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We introduce and develop a new explicit vector beam propagation method, based on the iterated Crank—
Nicolson scheme, which is an established numerical method in the area of computational relativity. The pro-
posed approach results in a fast and robust method, characterized by simplicity, efficiency, and versatility. It is
free of limitations inherent in implicit beam propagation methods, which are associated with poor convergence
or uneconomical use of memory in the solution of large sparse linear systems, and thus it can tackle problems
of considerable size and complexity. The advantages offered by this approach are demonstrated by analyzing a
multimode interference coupler and a twin-core photonic crystal fiber. A possible wide-angle generalization is

also provided. © 2009 Optical Society of America

OCIS codes: 00.4430, 130.2790, 130.0130, 060.5295.

1. INTRODUCTION

The beam propagation method (BPM) is considered one of
the leading computational methods for the analysis of in-
tegrated photonic devices and fiber-based components. A
considerable range of methodologies and formulations is
reported in the literature, depending on the physics of the
problem under investigation. A particularly interesting
area of research is the application of vectorial BPM
(VBPM) formulations for the study of optical waveguides
and components that exhibit significant polarization de-
pendence and coupling phenomena [1-3]. The overwhelm-
ing majority of finite difference (FD) and finite-element-
based (FE) BPMs [4-6] rely on implicit schemes, which
may render their application to problems of larger scale
prohibitive, especially if memory requirements necessi-
tate the use of iterative solvers to deal with the solution of
the linear system at each step of the BPM algorithm. On
the other hand, explicit techniques are very appealing, as
they can extend BPM applicability to problems of larger
physical scale; in addition, they easily allow for parallel
implementations. However, they seem to be severely af-
fected by stability issues or poor accuracy.

In general, the number of explicit schemes available in
the BPM literature is rather limited. Such schemes could
be broadly classified into earlier, conditionally stable ex-
plicit FD algorithms relying on central axial differences
[7-9] and schemes based on the DuFort-Frankel method
[10-12]. The latter class of methods is unconditionally
stable and second-order accurate. In particular, [12] pre-
sents a proper modification to account for long-term insta-
bility problems. It seems, though, that the inherent incon-
sistency of the DuFort-Frankel scheme [11] not only
downgrades its accuracy to the first order but also
plagues the solution with spurious artifacts.

1084-7529/09/102183-9/$15.00

In search of an efficient explicit VBPM approach, a
powerful technique appears to be the iterated Crank—
Nicolson (ICN) scheme, which comes from the area of
computational relativity and is well suited to the numeri-
cal treatment of parabolic differential equations. It has
been suggested by Choptuik that the well-known Crank—
Nicolson (CN) method can actually be replaced by an it-
erated scheme [13]. This has been done very successfully
over the past years in solving Einstein’s equations for
general relativity. The ICN method has become one of the
dominant approaches to solve problems of black-hole col-
lisions, star formation, gravitational collapse, and other
cosmological scenarios, which are problems of such a tre-
mendous computational scale that they render any kind
of method that employs a sparse system solution imprac-
tical. The primary merit of this technique is that the sys-
tem solution at each step of the usual CN method is re-
placed by a simple iteration, involving only sparse matrix
multiplications. The price that one has to pay is that the
iterative technique is no longer unconditionally stable,
and therefore the step size has to be chosen according to a
stability condition. However, stability analysis shows that
exactly two iterations per step and no more are necessary
[13,14], while the iterative scheme fully retains its
second-order accuracy.

In this paper, we propose a fully explicit vector BPM
approach, based on the ICN method. A vectorial formula-
tion has been chosen to account for a broad range of de-
vices, as typically anticipated in state-of-the-art photonic
technology. A step-by-step derivation of the underlying
formulation and its numerical implementation via the
ICN scheme is thoroughly presented in Section 2. A route
to the construction of wide-angle variants is discussed in
Section 3. A class of diverse large-scale problems are tar-
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geted in Section 4, in particular, a 1 X4 multimode inter-
ference coupler, a twin-core photonic crystal fiber coupler,
and also a tilted ridge waveguide for evaluating wide-
angle propagation. Extensive validation and assessment
of the proposed scheme are carried out with respect to
other well-established VBPM techniques.

