-ins, and Linear propagators. All
user additions must appear in user addons.cc.

The second component is the implementation of the add-on. In this example it is implemented
in user operator screen.h, which file is included in user addons.cc for compilation.

We recommend that users interested in adding capabilities to gUPPEcore first read the com-
mented sources provided in the various add-on directories within the source folder. The examples
worked-out in those folders only contain the very minimum in terms of files, and should be easier
to study than the present example which must carry a number of files that are not directly related
to the add-on implementation.

Simulation in 3+1 dimensions

The setup of the present simulation shows an example of a fully spatially resolved case. 3+1D
simulations are always large scale. However, many interesting cases can be handled on personal
workstation type hardware as this example illustrates.

With large-scale simulations, one should be careful not to overwhelm the hardware used. After
the program starts, it creates an informative report like this one:

Listing 3.17: Standard output section: Grid size and parallel information

1 # Report : gUPPE Domain Temporal
2 # a c t i v e f r e q u e n c i e s : 208
3 # thread chunk : 13 (16 threads , 1 components )
4 # minimal index : 24
5 # maximal index : 231
6 # r e f e r e n c e index : 112
7 # r e f e r e n c e lambda : 8 .03016 e−07
8 # r e f e r e n c e omega : 2 .34572 e+15
9 # omega r e s o l u t i o n : 2 .0944 e+13

10
11 # Report : gUPPE Domain Spatial
12 # a c t i v e g r id po in t s : 65536
13 # t o t a l g r id po in t s : 65536
14 # thread chunk : 4096
15
16 # Report : gUPPE Domain
17 # t o t a l ( r e a l ) eqns : 27262976
18 # data view 1 geometry : 208 x 4096
19 # data view 2 geometry : 13 x 65536

These comments included in the standard output list several quantities that give the user an idea
about “how big” the given simulation actually is. In particular, the total number of equations,
or degrees of freedom characterizes the (distributed) array needed to hold a single snapshot of
the waveform. Depending on the ODE solver method, several auxiliary arrays of this size will be
also allocated. This constitutes the major component of the memory usage in gUPPEcore. Users
should inspect inputA, especially the temporal and spatial computational domain sections, and
correlate it with the size and running times (in the bottoms of the record files) of this example
simulations.

gUPPElab Using checkpoints for re-starts



3+1D multi-filamentation simulation 36

The perturbation imposed on the initial beam in this example initiates the modulation insta-
bility which in turn seeds multiple filaments, appearing seemingly randomly at different points in
space and time. The following figure illustrates the evolution of the maximal intensity observed
in such a multi-filament waveform along the propagation distance:

Maximal intensity versus propagation dis-
tance. Multiple re-focusing events, gener-
ally located at different point in the trans-
verse cross-section of the beam manifest
here as peaks in the maximal intensity.

This simulation models a pulsed beam confined in a computational domain 1cm×1cm. Hot
spots appear “randomly” on top of the wider beam profile, and achieve significant intensities. To
appreciate the overall structure of the waveform, which spans a large dynamic range, the following
figure utilizes logarithmic scale to depict the transverse profile of fluence (total energy per unit
area):

Log-scale map of the transverse spatial pro-
file of fluence in a multiple-filament beam.
Different hot spots correspond to filaments
that attain their maximal intensities at dif-
ferent propagation distances, evident in the
previous figure.

Important for re-curring filaments, the low-intensity background visible in the above picture stores
a major part of the beam energy. It acts as a reservoir with which the hot spots exchange their
energy. This kind of dynamics makes it possible to “by-pass” losses of energy which would need
to be expended for continuous, static filaments.

Domain-size related issues

The fluence map shown above was recorded toward the end of the simulation run, and shows
that there are parts of the waveform that are about to reach the vicinity of the transverse domain
boundary. Should this simulation need to continue even further, the user would either employ
larger domain (which in turn may require more grid points), or apply a soft artificial aperture to
eliminate the weak outgoing component of the waveform in the vicinity of the computational grid
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edge. In general, great care must be exercised in order to stop simulations before finite-size-domain
artifacts set in.
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3.7 User Addons: Anderson Localization of Light
Medium Response Addon & 2D Cross-section from Observer

gUPPEcore usage illustrated in this example:

• application of a medium-response plugin

• instructing the built-in gUPPEcore observer to produce two-dimensional transverse crossec-
tions of pulsed beam fluence

Physical context:

• Anderson localization of light

Input files

• inputA: This input represents a narrow, collimated pulsed beam entering a medium with ran-
dom refractive index inclusions. The disorder leads to Anderson localization which “arrests”
the diffraction.

User-defined medium response

In order to make it easier to utilize files in this example as a start-point for other user-defined
plug-ins, the implementation has been moved into the src/addons medium response. The headers
and source in the folder are meant to serve as a template.

The input section specific for this simulation template is in the following:

Listing 3.18: Input section: Parameters specifying randomly placed index inclusions

1 Medium response
2 num. o f i t e m s 1
3
4 t y p e i d s t r i n g WeakDisorder
5
6 Index Perturbat ion
7 rng seed 54123
8 number 4800
9 d e l t a c h i 0 .0001

10 rad iu s 0 .000025
11 box x 0.0056
12 box y 0.0056
13 map f i l e map . dat
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In this case, there is only one item comprising the list of medium response functions. The named
parameters that appear above are defined in the plugin header file (src/addon medium response/
user medium weakdisorder.h), and constitute an example of the mechanism gUPPEcore utilizes
to “connect” the users input with the objects that execute various tasks in the simulation.

