
1
T
t
t
c
r
p
a
(
a
p
i
b
m
p
t
t
t
t
p
i
f

t
b
p
[
[
s
s
b
s
d
p

Yioultsis et al. Vol. 26, No. 10 /October 2009 /J. Opt. Soc. Am. A 2183
Explicit finite-difference vector beam propagation
method based on the iterated

Crank–Nicolson scheme

Traianos V. Yioultsis, Giannis D. Ziogos, and Emmanouil E. Kriezis*

Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki,
GR-54124 Thessaloniki, Greece

*Corresponding author: mkriezis@auth.gr

Received May 22, 2009; revised August 19, 2009; accepted August 21, 2009;
posted August 21, 2009 (Doc. ID 111748); published September 16, 2009

We introduce and develop a new explicit vector beam propagation method, based on the iterated Crank–
Nicolson scheme, which is an established numerical method in the area of computational relativity. The pro-
posed approach results in a fast and robust method, characterized by simplicity, efficiency, and versatility. It is
free of limitations inherent in implicit beam propagation methods, which are associated with poor convergence
or uneconomical use of memory in the solution of large sparse linear systems, and thus it can tackle problems
of considerable size and complexity. The advantages offered by this approach are demonstrated by analyzing a
multimode interference coupler and a twin-core photonic crystal fiber. A possible wide-angle generalization is
also provided. © 2009 Optical Society of America
OCIS codes: 00.4430, 130.2790, 130.0130, 060.5295.
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. INTRODUCTION
he beam propagation method (BPM) is considered one of
he leading computational methods for the analysis of in-
egrated photonic devices and fiber-based components. A
onsiderable range of methodologies and formulations is
eported in the literature, depending on the physics of the
roblem under investigation. A particularly interesting
rea of research is the application of vectorial BPM
VBPM) formulations for the study of optical waveguides
nd components that exhibit significant polarization de-
endence and coupling phenomena [1–3]. The overwhelm-
ng majority of finite difference (FD) and finite-element-
ased (FE) BPMs [4–6] rely on implicit schemes, which
ay render their application to problems of larger scale

rohibitive, especially if memory requirements necessi-
ate the use of iterative solvers to deal with the solution of
he linear system at each step of the BPM algorithm. On
he other hand, explicit techniques are very appealing, as
hey can extend BPM applicability to problems of larger
hysical scale; in addition, they easily allow for parallel
mplementations. However, they seem to be severely af-
ected by stability issues or poor accuracy.

In general, the number of explicit schemes available in
he BPM literature is rather limited. Such schemes could
e broadly classified into earlier, conditionally stable ex-
licit FD algorithms relying on central axial differences
7–9] and schemes based on the DuFort–Frankel method
10–12]. The latter class of methods is unconditionally
table and second-order accurate. In particular, [12] pre-
ents a proper modification to account for long-term insta-
ility problems. It seems, though, that the inherent incon-
istency of the DuFort–Frankel scheme [11] not only
owngrades its accuracy to the first order but also
lagues the solution with spurious artifacts.
1084-7529/09/102183-9/$15.00 © 2
In search of an efficient explicit VBPM approach, a
owerful technique appears to be the iterated Crank–
icolson (ICN) scheme, which comes from the area of

omputational relativity and is well suited to the numeri-
al treatment of parabolic differential equations. It has
een suggested by Choptuik that the well-known Crank–
icolson (CN) method can actually be replaced by an it-

rated scheme [13]. This has been done very successfully
ver the past years in solving Einstein’s equations for
eneral relativity. The ICN method has become one of the
ominant approaches to solve problems of black-hole col-
isions, star formation, gravitational collapse, and other
osmological scenarios, which are problems of such a tre-
endous computational scale that they render any kind

f method that employs a sparse system solution imprac-
ical. The primary merit of this technique is that the sys-
em solution at each step of the usual CN method is re-
laced by a simple iteration, involving only sparse matrix
ultiplications. The price that one has to pay is that the

terative technique is no longer unconditionally stable,
nd therefore the step size has to be chosen according to a
tability condition. However, stability analysis shows that
xactly two iterations per step and no more are necessary
13,14], while the iterative scheme fully retains its
econd-order accuracy.