2. FORMULATION

The development of the VBPM is based on the vector
wave equation for isotropic media,

VXVXE-kin?E=0, (1)
which is equivalently written as
VZE + k2n’E-V(V-E)=0. (2)

In Eq. (2) n=n(x,y,z) is the index of refraction, which is
assumed to vary slowly along the main propagation axis
z. Under the assumption dn?/dz~0 and taking into ac-
count the zero divergence of the electric flux density,
V-(n2E)=0, the vector formulation (2) is decomposed into
the following three scalar equations:

VZE, + i{éi(an,{)} + i[%i(ﬁE},)} - &2—% - @
ax| n?ax x| n%ay w?  axay
+kgn’E, =0, (3a)
VE, + i{izi(n%y)} + i{%i(anx)} - .92_? _Es
dy| n®ay dy| n*ax w2 gyox
+kgn’E, =0, (3b)
al 19 al 19 #E, &E,
VZE, + E[Ea(nQEx)] + E[;g(iﬁE},)} gy
+kgn’E,=0. (3¢)

The above equations are exact for optical devices that
are uniform along the propagation axis z but are also con-
sidered fairly accurate for the cases where the longitudi-
nal variation is sufficiently small compared with the
transverse one. To develop the BPM, one has to express
the electric field as the product of a fast-varying reference

phase term and a spatial field envelope E,
E = E exp(jkr2), (4)

where k,.=kon.s and n.; is an arbitrarily chosen refer-
ence refractive index. Substituting Eq. (4) into Eqgs. (3)
and applying the paraxial approximation, i.e., |?E/d%?|
<2k, dE/z|, the second-order derivative term of the
field envelope with respect to z is dropped, and the

paraxial envelope vector equations are written in compact
form as
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oE, _ .
P =A_E.+B(ELE), (5b)

where the differential operators A,,, A,,, A,,, A,,, A,., B
are defined as
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The above differential operators, when discretized by
finite differences in the transverse plane, are equivalent
to sparse matrices A;, A,, and B. All differential operators
are treated via the usual central finite differences, as ex-
tensively discussed in the related literature; see for in-
stance [2]. Therefore, Egs. (5) are cast in matrix form as

(61)

a9 _ -
—E,=AE,, (7a)
dz

d_ .
—E,=AE. +BE, (7b)
0z

where Et is a column vector comprising the nodal values
of the x and y components of the electric field envelope

and the column vector E, contains the nodal values of the
axial component.

Equations (7) are typically solved via an implicit CN
scheme, which is unconditionally stable provided that its
weight parameter varies within the interval [0.5,1]. How-
ever, the implicit nature of the scheme demands appre-
ciable computational resources, especially for large-scale
three-dimensional problems, as a sparse linear system
needs to be solved in every propagation step. A promising
alternative is to replace the implicit CN scheme with an
equivalent iterated version [13,14]. This will effectively
transform the implicit technique into an explicit one.
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Theoretically, the ICN scheme converges to the implicit
one in an infinite number of iterations per step; however,
a very limited number of iterations is sufficient to guar-
antee second-order accuracy. Stability analysis suggests
that the smallest possible number of iterations is equal to
two [13]. Contrary to the conventional CN scheme, which
is unconditionally stable, the ICN is restricted to axial
(propagation) steps that are below a limiting threshold.
We present the implementation of the ICN scheme in
the following steps. The transverse electric field Eq. (7a)
is treated first. The iteration starts by calculating a first

approximation (l)f‘]i"l of the transverse field at the next
propagation plane [+1 by discretizing Eq. (7a) using for-
ward finite differences:

(1)Ei+1 _ Ei _
—— =AE,. (8)
Az

Advancing the field using only Eq. (8) would correspond to
the well-known first-order explicit Euler scheme. Then,
an estimate of the field at the midstep plane (I+1/2) is
formed by averaging:

EP2 a0y OB 4 (1- ay o

where a; is the ICN weight parameter, analogous to the
weight parameter of the conventional CN scheme. Simi-
larly, a second iteration provides a new estimate of the
field at the next propagation plane [+1,

O _ R

= =At (1)Ei+1/2’ (10)

while a next improved midstep value is obtained by aver-
aging:

DR 2 g ORI 4 (1- ay) B, (1)

In general, the ICN weight parameters a; and a4 could be
different. In most cases the weight parameters are natu-
rally selected equal to 1/2, and this practice is followed
throughout this paper. Finally, the iteration is completed
by the final estimate of the next plane field:

Wi+l _ @l
Et _Et

= — At (2)E£+1/2. (12)

If one wishes to establish a direct relation between
fields at two consecutive transverse planes, without the
aid of the above intermediate steps, it can be easily
proved that Egs. (8)-(12) are equivalent to

Ef = [T+ AzA, + ay(AzA)? + a1a5(A2A,)]EL. (13)

However, we stress that throughout this paper the field
updates are performed according to Egs. (8)-(12). Al-
though it is equivalent to apply Eq. (13) explicitly, this
might give the misleading impression that one has to di-
rectly compute the denser matrices A?,A?, which would
result in a less efficient scheme in terms of memory man-
agement. In order to apply Eq. (13), matrix powers should
be indirectly calculated via matrix-vector products of the

form A’E!=A""1(AE)).
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In a similar way, the axial component E’Z will be calcu-
lated by implementing two ICN iterations in Eq. (7b), us-

ing the already available values of the column vector E,:

Wfl _ R
— - AE +BEr”2 (14)
Az
WEM2 2 o) VEM 4 (1 - ap)EL, (15)
@Fl _ Rl
z 4 ~ ~
AZ - Az (1)Ei+1/2 + BE£+1/2, (16)
ORI -, PR (1- 0y, a7
B -E @F+1/2 | pil+1/2
T = 1&2 Ez + BEt . (18)

It should be noted that the value of the transverse field at
the midstep plane involved in Eqgs. (14), (16), and (18) is
simply the average value between planes [ and /+1.

The explicit manner of the proposed formulation elimi-
nates the need for solving a sparse linear system at each
propagation step, which is the case in all implicit
schemes. However, the ICN scheme is no longer uncondi-
tionally stable, and stability analysis results in a con-
straint for the maximum allowed step size. In fact, the
maximum axial propagation step Az depends on the
transverse cell size Ax, Ay, and it is typically found to be
smaller than in the case of an implicit scheme; however, it
will be proved that this is not restrictive, since the com-
putational effort per propagation step is found to be mini-
mal in our approach. In particular, the amount of compu-
tational effort per propagation step corresponds to three
matrix-vector multiplications, as opposed to the single
matrix-vector multiplication involved in other explicit
schemes. However, the latter ones are only first-order ac-
curate, a fact that has a great impact on the solution ac-
curacy. It is stressed that our scheme is second order, and
thus all comparisons are performed against the second-
order accurate CN scheme. In Section 4 it will be demon-
strated that the overall gain in computation speed is sig-
nificant despite the increase in the number of propagation
steps.

A rigorous von Neumann stability analysis, performed
for the two-iteration ICN scheme and taking into account
Eq. (13), results in an amplification factor equal to

E=p(I+ AzA, + ayA2%A% + a1a,02°A%), (19)

where p(M) is the spectral radius of matrix M, i.e., its
maximum eigenvalue, which can be easily estimated.
Hence, a stability criterion for the maximum step size Az
is derived by the constraint |£§<1. For the reasonable
choice a1=a3=1/2 it can be rigorously proven that the
stability condition reduces to
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2
Az ——, (20)
p(=JjA,)

which is easier to estimate. To get a rough estimate for
the maximum allowed step size in the ICN-FD-VBPM
without extracting the matrix eigenvalues, we can employ
a classical von Neumann stability analysis by considering
a single spatial Fourier component and requesting that
the amplification factor stay below 1. After some algebraic
manipulations, we obtain the much simpler Courant-like
approximate stability condition:

1/1 1 k2R, |71
Az<min | —(—5+— | - . (21)
kref Ax Ay 4kref

The analysis could be easily generalized for a number
of n ICN iterations per step, following the pattern of Eq.
(13) and the associated Eq. (19). After the algebraic ma-
nipulations for an arbitrary number of iterations, the am-
plification factor can be written in compact form as

n+1l k
£= p(E (H an_i+2>AzkAf> : (22)

k=0 \i=2

In an analogous manner, it can be proved that the ICN
scheme is unstable for a single iteration, conditionally
stable for two or three iterations, unstable for four or five
iterations, and so forth. This fact provides the rationale
for the choice of the two-iteration ICN approach. Further-
more, for weight parameters a;=a,=1/2 it is easily
proved that the ICN scheme is second-order accurate [14].
Other choices for a,as may be useful for reinforcing sta-
bility or making the overall scheme more dissipative, at
the expense of compromising second-order accuracy.

A series of numerical examples are presented in Sec-
tion 4 to assess the accuracy and efficiency of the pro-
posed ICN scheme, which will be hereinafter referred to
as ICN-FD-VBPM. In addition, a comparison with other
BPM methods is provided to establish the validity of our
approach.

3. WIDE-ANGLE EXTENSIONS

The methodology developed in Section 2 refers to paraxial
propagation. Although this is considered sufficient for an
extended class of problems, there are application areas
demanding a wide-angle treatment. Therefore, we
present here a possible route toward such a generaliza-
tion. In particular, wide-angle extensions are obtained by
substituting Eq. (4) into Eqgs. (3) without omitting the
second-order derivative of the field envelope. In this re-
spect, Eq. (5a) is written in general form as

1 #E, JE,
- b —
J2kyoe 2% 2

=AE, (23)

which does not involve approximations of any kind. This
can be considered a second-order algebraic equation with
respect to the differential operator J/dz, which when
solved results in the one-way (forward) parabolic equation
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JE

— = jhe(1- T+ P)E,, (24)

oz
where P=j2k_;A,. Owing to the nonlocal nature of the
one-way operator, the corresponding matrix is dense, and
an appropriate approximation of the square root operator
has to be employed. Since we propose an explicit scheme,
its nature has to be retained in the wide-angle extension,
as well. The well-established framework of the rational
Padé approximations is not applicable, as it inevitably
leads to implicit formulations. We have circumvented this
inherent difficulty by introducing a Taylor series approxi-
mation of the one-way operator [9]. Though it is under-
stood that a Taylor series approximation is less accurate
than to a rational (Padé) approximation of the same order,
it is still an enhancement when compared with the
paraxial approximation of Section 2. In particular, the
square root operator is expanded in the vicinity of zero as

1 1

1
VI+P=1+-P-—-P?+ —P3+ .-, (25)
2 8 16

and Eq. (24) takes the form

éEFA}’VAEt, (26)
where
WA . 1 1 2 ! 3
A/ =—Jkref(§P—gP +EP + ) 27)

If only the first term is retained, we obtain the paraxial
scheme. Obviously there is no need for computing matrix
powers, as already discussed in Section 2. Implementa-
tion of the wide-angle extension is similar to that in the
paraxial case, at the expense of an increased number of
matrix-vector multiplications per step. Other choices of
the point about which the one-way operator is expanded
or even alternative expansion types might be possible;
however, such possibilities are beyond the scope of this
first attempt toward a wide-angle extension, which is by
no means an exhaustive treatment. It has to be noted
that, although the maximum allowed step size dictated by
the stability condition has to be reduced, the scheme is
still applicable to typical practical problems.