This medium-response plugin represents 4800 refractive index inclusion with a small, 0.0001,
variation of local medium susceptibility. The size of each randomly placed inclusion is 25 micron.
For debugging purposes, this object saves map of the disorder in the file specified.

The propagation of the pulse is purely linear, despite the add-on being part of the “nonlinear”
polarization response. However, nonlinearity, for example the optical Kerr effect, can be easily
included by simply adding mode medium response objects.

Simulation in 3+1 dimensions

The setup of the present simulation shows an example of a fully spatially resolved case. The
record file of the run, job-A 10x6.log, indicates that the calculation was executed with sixty parallel
processes, collectively utilizing 500 million degrees of freedom to represent the optical pulse.

Listing 3.19: Standard output section: Grid size and parallel information

1 # Report : gUPPE Domain Temporal
2 # a c t i v e f r e q u e n c i e s : 60
3 # thread chunk : 1 (60 threads , 1 components )
4 # minimal index : 72
5 # maximal index : 131
6 # r e f e r e n c e index : 112
7 # r e f e r e n c e lambda : 8 .03016 e−07
8 # r e f e r e n c e omega : 2 .34572 e+15
9 # omega r e s o l u t i o n : 2 .0944 e+13

10
11 # Report : gUPPE Domain Spatial
12 # a c t i v e g r id po in t s : 4194304
13 # t o t a l g r id po in t s : 4194360
14 # thread chunk : 69906
15
16 # Report : gUPPE Domain
17 # t o t a l ( r e a l ) eqns : 503323200
18 # data view 1 geometry : 60 x 69906
19 # data view 2 geometry : 1 x 4194360

The transverse localization of light is illustrated in the following figures. The first shows the
beam profile as it evolves due to diffraction in the disordered medium. We use the logarithmic
scale in which the characteristic signature of beam localization is the linear decrease of the light
intensity away from the center of localization.
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Anderson localization of light. This is a log-
scale map of the transverse profile of flu-
ence in a pulsed beam propagating through
a medium with weak refractive-index disor-
der. The area shown is 6×6 mm.

A more quantitative way to visualize the transverse dynamics of the beam is to look at a
measure of its diameter. Thus is shown in the following figure. The saturation in the curve is a
sign that the localized propagation mode has been formed.

Beam-size as a function of propagation dis-
tance. Initially fast diffraction, due to a
small waist size, slows down and is even-
tually arrested by the interaction with the
random refractive index profile.

Of course, this illustration has not even scratched the surface of transverse localization of light.
However, the intent here is to show an example of adopting gUPPEcore to a particular subject or
situation.
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3.8 User Addons: Airy Pulse Propagation
User-defined Initial Conditions

Airy pulse implementation
The /templates/wrk 042 User-Addons-Initial-Conditions folder contains the working directory for
theuser-defined initial condition (Airy pulse) implemented in the file /src/addons initial conditions.

The corresponding executable /src/addons initial conditions/guppeAddInitialCondition.out should
be copied to the working folder.

To check the initial condition, users will usually execute a mock simulation, and interrupt it
after the first Report level 2 is executed. Then the following files:

SIMDIR/A T c0 0 r 0
SIMDIR/A S c0 0 r 0

will contain, respectively, the (T)emporal and radial (i.e. Spatial) profiles showing intensity, real,
and imaginary parts of the pulse analytic signal.

The file SIMDIR/A FFS c0 0 r 0 contains both the on-axis and and over-angle-integrated (i.e.
total) spectrum shown on log scale.

The above files should be used to inspect the properties of the initial condition, and that it fits in
the computational domain. Note that the present example, namely the Airy pulse, requires better
grid resolution that experienced user may expect to be sufficient for the conventional Gaussian
pulses.
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3.9 Femtosecond Supercontinuum Generation on a Chip
Beam Propagation Addon, User-defined Geometry & Propagation

gUPPEcore usage illustrated:

• application to femtosecond nonlinear optics in waveguides

Illustrated computational issues:

• gUPPEcore augmented with a suitable Beam-Propagation-Method plug-in in the role of the
linear propagator makes fully resolved (in space and time) simulations feasible with a modest
computational effort

Physical effects:

• Supercontinuum generation on chip

Simulation example

Fully resolved simulation of femtosecond-scale nonlinear optics in waveguide structures are com-
putationally demanding. The purpose of this example is to showcase the gUPPEcore capabilities
in this area.

This kind of application requires implementation of the linear propagator, using one of the
many available Beam Propagation Methods (BPM). In general, BPM methods, especially when
applied to waveguide structures with strong contrast between constituent materials, are much less
robust than for example spectral-propagation methods we applied in other worked-out examples.
Accordingly, working with them in the extremely nonlinear regimes targeted by the gUPPEcore
framework requires care and some experience. We therefore encourage interested users to contact
authors to discuss possible propagator implementations and related practical simulation issues.

In this example we utilize a semi-vectorial alternate direction implicit method, second-order
accurate in the propagation step, with fourth-order accurate discretization in the transverse com-
putational domain.

Simulated waveguide. Symmetric solution
is assumed, so that the computational do-
main can be restricted to the rectangle in-
dicated in the picture.

The properties of the simulated waveguide are first characterized by the same method which
is to be used in the user-defined linear propagator. This is important for eliminating additional
numerical dispersion which could affect the model dispersion properties.
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Chromatic dispersion properties of the sim-
ulated waveguide. The top plot illustrates
the tabulation of the effective waveguide
susceptibility required for the linear prop-
agator. The bottom panel curves represent
group-velocity dispersion of the fundamen-
tal mode. Different colors show data ob-
tained for spatial resolutions indicated in
the top plot.