In this paper, we propose a fully explicit vector BPM
pproach, based on the ICN method. A vectorial formula-
ion has been chosen to account for a broad range of de-
ices, as typically anticipated in state-of-the-art photonic
echnology. A step-by-step derivation of the underlying
ormulation and its numerical implementation via the
CN scheme is thoroughly presented in Section 2. A route
o the construction of wide-angle variants is discussed in
ection 3. A class of diverse large-scale problems are tar-
009 Optical Society of America
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eted in Section 4, in particular, a 1�4 multimode inter-
erence coupler, a twin-core photonic crystal fiber coupler,
nd also a tilted ridge waveguide for evaluating wide-
ngle propagation. Extensive validation and assessment
f the proposed scheme are carried out with respect to
ther well-established VBPM techniques.

. FORMULATION
he development of the VBPM is based on the vector
ave equation for isotropic media,

� � � � E − k0
2n2E = 0, �1�

hich is equivalently written as

�2E + k0
2n2E − ��� · E� = 0. �2�

In Eq. (2) n=n�x ,y ,z� is the index of refraction, which is
ssumed to vary slowly along the main propagation axis
. Under the assumption �n2 /�z�0 and taking into ac-
ount the zero divergence of the electric flux density,
· �n2E�=0, the vector formulation (2) is decomposed into

he following three scalar equations:

�2Ex +
�

�x� 1

n2

�

�x
�n2Ex�� +

�

�x� 1

n2

�

�y
�n2Ey�� −

�2Ex

�x2 −
�2Ey

�x�y

+ k0
2n2Ex = 0, �3a�

2Ey +
�

�y� 1

n2

�

�y
�n2Ey�� +

�

�y� 1

n2

�

�x
�n2Ex�� −

�2Ey

�y2 −
�2Ex

�y�x

+ k0
2n2Ey = 0, �3b�

2Ez +
�

�z� 1

n2

�

�x
�n2Ex�� +

�

�z� 1

n2

�

�y
�n2Ey�� −

�2Ex

�z�x
−

�2Ey

�z�y

+ k0
2n2Ez = 0. �3c�

The above equations are exact for optical devices that
re uniform along the propagation axis z but are also con-
idered fairly accurate for the cases where the longitudi-
al variation is sufficiently small compared with the
ransverse one. To develop the BPM, one has to express
he electric field as the product of a fast-varying reference
hase term and a spatial field envelope Ẽ,

E = Ẽ exp�− jkrefz�, �4�

here kref=k0nref and nref is an arbitrarily chosen refer-
nce refractive index. Substituting Eq. (4) into Eqs. (3)
nd applying the paraxial approximation, i.e., ��2Ẽ /�z2�
2kref��Ẽ /�z�, the second-order derivative term of the

eld envelope with respect to z is dropped, and the
araxial envelope vector equations are written in compact
orm as

�

�z��Ẽx

Ẽy
�� = �Axx Axy

Ayx Ayy
��Ẽx

Ẽy
� , �5a�
�Ẽz

�z
= AzzẼz + B�Ẽx,Ẽy�, �5b�

here the differential operators Axx, Axy, Ayx, Ayy, Azz, B
re defined as

AxxẼx =
1

j2kref
� �

�x� 1

n2

�

�x
�n2Ẽx�� +

�2Ẽx

�y2 + k0
2�n2 − nref

2 �Ẽx� ,

�6a�

AxyẼy =
1

j2kref
� �

�x� 1

n2

�

�y
�n2Ẽy�� −

�2Ẽy

�x�y
� , �6b�

AyxẼx =
1

j2kref
� �

�y� 1

n2

�

�x
�n2Ẽx�� −

�2Ẽx

�y�x
� , �6c�

AyyẼy =
1

j2kref
� �

�y� 1

n2

�

�y
�n2Ẽy�� +

�2Ẽy

�x2 + k0
2�n2 − nref

2 �Ẽy� ,

�6d�

AzzẼz =
1

j2kref
� �2Ẽz

�x2 +
�2Ẽz

�y2 + k0
2�n2 − nref

2 �Ẽz� , �6e�

�Ẽx,Ẽy� =
1

j2kref
	 �

�z
− jkref
� 1

n2

�

�x
�n2Ẽx� +

1

n2

�

�y
�n2Ẽy�

−
�Ẽx

�x
−

�Ẽy

�y
� . �6f�

The above differential operators, when discretized by
nite differences in the transverse plane, are equivalent
o sparse matrices At, Az, and B. All differential operators
re treated via the usual central finite differences, as ex-
ensively discussed in the related literature; see for in-
tance [2]. Therefore, Eqs. (5) are cast in matrix form as