4. NUMERICAL EXAMPLES

A. Multimode Interference Coupler

As a first example, we study a multimode interference
(MMI) coupler [15] based on a deeply etched SiOy ridge
waveguide. The main (wide) section of the device permits
the propagation of many modes, excited by the field enter-
ing the MMI through the input waveguide. The different
propagation constants of the excited modes and the re-
spective interference result in the formation of multifold
self-images of the input field at certain distances. The ba-
sic layout of the 1 X4 MMI coupler under consideration is
shown in Fig. 1(a), where Lyp=245.5 um is the length
and Wynp=32 um is the width of the device. The cross-
section of the input waveguide is given in Fig. 1(b), where
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Fig. 1. (Color online) (a) Schematic layout of the 1 X4 MMI cou-
pler. (b) Cross-section of the deeply etched SiO, ridge input wave-
guide. (¢) Fundamental x-polarized mode at \y=1550 nm. The
minor field component has a maximum value equal to 3.7 1073
when the maximum value of the major component is 1.

heo=6 pm, hy=3 pum, he=3 um, w=6 um. The refractive
index of the SiO4 substrate is taken as n,=1.46, and the
refractive index contrast between the Ge dopped core and
the substrate is A=0.75%. The geometrical features of the
waveguide are selected according to [15], where an opti-
mization technique was followed.

The BPM is an appropriate tool for the simulation of
this type of device, which is characterized by extended
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Fig. 2. (Color online) (a) Distribution of the dominant electric
field component (E,) over the whole extent of the MMI coupler,
on the ab plane marked in Fig. 1(b). (b) Distribution of the domi-
nant electric field component (E,) on the exit plane of the 1x4
MMI coupler. Calculations were performed with the
ICN-FD-VBPM.
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cross-sections and appreciable propagation length. We
have examined light propagation in the MMI coupler by
employing the ICN-FD-VBPM presented in Section 2. The
field exciting the device is the fundamental x-polarized
mode of the input ridge waveguide at A\y=1550 nm, Fig.
1(c), which is computed by the ICN-FD-VBPM in conjunc-
tion with the imaginary distance propagation technique
[1]. Both the conventional CN and the ICN methods have
been employed for this task for the purpose of compari-
son, and they yielded identical field profiles. In an at-
tempt to further assess the ICN-FD-VBPM as a guided-
mode solver, we have calculated the effective refractive
index for the input waveguide. ICN yielded a value of
1.4633691772, which is in perfect agreement with the out-
come of CN, found to be 1.4633691658. All subsequent
simulations were performed on a 34X 20 um? transverse
computational window, surrounded by uniaxial perfectly
matched layer (PML) regions of 1 um thickness for the
absorption of outgoing waves. The transverse cell dimen-
sions are Ax=Ay=0.1 um, resulting in a total of
159,562 degrees of freedom, i.e., the unknown values of
the transverse electric field at the nodes of the transverse
grid. Hence, the total number of degrees of freedom is
twice the number of grid nodes.

The field distribution of the dominant electric field com-
ponent E, over the length of the MMI coupler is presented
in Fig. 2(a), illustrating the self-imaging of the input field
and the field at the exit plane. The distribution of the
dominant electric field component (E,) at the exit face of
the MMI is given in Fig. 2(b). To make a clear comparison
of the solution obtained by the conventional CN and the
explicit ICN methods, the field distribution on the output
plane of the MMI coupler is shown in Fig. 3, plotted along
the line ab, which runs parallel to the x axis [see Fig.
1(b)]. Moreover, a zoom to the peak of the curves is pro-
vided in a smaller window to facilitate assessing the effect
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Fig. 3. (Color online) Variation of the dominant electric field
component (E,) along the ab line on the exit plane of the 1xX4
MMI coupler. Calculations were performed with both the ICN-
FD-VBPM and the conventional CN-FD-VBPM.
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Table 1. Simulation Times for the MMI Coupler

Axial Step Az Computation Time

(pm) (s)

ICN-FD-VBPM 0.01 1306
(explicit)

CN-FD-VBPM 0.01 14363
(implicit, 0.05 3759
iterative solver) 0.10 2434
0.20 1751
0.40 1532

of the axial step on the solution. As anticipated, the choice
of a larger axial step leads to a reduction in the accuracy
of the solution. It is emphasized that the ICN-FD-VBPM
solution is virtually identical to the conventional CN-FD-
VBPM for an axial step of Az=0.01 um, which confirms
the validity of the ICN approach.