The most interesting observable in this numerical experiment is the supercontinuum spectrum,
partly because it is simple to compare with experimental results. An example is shown in the
following figure for a range of pulse energies:

On-chip generated supercontinuum for sev-
eral output pulse energies.

The physics that governs the evolution of the spectrum is quite well understood (see also the
gUPPElab example dealing with supercontinuum generation in microstructure waveguides). The
characteristic feature seen in the above plots are the broad central peak, with two “satellite”
structures, one in each wing of the spectrum. The latter features correspond to dispersive waves
radiated by the central “soliton-like” pulse.

The simulation record file included in this folder should give the user an idea about the pa-
rameters of the simulation, especially grid sampling and resolutions, and the required execution
time. Section specific to this example is that of the user-defined linear propagator (i.e. Spatial
Domain).
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3.10 User Addons: Multiple Filaments II
Complex Pertubation Operator & Periodic Boundary Conditions

gUPPEcore usage illustrated in this example:

• extending gUPPEcore by adding a complex perturbation operator, used to modify the initial
pulse

• this is a more sophisticated version of another example (wrk 040 User-Addons-Operators-
Multiple-Filaments ) — it is meant to illustrate the extension technique for situations that
require a bit more than a few lines in a header file.

Computational aspect(s):

• Very similar technique can be used to “teach gUPPEcore” how to simulate propagation
through a turbulent medium.

• Usage of periodic boundary conditions in spatial domains that support a spectral transform.

Physical context:

• Multi-filamentation regime

Input files

• inputR: Models a collimated pulsed beam that passes through a random phase “screen.” It
imposes a perturbation on the phase-fronts of the initial waveform, which in turn results in
creation of multiple filaments. This simulation “pretends” to simulate a small patch within a
beam with very large (infinite) transverse dimensions. The idea is to eliminate effects related
to the finite Rayleigh range of a laser beam, and concentrate on the mutual interaction
dynamics of multiple filaments.

• Input file inputR also shows how a 2D fluence profile can be requested from the built-in
gUPPEcore observer:

S-spatial-profile[y/n] 2DF

The built-in gUPPEcore observer creates output files that hold two-dimensional arrays with
the fluence profile (over the whole transverse cross-section of the computational domain).

• The last section in the input file (Operator Prolog/Epilog) shows the input parameters en-
coded in the user-defined perturbation operator.

User-defined capabilities

This simulation template is similar to that in wrk 040 User-Addons-Operators-Multiple- Fila-
ments. However, here we have a better, more sophisticated implementation of the added pertur-
bation operator. It is meant to be used with periodic boundary conditions (PBC) applied to the
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transverse computational domain, so it creates a “phase screen” with PBC. This in turn requires
slightly more code, so it is more convenient to split off the implementation into a separate com-
pilation unit. Material in the folder /src/addons operators shows how this can be organized, and
it should be straightforward to keep adding more user-defined capabilities in the same fashion.

Simulation in 3+1 dimensions

The setup of the present simulation shows an example of a fully spatially resolved case which
should only be attempted on a medium-sized cluster. Here we provide examples of results.

Here is an example of the perturbation profile we use to seed multiple filamentation:

Normalized profile of the perturbation im-
posed on the initial phase front.

The initial condition proper, (i.e. the one that exists in the simulator before the operators listed
in the prologue input section are applied to it) is flat an periodic. The user-added operator breaks
this symmetry. After a short propagation the beam develops modulation instability driven by the
optical Kerr effect. Here we show the fluence after one meter:

Fluence profile of the beam shortly after
passing through a random phase-screen.

The above irregularities in the pulse are amplified by nonlinearity and eventually give rise to
multiple hot spots, or filaments. The following Figure shows the maximal intensity along the
propagation distance of the first 20 meters. Around z=10m, multiple filaments set in and persist
over next 10m (and beyond but this is not shown here). Note that what we show here is a mid-IR
regime (six micron wavelength) in which the filamentation mechanism is qualitatively different
from that of typical 800 nm wavelength filaments.
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Maximal intensity (taken across the trans-
verse cross-section of the computational do-
main and temporal extension of the pulse)
versus propagation distance.

To visualize the dynamics across the beam, the next Figure shows an example of the fluence
profile after 15 meters of propagation.

Fluence profile of the beam after multiple
filaments develop and “attract” energy from
their vicinity.

The hot spots in this picture are filaments that persist for distances significantly longer than
those in the better studied, well-known near-infrared filaments. The reason for this behavior is
a qualitatively different mechanism that arrests the self-focusing collapse initiated by the Kerr
effect.
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A Visualization
The UPPE Observer report text files are structured for ease of analysis. Their structure should be compatible
with almost any data analysis or visualization tool that the user is comfortable with. For those who do not have a
preferred data visualization tool we present two options here.

A.1 (xm)Grace Plotting

Grace is a well established tool for creating publication quality graphics. Grace can be configured using command-
line options, scripts or though its WYSIWYG GUI interface. In-depth use of Grace is beyond the scope of this
guide. There are many on-line resources for both simple and advanced usages of Grace. More information about
Grace can be found on the Grace website.

In the worked-out examples of this guide we do use Grace to generate plots. Two of these examples are shown
here as a very basic introduction to Grace usage,

Basic example from wrk 010:

$ xmgrace −nxy SIMDIR/ A T c0 10 r 0 −nxy SIMDIR/ Acmp T c0 0 r 0

In this example -nxy tells xmgrace to expect 3 column data from the file that follows. This example also shows
that you can stack ”-nxy file1 -nxy file2” to plot multiple files on the same plot.