�

�z
Ẽt = AtẼt, �7a�

�

�z
Ẽz = AzẼz + BẼt, �7b�

here Ẽt is a column vector comprising the nodal values
f the x and y components of the electric field envelope
nd the column vector Ẽz contains the nodal values of the
xial component.
Equations (7) are typically solved via an implicit CN

cheme, which is unconditionally stable provided that its
eight parameter varies within the interval [0.5,1]. How-
ver, the implicit nature of the scheme demands appre-
iable computational resources, especially for large-scale
hree-dimensional problems, as a sparse linear system
eeds to be solved in every propagation step. A promising
lternative is to replace the implicit CN scheme with an
quivalent iterated version [13,14]. This will effectively
ransform the implicit technique into an explicit one.
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heoretically, the ICN scheme converges to the implicit
ne in an infinite number of iterations per step; however,
very limited number of iterations is sufficient to guar-

ntee second-order accuracy. Stability analysis suggests
hat the smallest possible number of iterations is equal to
wo [13]. Contrary to the conventional CN scheme, which
s unconditionally stable, the ICN is restricted to axial
propagation) steps that are below a limiting threshold.

We present the implementation of the ICN scheme in
he following steps. The transverse electric field Eq. (7a)
s treated first. The iteration starts by calculating a first
pproximation �1�Ẽt

l+1 of the transverse field at the next
ropagation plane l+1 by discretizing Eq. (7a) using for-
ard finite differences:

�1�Ẽt
l+1 − Ẽt

l

�z
= AtẼt

l . �8�

dvancing the field using only Eq. (8) would correspond to
he well-known first-order explicit Euler scheme. Then,
n estimate of the field at the midstep plane �l+1/2� is
ormed by averaging:

�1�Ẽt
l+1/2 = a1

�1�Ẽt
l+1 + �1 − a1�Ẽt

l , �9�

here a1 is the ICN weight parameter, analogous to the
eight parameter of the conventional CN scheme. Simi-

arly, a second iteration provides a new estimate of the
eld at the next propagation plane l+1,

�2�Ẽt
l+1 − Ẽt

l

�z
= At

�1�Ẽt
l+1/2, �10�

hile a next improved midstep value is obtained by aver-
ging:

�2�Ẽt
l+1/2 = a2

�2�Ẽt
l+1 + �1 − a2�Ẽt

l . �11�

n general, the ICN weight parameters a1 and a2 could be
ifferent. In most cases the weight parameters are natu-
ally selected equal to 1/2, and this practice is followed
hroughout this paper. Finally, the iteration is completed
y the final estimate of the next plane field:

Ẽt
l+1 − Ẽt

l

�z
= At

�2�Ẽt
l+1/2. �12�

If one wishes to establish a direct relation between
elds at two consecutive transverse planes, without the
id of the above intermediate steps, it can be easily
roved that Eqs. (8)–(12) are equivalent to

Ẽt
l+1 = �I + �zAt + a2��zAt�2 + a1a2��zAt�3�Ẽt

l . �13�

owever, we stress that throughout this paper the field
pdates are performed according to Eqs. (8)–(12). Al-
hough it is equivalent to apply Eq. (13) explicitly, this
ight give the misleading impression that one has to di-

ectly compute the denser matrices At
2 ,At

3, which would
esult in a less efficient scheme in terms of memory man-
gement. In order to apply Eq. (13), matrix powers should
e indirectly calculated via matrix-vector products of the
orm AnẼl=An−1�A Ẽl�.
t t t t t
In a similar way, the axial component Ẽz will be calcu-
ated by implementing two ICN iterations in Eq. (7b), us-
ng the already available values of the column vector Ẽt:

�1�Ẽz
l+1 − Ẽz

l

�z
= AzẼz

l + BẼt
l+1/2, �14�

�1�Ẽz
l+1/2 = a1

�1�Ẽz
l+1 + �1 − a1�Ẽz

l , �15�

�2�Ẽz
l+1 − Ẽz

l

�z
= Az

�1�Ẽz
l+1/2 + BẼt

l+1/2, �16�

�2�Ẽz
l+1/2 = a2

�2�Ẽz
l+1 + �1 − a2�Ẽz

l , �17�

Ẽz
l+1 − Ẽz

l

�z
= Az

�2�Ẽz
l+1/2 + BẼt

l+1/2. �18�

t should be noted that the value of the transverse field at
he midstep plane involved in Eqs. (14), (16), and (18) is
imply the average value between planes l and l+1.

The explicit manner of the proposed formulation elimi-
ates the need for solving a sparse linear system at each
ropagation step, which is the case in all implicit
chemes. However, the ICN scheme is no longer uncondi-
ionally stable, and stability analysis results in a con-
traint for the maximum allowed step size. In fact, the
aximum axial propagation step �z depends on the

ransverse cell size �x, �y, and it is typically found to be
maller than in the case of an implicit scheme; however, it
ill be proved that this is not restrictive, since the com-
utational effort per propagation step is found to be mini-
al in our approach. In particular, the amount of compu-

ational effort per propagation step corresponds to three
atrix-vector multiplications, as opposed to the single
atrix-vector multiplication involved in other explicit

chemes. However, the latter ones are only first-order ac-
urate, a fact that has a great impact on the solution ac-
uracy. It is stressed that our scheme is second order, and
hus all comparisons are performed against the second-
rder accurate CN scheme. In Section 4 it will be demon-
trated that the overall gain in computation speed is sig-
ificant despite the increase in the number of propagation
teps.

A rigorous von Neumann stability analysis, performed
or the two-iteration ICN scheme and taking into account
q. (13), results in an amplification factor equal to

� = ��I + �zAt + a2�z2At
2 + a1a2�z3At

3�, �19�

here ��M� is the spectral radius of matrix M, i.e., its
aximum eigenvalue, which can be easily estimated.
ence, a stability criterion for the maximum step size �z

s derived by the constraint ����1. For the reasonable
hoice a1=a2=1/2 it can be rigorously proven that the
tability condition reduces to
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�z �
2

��− jAt�
, �20�

hich is easier to estimate. To get a rough estimate for
he maximum allowed step size in the ICN-FD-VBPM
ithout extracting the matrix eigenvalues, we can employ
classical von Neumann stability analysis by considering
single spatial Fourier component and requesting that

he amplification factor stay below 1. After some algebraic
anipulations, we obtain the much simpler Courant-like

pproximate stability condition:

�z � min�� 1

kref
	 1

�x2 +
1

�y2
 −
k2 − kref

2

4kref
�−1� . �21�

The analysis could be easily generalized for a number
f n ICN iterations per step, following the pattern of Eq.
13) and the associated Eq. (19). After the algebraic ma-
ipulations for an arbitrary number of iterations, the am-
lification factor can be written in compact form as

� = �	

k=0

n+1 	�
i=2

k

an−i+2
�zkAt
k
 . �22�

n an analogous manner, it can be proved that the ICN
cheme is unstable for a single iteration, conditionally
table for two or three iterations, unstable for four or five
terations, and so forth. This fact provides the rationale
or the choice of the two-iteration ICN approach. Further-
ore, for weight parameters a1=a2=1/2 it is easily

roved that the ICN scheme is second-order accurate [14].
ther choices for a1 ,a2 may be useful for reinforcing sta-
ility or making the overall scheme more dissipative, at
he expense of compromising second-order accuracy.

A series of numerical examples are presented in Sec-
ion 4 to assess the accuracy and efficiency of the pro-
osed ICN scheme, which will be hereinafter referred to
s ICN-FD-VBPM. In addition, a comparison with other
PM methods is provided to establish the validity of our
pproach.