Table 1 shows the computation time required on an In-
tel Core 2, 6400@2.13 GHz workstation for the conven-
tional CN and the ICN case. All CN-FD-VBPM simula-
tions were performed by setting the CN weight parameter
equal to 0.51 and using an iterative solver (conjugate gra-
dient squared). Owing to the nature and conditioning of
the resulting FD matrices, such an approach appears to
be the most economical in terms of computation time. We
have tried a direct solver as well, which required an in-
crease in execution time by approximately a factor of 5.
Although the CN scheme allows larger propagation steps,
this comes at the price of reduced accuracy. Considering
the solution of either CN or ICN for the small step size of
0.01 um as a reference, the ICN provides the correct so-
lution at almost half the computation time of that re-
quired by the CN at 0.1 um, while the latter further suf-
fers a 1% maximum local error. The ICN performs even
faster than the CN at Az=0.4 um, which exhibits an error
as high as 3%.

B. Twin-Core Photonic Crystal Fiber Coupler

As a second example, we examine a twin-core photonic
crystal fiber (PCF) coupler whose cross-section is illus-
trated in Fig. 4(a), following the design of coupler 4 in
Table 2 of [16]. In a periodic triangular lattice of air holes
on a silica background, two holes are missing, creating an
index-guided twin-core PCF, which can be used as an op-
tical directional coupler. The distance between adjacent
cylinders (lattice pitch) of the periodic triangular cladding
is A=1.8 um, the cladding’s hole diameter d=0.58A, and
the refractive index of the silica fiberglass is taken equal
to ng=1.45. The separation between thg centers of the two
cores, A and B, shown in Fig. 4(a) is y3A.

In order to quantify the optical properties of the PCF
coupler, we launch the fundamental y-polarized mode of
the corresponding single-core PCF at Ay=1550 nm to core
A, Fig. 4(b), and trace the evolution of the light along the
z axis. For the subsequent simulations, a 20X 20 um?
transverse computational window is used, including PML
regions of 1 um thickness. Since the PCF coupler cross-
section is made of curved interfaces, for the sake of a bet-
ter comparison we have also implemented a vectorial
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Fig. 4. (Color online) (a) Structural layout of a twin-core PCF
coupler: A is the lattice constant, d is the cladding hole diameter.
(b) Fundamental y-polarized mode of the single core waveguide
at N\y=1550 nm. The minor field component has a maximum
value equal to 0.065 when the maximum value of the major com-
ponent is 1.

Crank—Nicolson finite-element BPM (CN-FE-VBPM) [4],
using first-order edge elements for the transverse field
and nodal elements for the axial component. This formu-
lation is expected to provide a geometry-conforming dis-
cretization in the transverse plane while also serving as
an accurate reference solution. In all FD-VBPM cases
(ICN or conventional CN), transverse cell sizes of Ax
=Ay=0.1 um are being employed, resulting in a total of
40,401 nodes and 80,802 degrees of freedom. In the case
of the FE-VBPM the mesh consists of 38,729 nodes, which
is very close to the number of nodes in the FD simula-
tions, giving a total of 113,548 degrees of freedom.