Advanced example from wrk 031:

$ xmgrace −nxy PlasA . dat −nxy DensB . dat −pexec ’ s0 . y = s0 . y/10E14 ’
−pexec ’ s1 . y = s1 . y/10E22 ’ −pexec ’ autosca l e ’

In this example we scale the data from each file so that we can observe their profiles on the same plot. This is
done with the ”-pexec ’yData = yData/scale’” commands. The -pexec gives command line access to some of the
GUI features of xmgrace. Once this level of data control is desired it begins to make more sense to either get into
writing plotting scripts or using the GUI to make the plot appear as desired.

A.2 Python genPlots.py

For quick plotting of all of the UPPE Observer reports the included genPlots.py code can be used. The code will
produce a plot for every polarization state and z-distance that is reported by the UPPE observer (see section B.2
for working with the observer).

This code is not meant to generate publication quality graphics. It is simply meant to quickly plot all data for
an initial look at the results. Once this initial look is achieved, the user can determine how to plot the data for
further analysis. If one is inclined to code in Python then the relevant sections of genPlot.py can be copied into
the users code for further plotting.

A.2.1 Requirements

genPlot.py has been tested to work with both Python 2.7 and Python 3. It also requires the numpy and mat-
plotlib packages associated with the Python version. Additional packages may be required based on your machine
configuration and Python setup.

A.2.2 Configuration file

There is an associated (optional) configuration file named genPlots.cfg. The configuration file is assumed to be
in the same directory as the genPlots.py script. If the configuration file is not found then the code attempts to
generate the plots based on a set of default values. If the file is found then the code loads the following values from
the file:
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1. plotList: This allows the user to specify which plots are to be generated. For example, if the next variable
(KOcdt) is changed, the user can only re-plot the KO plots instead of having to generate all the plots. Default:
plotList = T,S,KO,FFS,TS

2. KOcdt: This variable allows the user to truncate some of the KO plot data. See the KO plot section below
for more information. Default: KOcdt = none

3. dataPath: This is the relative path and directory name of the report files. An absolute or relative path may
be specified here. Default: dataPath = ./SIMDIR/

4. plotPath: This is the relative path to a directory that will be created to house the plots that are generated.
Default: plotPath = ./PLOTS/

A.2.3 Plot Generation Flow

The code is run by executing ’python genPlot.py’, most likely from within the simulation directory. The code will
first concatenate data from all of the Parallel CPU ranks (see C.2) into their associated propagation distance. Then
it will calculate how many plots need to be created. If it is going to create over 100 plots it will ask the user if it
should continue. The user should be sure they have plenty of disk space before agreeing to create a large number
of plots. An overestimate of 250 kB for each plot should be used. If the user decides to continue then the code will
generate plots for each propagation distance for each type of plot specified in the input file. The method in which
the plots are generated are discussed in the next section.

A.2.4 Plots Generated

Figure A.1: Temporal Plot

Temporal plots are simple xy plot with the 3 y-axis functions shown. The x-axis is time while the y-axis is
normalized field values. To get the non-normalized values the y-axis value should be multiplied by the square-root
of the Intensity unit in the UPPE observer section (see B.2) of the input file. Note that in the example above all
3 plot-lines are clearly visible. For longer pulses the oscillations may be so compact that all of the lines are not
visible. In that case one may wish to change the Time axis to get finer resolution. See section A.2.5 for how to do
that.
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Figure A.2: Spatial Plot

Spatial plots are also simple xy plot with the 3 y-axis functions shown. The x-axis is time while the y-axis is
normalized field values. Actual y-axis values can be found in the same way as in temporal plots above.

Figure A.3: Far-Field Spectrum Plot

Far-Field Spectrum plots are also simple xy plot with the 2 y-axis functions shown. Note that the y-axis in
in arbitrary logarithmic units. They are non-physical. This is done so that once can compare spectra at different
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distances.

Figure A.4: Spatial-Temporal Plot

Spatial-Temporal plots are 2D plots with a colorbar providing the 3rd dimension. The axis are as labeled.
The colorbar is normalized field values. Actual y-axis values can be found in the same way as in the spatial and
temporal plots above.

Figure A.5: Left: K-Omega Plot without truncation. Right: K-Omega plot with truncation at -10 and -2.

K-Omega plots are linear 2D plots of logarithmic data with a colorbar providing the 3rd dimension. The axis
are as labeled. The colorbar range can be adjusted in the configuration file. The image above shows a situation
where you would want to truncate some of the data for plotting. The image on the left shows that the full dataset
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spans about 48 orders of magnitude. The yellow color that dominates the image is over 15 orders of magnitude
smaller that the maximum signal. The image on the right shows where we have truncated the data above -2 and
below -10. This is to mimic a lab situation where the intensity peaks are saturated so that data within the detectors
response range (in this case 8 orders of magnitude) is resolvable. The orders of magnitude plotted is controlled by
the KOcdt variable in the genPlot.cfg configuration file.

A.2.5 Editing the Plot code

The configuration file included with the code only allows for a few modifications to the plotting routine. If further
plot customization is desired then one can edit the plotting code itself. The plotting code has been written in such
a way that basic modifications such as titles, axis labels, x-axis data range and y-axis data range can easily be
modified by someone with minimal Python coding experience. All of the plotting functions in genplot.py are at
the beginning of the file. Each plot type has a function name beginning with plot. For example, FFS plots have
a function plotFFS. Variables have been set-up in the various functions to allow easy modifications to the plots
appearance. These will be discussed in the following subsections. More substantial plot edits will be left o the user.
There are many online resources for Python plotting with matplotlib.

T, S & FFS plot editing

These plots are all plotted in the same manner. The plotting functions give the user 4 editable variables as shown
below.