. WIDE-ANGLE EXTENSIONS
he methodology developed in Section 2 refers to paraxial
ropagation. Although this is considered sufficient for an
xtended class of problems, there are application areas
emanding a wide-angle treatment. Therefore, we
resent here a possible route toward such a generaliza-
ion. In particular, wide-angle extensions are obtained by
ubstituting Eq. (4) into Eqs. (3) without omitting the
econd-order derivative of the field envelope. In this re-
pect, Eq. (5a) is written in general form as

−
1

j2kref

�2Ẽt

�z2 +
�Ẽt

�z
= AtẼt, �23�

hich does not involve approximations of any kind. This
an be considered a second-order algebraic equation with
espect to the differential operator � /�z, which when
olved results in the one-way (forward) parabolic equation
�Ẽt

�z
= jkref�I − �I + P�Ẽt, �24�

here P= j2kref
−1At. Owing to the nonlocal nature of the

ne-way operator, the corresponding matrix is dense, and
n appropriate approximation of the square root operator
as to be employed. Since we propose an explicit scheme,

ts nature has to be retained in the wide-angle extension,
s well. The well-established framework of the rational
adé approximations is not applicable, as it inevitably

eads to implicit formulations. We have circumvented this
nherent difficulty by introducing a Taylor series approxi-

ation of the one-way operator [9]. Though it is under-
tood that a Taylor series approximation is less accurate
han to a rational (Padé) approximation of the same order,
t is still an enhancement when compared with the
araxial approximation of Section 2. In particular, the
quare root operator is expanded in the vicinity of zero as

�I + P = I +
1

2
P −

1

8
P2 +

1

16
P3 + ¯ , �25�

nd Eq. (24) takes the form

�

�z
Ẽt = At

WAẼt, �26�

here

At
WA = − jkref	1

2
P −

1

8
P2 +

1

16
P3 + ¯ 
 . �27�

f only the first term is retained, we obtain the paraxial
cheme. Obviously there is no need for computing matrix
owers, as already discussed in Section 2. Implementa-
ion of the wide-angle extension is similar to that in the
araxial case, at the expense of an increased number of
atrix-vector multiplications per step. Other choices of

he point about which the one-way operator is expanded
r even alternative expansion types might be possible;
owever, such possibilities are beyond the scope of this
rst attempt toward a wide-angle extension, which is by
o means an exhaustive treatment. It has to be noted
hat, although the maximum allowed step size dictated by
he stability condition has to be reduced, the scheme is
till applicable to typical practical problems.

. NUMERICAL EXAMPLES
. Multimode Interference Coupler
s a first example, we study a multimode interference

MMI) coupler [15] based on a deeply etched SiO2 ridge
aveguide. The main (wide) section of the device permits

he propagation of many modes, excited by the field enter-
ng the MMI through the input waveguide. The different
ropagation constants of the excited modes and the re-
pective interference result in the formation of multifold
elf-images of the input field at certain distances. The ba-
ic layout of the 1�4 MMI coupler under consideration is
hown in Fig. 1(a), where LMMI=245.5 �m is the length
nd WMMI=32 �m is the width of the device. The cross-
ection of the input waveguide is given in Fig. 1(b), where
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co=6 �m, hcl=3 �m, het=3 �m, w=6 �m. The refractive
ndex of the SiO2 substrate is taken as ns=1.46, and the
efractive index contrast between the Ge dopped core and
he substrate is �=0.75%. The geometrical features of the
aveguide are selected according to [15], where an opti-
ization technique was followed.
The BPM is an appropriate tool for the simulation of

his type of device, which is characterized by extended

ig. 2. (Color online) (a) Distribution of the dominant electric
eld component �Ex� over the whole extent of the MMI coupler,
n the ab plane marked in Fig. 1(b). (b) Distribution of the domi-
ant electric field component �Ex� on the exit plane of the 1�4
MI coupler. Calculations were performed with the

CN-FD-VBPM.

ig. 1. (Color online) (a) Schematic layout of the 1�4 MMI cou-
ler. (b) Cross-section of the deeply etched SiO2 ridge input wave-
uide. (c) Fundamental x-polarized mode at �0=1550 nm. The
inor field component has a maximum value equal to 3.7�10−3

hen the maximum value of the major component is 1.
ross-sections and appreciable propagation length. We
ave examined light propagation in the MMI coupler by
mploying the ICN-FD-VBPM presented in Section 2. The
eld exciting the device is the fundamental x-polarized
ode of the input ridge waveguide at �0=1550 nm, Fig.