As expected, the optical power periodically switches
from core A to core B and vice versa. Figure 5 depicts the
distribution of the E, component at different propagation
planes, illustrating the power exchange between the cores
over the extent of one coupling length L, The power
guided by core A versus the propagation distance z, calcu-
lated by the explicit ICN-FD-VBPM, is shown in Fig. 6
(blue curve). In the same graph, the values calculated by
the CN-FE-VBPM and the conventional CN-FD-VBPM
are presented with green and red curves, respectively. It
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Fig. 5. (Color online) The y-polarized mode field distribution at
(a) z=0 um, (b) z=L./2=147.25 um, (c) z=L,=294.5 um.

is important to point out that increasing the axial step Az
in the conventional CN-FD-VBPM leads to a concurrent
increase in the numerical dissipation error, which de-
grades the solution. According to Fig. 6, the guided power
is reduced to 97.6% and 96.1% of the input power at a
propagation distance of 2L. for Az=0.3 um and Az
=0.5 um, respectively. The coupling length, as extracted
from Fig. 6, and the computation time on an Intel Core 2,
6400@2.13 GHz workstation for each simulation ap-
proach are given in Table 2. The coupling length reported
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Fig. 6. (Color online) Guided power in core A versus propagation

distance, calculated by the ICN-FD-VBPM, the conventional
CN-FD-VBPM, and the CN-FE-VBPM.

in [16] for the same coupler is L,~294 um, a value that
compares favorably with our calculations.

It is observed that the ICN-FD-VBPM is significantly
faster than the other approaches. Despite the staircasing
effect, inevitable in FD discretizations, the results are
satisfactory. Owing to the reduced step size, the ICN
scheme is free from numerical dissipation, unlike the con-
ventional CN scheme. Indeed, the ICN scheme requires at
most half the time of the conventional CN-FD-VBPM, if
the latter one is considered acceptable for a 4% error in
transmitted power. For higher accuracy requirements,
the ICN-FD-VBPM outperforms CN-FD-VBPM by a fac-
tor of 4 or more, according to Table 2. An iterative solver
has been employed for the CN-FD-VBPM calculations for
the reasons outlined in Subsection 3.A, whereas a direct
solver seems to be the best choice for the CN-FEM-VBPM
simulations. This is necessary because of the poor condi-
tioning of the FEM matrices in vector formulations; an it-
erative solver will require substantially higher computa-
tion times.

Table 2. Simulation Times and Coupling Length
for the Twin-Core PCF Coupler

Axial Step  Computation Coupling
Az (um) Time (s) Length(um)

ICN-FD-VBPM 0.02 889 294.5
(explicit)

CN-FD-VBPM 0.02 10904 294.5

(implicit, 0.10 3340 294.5

iterative solver) 0.30 1797 294.5

0.50 1486 294.5

CN-FE-VBPM 0.10 78878 292.5

(implicit, 0.30 25996 292.5

direct solver) 0.50 15662 292.5
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Fig. 7. (Color online) (a) Top view of the tilted ridge waveguide:
the cross section is that of Fig. 1(b). (b) Dominant electric field
component recorded on the cd plane for the paraxial, second-
order wide-angle, and third-order wide-angle schemes.
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C. Tilted Ridge Waveguide

We have repeated the calculations of Subsections 4.A and
4.B using the second-order wide-angle correction and ob-
tained identical results, which confirms the essentially
paraxial nature of these problems. Hence, to demonstrate
the applicability of the proposed wide-angle extension, we
consider the problem of a tilted waveguide, as shown in
Fig. 7(a). The waveguide cross-section is the same as in
Fig. 1(b), and the tilt angle is 30°. Both second- and third-
order Taylor expansions have been implemented, and the
corresponding results, together with the paraxial solu-
tion, are given in Fig. 7(b). It is evident that the paraxial
solution suffers the higher distortion, as the mode is com-
pressed to the inner side of the waveguide. This artifact is
well anticipated, as the paraxial approximation tends to
underestimate the angle of propagation. Although the
second-order correction seems to alleviate this artifact,
the third-order correction almost fully restores the mode
profile. Taylor expansions were taken about zero, as is
suggested by a theoretical assessment of the spectral
bounds of the transverse operator. This decision was fur-
ther backed by extensive numerical experimentation con-
sidering alternative expansion points, which confirmed
the superiority of expansions about zero. In general, the
third-order correction seems to be a fair tradeoff between
accuracy and complexity.