1 de f plotS ( title , dataFile ) :
2 title = title
3 labels = [ ’Time ’ , ’Norm Fie ld ’ , ’ I n t e n s i t y ’ , ’ Real F i e ld ’ , ’ Imaginary F i e ld ’ ]
4 xLimits = [ ]
5 yLimits = [ ]
6 plotSimple ( title , dataFile , ’ 3 ’ , os . path . join ( plotPath , ’ S/ ’ ) , labels , xLimits , yLimits )

Variable: How to edit
title By default title is set to the filename that contains the data being plotted. For example: A S c0 0. To

set a custom title change line 2 to title = ”Your Title in Quotes”.
labels Name of header file that user addon will be written in. The first 2 items in the list are the x-axis labe &

the y-axis label. The remaining items are the plotted data labels that will show up in the plot legend.
(xy)Limits By default these are empty lists. This will cause all of the data to be plotted. If you want to limit

the data simply put 2 comma-separated numbers inside the square brackets. For example: xLimits =
[0.1, 4.4].

The plotSimple line in this function should not be edited. However, if one desires to completely hide labels
or remove the legend then one can comment out (Python comments begin with #) the appropriate lines in the
plotSimple function.

KO & TS plot editing

Editing these plots is a little more involved than the first plots. The actual line of plotting code looks like this:

1 im = ax . imshow ( d1 ,
2 cmap=plt . get_cmap ( ) ,
3 extent=[tMin , tMax , rMin , rMax ] ,
4 vmin = minV , vmax = maxV ,
5 aspect=’ auto ’ )

For these plot types there is no legend enabled. To change the text associated with the axes or the plot title look
for the relevant lines in the plot code. They will be labeled plt.title, plt.xlabel, plt.ylabel. Simply change these
to the desired values. The x & y limits are set by the extent variable on line 3. The order of the variables in the
list is [xMin, xMax, yMin, yMax]. By default their values are set to the maximum extent of the data. To change
this simply replace the values shown by the values desired. For example: extent = [0, 4, 0, 2]. Similarly, the vmin,
vmax on line 4 control the limits of the colorbar. To change simply set vmin and vmax to the values desired. for
the KO plots this can also be achieved by editing the configuration file instead of editing the code.
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B Input Files
An input file is used to detail the simulation run to gUPPEcore. gUPPEcore always uses input from a single
rigidly structured file. If the rigid structure is not followed gUPPE will let the user know what input is expected.
Theoretically, a complete input file could be generated by passing gUUPEcore a blank input file and then adding
parameters to it as the program complains. This would require a significant patience by the user. The following
section shows compulsory section/subsection headings along with relevant parameters. Some parameters may vary
depending on simulation configuration. Compulsory section/subsection headings must be in the input file, even if
”empty.” Note that the parameters listed in the input file are in MKS units unless otherwise specified.

B.1 gUPPE Parameters

All input files must start with the following line. This allows gUPPEcore recognize the input file.

gUPPE Parameters

ODE Driver

The first section of an input file is the ODE driver section. The driver section specifies how the ODE solver should
behave, propagation distance to simulate, simulation run base name etc.

ODE driver
base name A # Output f i l e base−name .
z s t e p 1 .0 e−03 # [m] I n i t i a l i n t e g r a t i o n s t e p
z s t op 0 .1 e−00 # [m] Fina l propagat ion d i s t a n c e
t o l a b s 1e+04 # [m] I n t e g r a t i o n s t e p c o n t r o l : Note 1
t o l r e l 0 # [m] I n t e g r a t i o n s t e p c o n t r o l : r e l a t i v e e rro r
max step 0 .05 # [m] Maximal z−s t e p i n t e g r a t o r can use
method rk f45 # ODE method : Note 2
s t ep type adapt ive # Adaptive or f i x e d

Note 1: tol abs is the setting for integration step control absolute error. This parameters value will depend on the field
normalization in the SPECTRAL representation. It is best to treat these values as purely ”experimental”
because it is difficult to predict what a reasonable parameter is in any given case. Absolute tolerances may
seem rather high, but this is because electric field unit used is V/m, and we are often dealing with high
intensities.

Note 2: The method is the ODE method to use. NEVER try to use an (implicit) ODE method that requires Jacobian!
This is because the underlying ODE systems are HUGE, and such methods simply do not work for systems
that may contain many millions (sometimes more than a billion!) variables. (see uppe solver.h header for
implemented ODE methods)

B.2 UPPE Observer

The next section is the UPPE observer section. The observer section controls several ”levels” of outputs, from
inexpensive at level 1 to full check-point files at level 4. This section has six compulsory sub-sections.

UPPE observer
I n t e n s i t y u n i t 1 e17 # [W/mˆ2] I n t e n s i t y u n i t f o r output f i l e s
I n r e p o r t 1 :

Report1 per iod 0 .01 # [m] How o f t e n r e p o r t i s w r i t t e n
I n r e p o r t 2 :

Report2 per iod 0 .01 # [m] How o f t e n r e p o r t i s w r i t t e n
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T−temporal−p r o f i l e [ y/n ] y # Time , i n t e n s i t y , r e a l part , imag par t
S−s p a t i a l−p r o f i l e [ y/n ] y # At o b s e r v a t i o n f o c u s : Note 1
FFS−Far−f i e l d s p c [ y/n ] y # FF & angle−i n t e g r a t e d ( t o t a l ) spectrum
M−medium response [ y/n ] n # Medium response : Note 2

I n r e p o r t 3 :
Report3 per iod 0 .1 # [m] How o f t e n r e p o r t i s w r i t t e n

KO−spectrum [ y/n ] n # Angle r e s o l v e d spectrum : Note 3
Spat ia l−Temporal−Map[ y/n ] n
Spat ia l−Omega−Map[ y/n ] n