(c), which is computed by the ICN-FD-VBPM in conjunc-
ion with the imaginary distance propagation technique
1]. Both the conventional CN and the ICN methods have
een employed for this task for the purpose of compari-
on, and they yielded identical field profiles. In an at-
empt to further assess the ICN-FD-VBPM as a guided-
ode solver, we have calculated the effective refractive

ndex for the input waveguide. ICN yielded a value of
.4633691772, which is in perfect agreement with the out-
ome of CN, found to be 1.4633691658. All subsequent
imulations were performed on a 34�20 �m2 transverse
omputational window, surrounded by uniaxial perfectly
atched layer (PML) regions of 1 �m thickness for the

bsorption of outgoing waves. The transverse cell dimen-
ions are �x=�y=0.1 �m, resulting in a total of
59,562 degrees of freedom, i.e., the unknown values of
he transverse electric field at the nodes of the transverse
rid. Hence, the total number of degrees of freedom is
wice the number of grid nodes.

The field distribution of the dominant electric field com-
onent Ex over the length of the MMI coupler is presented
n Fig. 2(a), illustrating the self-imaging of the input field
nd the field at the exit plane. The distribution of the
ominant electric field component �Ex� at the exit face of
he MMI is given in Fig. 2(b). To make a clear comparison
f the solution obtained by the conventional CN and the
xplicit ICN methods, the field distribution on the output
lane of the MMI coupler is shown in Fig. 3, plotted along
he line ab, which runs parallel to the x axis [see Fig.
(b)]. Moreover, a zoom to the peak of the curves is pro-
ided in a smaller window to facilitate assessing the effect

ig. 3. (Color online) Variation of the dominant electric field
omponent �Ex� along the ab line on the exit plane of the 1�4
MI coupler. Calculations were performed with both the ICN-
D-VBPM and the conventional CN-FD-VBPM.
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f the axial step on the solution. As anticipated, the choice
f a larger axial step leads to a reduction in the accuracy
f the solution. It is emphasized that the ICN-FD-VBPM
olution is virtually identical to the conventional CN-FD-
BPM for an axial step of �z=0.01 �m, which confirms

he validity of the ICN approach.
Table 1 shows the computation time required on an In-

el Core 2, 6400@2.13 GHz workstation for the conven-
ional CN and the ICN case. All CN-FD-VBPM simula-
ions were performed by setting the CN weight parameter
qual to 0.51 and using an iterative solver (conjugate gra-
ient squared). Owing to the nature and conditioning of
he resulting FD matrices, such an approach appears to
e the most economical in terms of computation time. We
ave tried a direct solver as well, which required an in-
rease in execution time by approximately a factor of 5.
lthough the CN scheme allows larger propagation steps,

his comes at the price of reduced accuracy. Considering
he solution of either CN or ICN for the small step size of
.01 �m as a reference, the ICN provides the correct so-
ution at almost half the computation time of that re-
uired by the CN at 0.1 �m, while the latter further suf-
ers a 1% maximum local error. The ICN performs even
aster than the CN at �z=0.4 �m, which exhibits an error
s high as 3%.

. Twin-Core Photonic Crystal Fiber Coupler
s a second example, we examine a twin-core photonic
rystal fiber (PCF) coupler whose cross-section is illus-
rated in Fig. 4(a), following the design of coupler 4 in
able 2 of [16]. In a periodic triangular lattice of air holes
n a silica background, two holes are missing, creating an
ndex-guided twin-core PCF, which can be used as an op-
ical directional coupler. The distance between adjacent
ylinders (lattice pitch) of the periodic triangular cladding
s 	=1.8 �m, the cladding’s hole diameter d=0.58	, and
he refractive index of the silica fiberglass is taken equal
o ng=1.45. The separation between the centers of the two
ores, A and B, shown in Fig. 4(a) is �3	.