I n r e p o r t 4 :
Report4 per iod 0 .0 # [m] Zero here means r e p o r t never w r i t t e n

Check point out [ y/n ] n # Note 4
Medium focus 1 # Note 5

Note 1: The spatial profile is taken at the temporal position corresponding to the observation focus.
Note 2: The medium response can include, but is not limited to, the optical Kerr effect, plamsa...
Note 3: Angularly resolved spectrum where K is the transverse wavenumber and O is ω, the angular frequency
Note 4: A ’y’ here will save a final checkpoint file. See example 3.6 for checkpoint file usage.
Note 5: This variable selects a medium response to output in Report-level-1. The available medium responses are

defined in the UPPE medium response section of the input file. In that section, if num. of items is set to
2 then the valid values for this Medium focus variables are 0 & 1. With 0 being the first medium response
defined in UPPE medium response and 1 being the second. Set to -1 to not include any of the medium
responses.

See Appendix C for a complete description of each report type.

B.3 gUPPE Domain Parameters

This section specifies the ”computational box” and number of field components that it holds. It is broken down
into subsections for time & spatial dimensions.

gUPPE Domain Parameters
Domain Temporal

components 1 # Number o f p o l a r i z a t i o n components
guard f r equency [m] 1 e25 # [m] Boundary guard : Note 1
Axis Parameters

a x i s t y p e AXIS TEMPORAL # Note 2
r ea l−s p a c e s i z e 750 .0 e−15 # [ seconds ] temporal domain l e n g t h
number o f po ints 4096 # Sampling p o i n t s : Note 3
i n i t t y p e 2 # Note 4

T Domain Dispersion # S ubse c t i on f o r type−TEMPORAL a x i s on ly
l ambda re f e r ence 2000 .0 e−09 # [m] Reference wave length
omega re f e rence 2 .356194 e+15 # This i s c a l c u l a t e d from lambda re f .
omega min 0.500000 e+14 # Minimal a c t i v e angu lar f requency
omega max 5.500000 e+15 # Maximal a c t i v e angu lar f requency
index phase 1 .375161 e+00 # Note 5
index group 1.499803 e+00 # Note 5
gvd 2.315337 e−26 # [ s ˆ2/m] Note 5
s u s c e p t i b i l i t y f i l e 0 a i r c h i . tab # S u s c e p t i b i l i t y f i l e −name : Note 6

Domain Spatial
domain type DOMAIN RADIAL # Note 7
Domain radial

Domain axis
a x i s t y p e AXIS RADIAL # RADIAL or LINEAR
r ea l−s p a c e s i z e 2 . 5 e−03 # [m]
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number o f po ints 512 # Sampling p o i n t s : Note 8
i n i t t y p e 0 # For RADIAL, s e t s B e s s e l order

Note 1: Boundary guard in real space applied periodically after this distance. This should only be used RARELY! In
this example, case the parameter effectively eliminates application of the guard...

Note 2: Valid axis types: AXIS LINEAR, AXIS RADIAL or AXIS TEMPORAL
Note 3: Number of sampling points: This must be an ”FFT-nice” number! An FFT-nice number is generally a

number that is the product of small primes.
Note 4: 0→default choice of FFT, 1→better, 2→better yet (best choice), 3→do not use, takes too long
Note 5: These three values would be used to calculate NLS-like dispersion ONLY IF susceptibility table file not

specified. Normally we set these numbers negative, and they are re-calculated.
Note 6: File-name in which the susceptibility tabulation is stored, includes one line for each component.
Note 7: Type can be DOMAIN RADIAL or DOMAIN LINEAR x LINEAR. For DOMAIN LINEAR x LINEAR

both an x & y Domain axis must be defined. See example following this section for DO-
MAIN LINEAR x LINEAR usage.

Note 8: See worked out example 3.3 for case where a small number of sample points will require the use of n=1
(number of threads/processors) in the simulation

# DOMAIN LINEAR x LINEAR example
gUPPE Domain Parameters

# S e c t i o n s not shown i d e n t i c a l to above example
Domain Spatial

domain type DOMAIN LINEAR x LINEAR
D o m a i n l i n e a r x l i n e a r

Domain axis x
a x i s t y p e AXIS LINEAR
rea l−s p a c e s i z e 0 .015 # [m]
number o f po ints 1024 # Sampling p o i n t s : ”FFT−nice ”
i n i t t y p e 2 # For LINEAR same as Note 4 above .

Domain axis y
a x i s t y p e AXIS LINEAR
rea l−s p a c e s i z e 0 .015 # [m]
number o f po ints 1024 # Sampling p o i n t s : ”FFT−nice ”
i n i t t y p e 2 # For LINEAR same as Note 4 above .

B.4 Initial Conditions

This section passes initial condition parameters to gUPPEcore. This is generally the input pulse. In the worked
out examples there are examples for Gaussian x Gaussian 3.4, Secanthyp x Gaussian 3.3 and for implementing a
user-defined initial condition 3.8.

I n i t i a l c o n d i t i o n s
CKPT in none # Filename o f check−p o i n t f i l e : Note 1
num. o f i t e m s 1 # Note 2
t y p e i d s t r i n g Gauss ian x Gauss ian # Note 3

I n i t i a l s e c a n t h y p p u l s e # Note 4
f i e ld component 0 # Component o f o p t i c a l f i e l d to be ADDED to
space [R/S ] R # Real or s p e c t r a l space
i n p u t i n t e n s i t y 60 .0 e+13 # [W/mˆ2]
wavelength 8 .0 e−07 # [m]
p u l s e d i s t a n c e 0 # [m] Distance to propagate b e f o r e e v a l u a t i n g
t i m e s h i f t 2e−12 # [ s ] Temporal domain s h i f t
p u l s e d u r a t i o n 100 .0 e−15 # Tau in the Gaussian e x p o n e n t i a l
p u l s e w a i s t 0 . 0 # [m] Waist parameter w
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t empora l s o rde r 1 # Supergauss ian order : Note 5
r a d i a l s o r d e r 1 # Same in r a d i u s
p u l s e f o c u s 0 # [m] 0 f o r i n f i n i t e f o c a l l e n g t h
c a r r i e r p h a s e 0 # Carrier−enve lope phase
p u l s e c h i r p 0 # Chirp parameter
pul se nb 1 .0 # Note 6
pu l s e ng 1 .0 # Note 6
pul se gvd −5.0e−26 # Note 6

Note 1: File name of a check-point file to read. It will override any initial condition specified in the input file. ’none’
means that no ckp file will be read. See example 3.6 for checkpoint file usage.

Note 2: More than 1 item can be specified! Each item will have it’s own subsection. Items may be of different types.
They are either predefined in gUPPEcore standard initial condition set, or users can define their own initial
condition objects. Initial condition objects have two purposes: to hold parameters & to define and implement
the initial condition function.

Note 3: This identifies the class to be instantiated at this point in reading the input. It is an example of an initial-
condition object included in gUPPEcore. This case uses direct product of temporal and spatial Gaussians.

Note 4: This is just a name defined in the corresponding header file.
Note 5: 1 = Normal Gaussian, 2 = Gaussianˆ2, etc...
Note 6: These three values are used ONLY if pulse distance is not zero. They are used to parameterize the linear

propagation formula.

B.5 Medium Response

Several objects can be included in the section for medium-response models. Each item in this section is a named-
parameter list which has a function that computes the nonlinear response to the given temporal profile of the optical
field. User-defined medium-response objects can be included in this section. This example shows the ”Standard
Filamentation Model” medium-response. The two objects listed here are included in the gUPPEcore, but it is
intended that users normally define their own medium-response objects.

UPPE medium response
num. o f i t e m s 2 # Note 1
t y p e i d s t r i n g K e r r e f f e c t # Type ID − Class ID
K e r r e f f e c t # Item name

on/ o f f on # Use o f f to s w i t c h o f f
n2 1e−23 # [mˆ2/W] Nonlinear index v a l u e
nb 1 # ’ background ’ r e f r a c t i v e index
c a r r r e s [ y/n ] y # Note 2

t y p e i d s t r i n g MPI and Plasma
Plasma

on/ o f f on plasma # Plasma on or o f f
background dens i ty 0 # Plasma d e n s i t y in background
c o l l i s i o n t i m e 3 .5 e−13 # [ s ] Contro l s damping in the Drude curren t model
E g [ eV ] 11 # [ eV ] Used to e s t i m a t e MPI l o s s e s
source 1 on / o f f on source 1 # Two MPI sources :
n e u t r a l d e n s i t y 1 5e+24 # Number d e n s i t y per c u b i c meter
mpi cross−s e c t i o n 1 8 .85 e−105 # [mˆ2] Both sources are f i t t e d wi th an
mpi order 1 6 .5 # e f f e c t i v e power law
source 2 on / o f f on source 2 # . . . same f o r source two
n e u t r a l d e n s i t y 2 2e+25
mpi cross−s e c t i o n 2 7 .9 e−124
mpi order 2 7 .5
response mode j mode # Pre ferred : dr i ven by curren t
re f omega 2 .35 e+15 # Only used in sigma−mode
mpi l o s s on / o f f on mpi l o s s # Loss due to MPI
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avalanche on / o f f o f f # Not used in very s h o r t p u l s e s

Note 1: num. of items = how many components of medium response are specified in this input file
Note 2: Values y/n select if the nonlinear response is driven by cycle-averaged intensity (n) or by electric field with

a resolved carrier wave (y). NOTE: use ’y’ to include harmonic generation.

B.6 Operator Prolog

Operators can be applied to the initial field. They are executed after the ”raw” initial condition has been set.
UPPEcore runs user-specified operators acting on the optical waveform, this is done twice:

1. in Operator Prolog

2. in Operator Epilog

Operator Prolog is a series of ”transformations” applied AFTER initial conditions are introduced in the compu-
tational domain, and BEFORE the main evolution solver loop is entered The idea is to implement experimental
optical elements such as apertures, polarizers, lenses, axicons, filters, etc. gUPPEcore implements only a few
basic operators, and user-defined transformations can be added. Consult the simulation template dealing with
user-defined operators to see how this can be done and what operators are already defined in the gUPPEcore.

UPPE Operator Prolog
num. o f i t e m s 0 # In t h i s case t h e r e i s noth ing to do in Prolog

B.7 Operator Epilog

Operators can also be applied after the final requested propagation distance has been reached. One can think of
this section as a model for measurement ”apparatus.” For example, one can apply color filters or apertures before
final measurement is done. Operator Epilog is a series of ”transformations” applied AFTER the main evolution
loop has been executed. The set of applicable operators is the same as in Prolog. The idea of Epilog is to implement
the ”detection” part of an experiment.