In order to quantify the optical properties of the PCF
oupler, we launch the fundamental y-polarized mode of
he corresponding single-core PCF at �0=1550 nm to core
, Fig. 4(b), and trace the evolution of the light along the
axis. For the subsequent simulations, a 20�20 �m2

ransverse computational window is used, including PML
egions of 1 �m thickness. Since the PCF coupler cross-
ection is made of curved interfaces, for the sake of a bet-
er comparison we have also implemented a vectorial

Table 1. Simulation Times for the MMI Coupler

Axial Step �z
��m�

Computation Time
(s)

ICN-FD-VBPM 0.01 1306
(explicit)

CN-FD-VBPM 0.01 14363
(implicit,

iterative solver)
0.05 3759
0.10 2434
0.20 1751
0.40 1532
rank–Nicolson finite-element BPM (CN-FE-VBPM) [4],
sing first-order edge elements for the transverse field
nd nodal elements for the axial component. This formu-
ation is expected to provide a geometry-conforming dis-
retization in the transverse plane while also serving as
n accurate reference solution. In all FD-VBPM cases
ICN or conventional CN), transverse cell sizes of �x
�y=0.1 �m are being employed, resulting in a total of
0,401 nodes and 80,802 degrees of freedom. In the case
f the FE-VBPM the mesh consists of 38,729 nodes, which
s very close to the number of nodes in the FD simula-
ions, giving a total of 113,548 degrees of freedom.

As expected, the optical power periodically switches
rom core A to core B and vice versa. Figure 5 depicts the
istribution of the Ey component at different propagation
lanes, illustrating the power exchange between the cores
ver the extent of one coupling length Lc. The power
uided by core A versus the propagation distance z, calcu-
ated by the explicit ICN-FD-VBPM, is shown in Fig. 6
blue curve). In the same graph, the values calculated by
he CN-FE-VBPM and the conventional CN-FD-VBPM
re presented with green and red curves, respectively. It

ig. 4. (Color online) (a) Structural layout of a twin-core PCF
oupler: 	 is the lattice constant, d is the cladding hole diameter.
b) Fundamental y-polarized mode of the single core waveguide
t �0=1550 nm. The minor field component has a maximum
alue equal to 0.065 when the maximum value of the major com-
onent is 1.
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s important to point out that increasing the axial step �z
n the conventional CN-FD-VBPM leads to a concurrent
ncrease in the numerical dissipation error, which de-
rades the solution. According to Fig. 6, the guided power
s reduced to 97.6% and 96.1% of the input power at a
ropagation distance of 2Lc for �z=0.3 �m and �z
0.5 �m, respectively. The coupling length, as extracted

rom Fig. 6, and the computation time on an Intel Core 2,
400@2.13 GHz workstation for each simulation ap-
roach are given in Table 2. The coupling length reported

ig. 5. (Color online) The y-polarized mode field distribution at
a) z=0 �m, (b) z=Lc /2=147.25 �m, (c) z=Lc=294.5 �m.
n [16] for the same coupler is Lc�294 �m, a value that
ompares favorably with our calculations.

It is observed that the ICN-FD-VBPM is significantly
aster than the other approaches. Despite the staircasing
ffect, inevitable in FD discretizations, the results are
atisfactory. Owing to the reduced step size, the ICN
cheme is free from numerical dissipation, unlike the con-
entional CN scheme. Indeed, the ICN scheme requires at
ost half the time of the conventional CN-FD-VBPM, if

he latter one is considered acceptable for a 4% error in
ransmitted power. For higher accuracy requirements,
he ICN-FD-VBPM outperforms CN-FD-VBPM by a fac-
or of 4 or more, according to Table 2. An iterative solver
as been employed for the CN-FD-VBPM calculations for
he reasons outlined in Subsection 3.A, whereas a direct
olver seems to be the best choice for the CN-FEM-VBPM
imulations. This is necessary because of the poor condi-
ioning of the FEM matrices in vector formulations; an it-
rative solver will require substantially higher computa-
ion times.