UPPE Operator Epilog
num. o f i t e m s 4 # Four e lements from t h i s input

t y p e i d s t r i n g Operator Lin−Prop # Linear propagat ion
UPPE Operator Lin−Prop

d i s t anc e 0 .7 # [m] . . . f o r t h i s l e n g t h
t y p e i d s t r i n g Operator BandPass # O p t i c a l f i l t e r

UPPE Operator BandPass
omega min 4 .25 e+15
omega max 5 .00 e+15
component ( s ) 0 # P o l a r i z a t i o n Component : Note 1

t y p e i d s t r i n g Operator Report # Observer r e p o r t
UPPE Operator report

r epo r t type [ 1 , 2 , 3 , 4 ] 2 # Note 2
t y p e i d s t r i n g Opera to r Po l a r i z e r # P o l a r i z e r opera tor
UPPE Operator Polarizer

component 1 0 # S p e c i f i e s two p o l a r i z a t i o n axes
component 2 1
ang l e [ deg ] +45.0 # . . . and o r i e n t a t i o n

Note 1: Select polarization component to apply to, choose -1 to apply to all.
Note 2: In this case, Report 2 saves samples of the optical waveform this may be useful for inspection between optical

elements.
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C Output Files
gUPPEcore produces output files form 2 sources. The first source is the standard output stream. gUPPEcore
directs lots of useful information into the standard output stream. This is usually captured in a rec file as shown
in section 2.3. The top of the recA output is an exact re-statement of the input, and as such it can be used to
re-create an identical simulation. The record file is thus a convenient mechanism to store initial properties of the
simulation together with some global observables it calculated.

C.1 UPPE Observer Reports

The second kind of output are files written by the UPPE observer as specified in the input file. These files
usually contain the human-readable results of the simulation. How often these files are written is determined by
the UPPE observer section of the input file (as shown in B.2). They are organized into columns or hold a matrix
(rectangular array). The first column is always the independent variable, while the following columns hold different
quantities. Complex-valued quantities (field amplitudes) are usually stored in the following order: modulus squared,
real part of amplitude, imaginary part of amplitude.

Abr Name Level Description

DBG Debug Output - Debug information. Generally not used.

T Temporal Profile 2 On-axis temporal profile of the field.
Report file columns: Time, Intensity, Real Field, Imaginary Field.

S Spatial Profile 2 Radial or spatial profile of the field.
Field taken at global intensity maximum corresponding to observa-
tion focus.
Report file columns: Time, Intensity, Real Field, Imaginary Field.

FFS Far-Field Spectrum 2 On-axis and angle-integrated (total) spectrum.
Report file columns: Time, Total Spectrum, On-axis Spectrum.

M Medium Response 2 Polarization and current medium response.

KO Angularly Resolved Spectrum 3 Angularly resolved spectrum for RADIAL spatial domain only.
Report file: 2D Matrix

ST Spatio-Temporal Map 3 2D matrix slice spanning time & spatial axis.
2D case: time & radius.
3D case: time & y for x = 0.
Report file: 2D Matrix

CKP Checkpoint File 4 Contains complete field snapshot in binary. Used as a re-start point
for simulations. Also used for user-defined observation. Since they
hold complete information at a given propagation distance they allow
the most general definition of observables.

C.2 Report Filename Convention

The observer reports have a very specific file naming convention. The convention is intended to give a description
of what type of data the file contains. See the legend below for convention & description:
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1) Output files start with base-name as specified in the ODE driver section of the input file.
2) Type of report data in file. See table below for report data description.
3) c0, c1, ... labeling the (polarization) component of the field
4) integer labeling the Report - this maps to the propagation distance the mapping can be determined by

extracting header REP2 from a record file - these lines specify the report label and their corresponding
propagation distances.

5) r integer specifies the parallel CPU rank. Most of the outputs will have this equal to ” r 0” because the rank-
zero process creates consolidated files that collect information from all parallel mpi processes. However, two-
dimensional outputs (rect. arrays) are kept split into their rank-portions. If needed different files XXX r yy
can be concatenated into a single file for visualization. Often only the ranks that hold the central portion of
the computational domain are needed for visualization, so it is efficient to save them rank-separated.
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D Advanced Topics in User-Addons
A deeper understanding of the gUPPE user-addon system may be necessary for more complex situations. Topics
related to these advanced topics are presented in this appendix.

D.1 C++ GNU Scientific Library

gUUPEcore includes the GNU Scientific Library, a.k.a GSL, in the include/gsl folder. GSL mathematical routines
can be used when writing user addons by including the relevant header file in the addon code. More information
about the GSL can be found on the GSL website.

D.2 From MATLAB to C++

Those who primarily use MATLAB codes may find some adjustment is needed to create mathematical C++ codes.
Some examples that one may run into when writing addons are:

• The syntax for things like variable declaration and function calling differ.

• MATLAB ”dot-operators”, like .* and .ˆ, are not used in C++.

• In C++, indexes (subscripts) are 0 based instead of 1 based.

• C++ functions only return single values while MATLAB functions can return many values.

There are other differences which are beyond the scope of this guide. There are many online resources, including
the MATLAB official documentation, that discuss the differences between writing C++ code at MATLAB code.

D.3 The user-addon Operate function

In the Operate function shown in section 2.5.2 calculates a phase contribution for every frequency and polarization
state. It then stores that phase in the following structure:

t a r g e t [ o∗numC + c ] ∗= phs

Where:
• target is the array on which the operator acts.
• o is the frequency integer index.
• c is the polarization integer index.
• numC is the number of polarization states, either 1 or 2.
• phs is the calculated phase.

This structure applies the results of each phase calculation into a uniquely indexed array. If there is only 1
polarization state (numC = 1) then the phase results are stored in sequential indexes. If there are 2 polarization
states (numC = 2) then the first polarization state (polarization 0) is stored in even values while the other polar-
ization state (polarization 1) is stored in odd values. This is the structure of the target array so the results of the
operator must be presented in this same manner. If not then the operator will operate on unintended frequencies.
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