Table 2. Simulation Times and Coupling Length
for the Twin-Core PCF Coupler

Axial Step
�z ��m�

Computation
Time (s)

Coupling
Length��m�

ICN-FD-VBPM 0.02 889 294.5
(explicit)

CN-FD-VBPM 0.02 10904 294.5
(implicit,

iterative solver)
0.10 3340 294.5
0.30 1797 294.5
0.50 1486 294.5

CN-FE-VBPM 0.10 78878 292.5
(implicit,

direct solver)
0.30 25996 292.5
0.50 15662 292.5

ig. 6. (Color online) Guided power in core A versus propagation
istance, calculated by the ICN-FD-VBPM, the conventional
N-FD-VBPM, and the CN-FE-VBPM.
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. Tilted Ridge Waveguide
e have repeated the calculations of Subsections 4.A and

.B using the second-order wide-angle correction and ob-
ained identical results, which confirms the essentially
araxial nature of these problems. Hence, to demonstrate
he applicability of the proposed wide-angle extension, we
onsider the problem of a tilted waveguide, as shown in
ig. 7(a). The waveguide cross-section is the same as in
ig. 1(b), and the tilt angle is 30°. Both second- and third-
rder Taylor expansions have been implemented, and the
orresponding results, together with the paraxial solu-
ion, are given in Fig. 7(b). It is evident that the paraxial
olution suffers the higher distortion, as the mode is com-
ressed to the inner side of the waveguide. This artifact is
ell anticipated, as the paraxial approximation tends to
nderestimate the angle of propagation. Although the
econd-order correction seems to alleviate this artifact,
he third-order correction almost fully restores the mode
rofile. Taylor expansions were taken about zero, as is
uggested by a theoretical assessment of the spectral
ounds of the transverse operator. This decision was fur-
her backed by extensive numerical experimentation con-
idering alternative expansion points, which confirmed
he superiority of expansions about zero. In general, the
hird-order correction seems to be a fair tradeoff between
ccuracy and complexity.

. DISCUSSION AND CONCLUSIONS
he development of explicit schemes for the VBPM is of
ey importance if one wishes to handle large-scale prob-

ems in photonics. This is evident, as the propagation op-
rators are equivalent to sparse matrix multiplications,
hich are very economical in terms of processing power
nd memory management. In contrast, the well-
stablished implicit schemes call for the solution of a
parse linear system per propagation step. If the problem
ize is moderate (in the range of few tens of thousands of

ig. 7. (Color online) (a) Top view of the tilted ridge waveguide:
he cross section is that of Fig. 1(b). (b) Dominant electric field
omponent recorded on the cd plane for the paraxial, second-
rder wide-angle, and third-order wide-angle schemes.
nknowns in the transverse plane) then an implicit
ethod is an appealing choice for the above task, owing to

ts high efficiency and robustness. For larger meshes and
ith the typical resources of a desktop workstation, one
ight prefer an explicit approach, since an implicit one is

ery commonly accompanied by reduced performance due
o poor convergence of the linear system solver and also to
he occurrence of other complications such as those origi-
ating from the absorbing boundary conditions used (for

nstance, PML). It is also not surprising that in a number
f extreme cases, implicit methods may require consider-
bly higher computation times or even fail completely. For
ll of the above reasons, avoiding the use of a sparse lin-
ar system solver, either direct or iterative, is of great
enefit, provided of course that this is not at the expense
f solution accuracy. This is exactly what is offered by our
pproach: a scheme that reproduces results identical to
hose of the conventional implicit VBPM (and thus is con-
idered highly accurate), at a fraction of the computation
ime resulted by the implicit scheme. It also does not have
he limitations that are inherent in sparse linear system
olvers, thus allowing for handing millions of unknowns
ith virtually no difficulty. The efficiency of the ICN

cheme is even more pronounced in the analysis of
-dependent structures, owing to the fact that a small
xial step will be necessary to resolve the axial variation.
n such a case, a scheme that generally provides the pos-
ibility of choosing larger step sizes, like the conventional
N, no longer offers any additional advantage.
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