5. DISCUSSION AND CONCLUSIONS

The development of explicit schemes for the VBPM is of
key importance if one wishes to handle large-scale prob-
lems in photonics. This is evident, as the propagation op-
erators are equivalent to sparse matrix multiplications,
which are very economical in terms of processing power
and memory management. In contrast, the well-
established implicit schemes call for the solution of a
sparse linear system per propagation step. If the problem
size is moderate (in the range of few tens of thousands of
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unknowns in the transverse plane) then an implicit
method is an appealing choice for the above task, owing to
its high efficiency and robustness. For larger meshes and
with the typical resources of a desktop workstation, one
might prefer an explicit approach, since an implicit one is
very commonly accompanied by reduced performance due
to poor convergence of the linear system solver and also to
the occurrence of other complications such as those origi-
nating from the absorbing boundary conditions used (for
instance, PML). It is also not surprising that in a number
of extreme cases, implicit methods may require consider-
ably higher computation times or even fail completely. For
all of the above reasons, avoiding the use of a sparse lin-
ear system solver, either direct or iterative, is of great
benefit, provided of course that this is not at the expense
of solution accuracy. This is exactly what is offered by our
approach: a scheme that reproduces results identical to
those of the conventional implicit VBPM (and thus is con-
sidered highly accurate), at a fraction of the computation
time resulted by the implicit scheme. It also does not have
the limitations that are inherent in sparse linear system
solvers, thus allowing for handing millions of unknowns
with virtually no difficulty. The efficiency of the ICN
scheme is even more pronounced in the analysis of
z-dependent structures, owing to the fact that a small
axial step will be necessary to resolve the axial variation.
In such a case, a scheme that generally provides the pos-
sibility of choosing larger step sizes, like the conventional
CN, no longer offers any additional advantage.

REFERENCES

1. C.L.Xu, W. P. Huang, and S. K. Chaudhuri, “Efficient and
accurate vector mode calculations by beam-propagation
method,” J. Lightwave Technol. 11, 1209-1215 (1993).

2. W. P. Huang and C. L. Xu, “Simulation of 3-dimensional
optical wave-guides by a full-vector beam-propagation
method,” IEEE J. Quantum Electron. 29, 2639-2649
(1993).

3. Q. Wang, G. Farrell, and Y. Semenova, “Modeling liquid-
crystal devices with the three-dimensional full-vector beam
propagation method,” J. Opt. Soc. Am. A 23, 2014-2019
(2006).

4. D. Schulz, C. Glingener, M. Bludszuweit, and E. Voges,
“Mixed finite element beam propagation method,” J.
Lightwave Technol. 16, 1336-1342 (1998).

5. K. Saitoh and M. Koshiba, “Full-vectorial finite element
beam propagation method with perfectly matched layers
for anisotropic optical waveguides,” J. Lightwave Technol.
19, 405-413 (2001).

6. L. Vincetti, A. Cucinotta, S. Selleri, and M. Zoboli, “Three-
dimensional finite-element beam propagation method:
assessments and developments,” J. Opt. Soc. Am. A 17,
1124-1131 (2000).

7. Y. Chung and N. Dagli, “Analysis of z-invariant and z-
variant semiconductor rib wave-guides by explicit finite-
difference beam propagation method with nonuniform
mesh configuration,” IEEE J. Quantum Electron. 27,
2296-2305 (1991).

8. Y. Chung, N. Dagli, and L. Thylen, “Explicit finite-
difference vectorial beam propagation method,” Electron.
Lett. 27, 2119-2121 (1991).

9. Y. C. Chung and N. Dagli, “A wide-angle propagation
technique using an explicit finite-difference scheme,” IEEE
Photonics Technol. Lett. 6, 540-542 (1994).

10. F. Xiang and G. L. Yip, “An explicit and stable finite-
difference 2-d vector beam-propagation method,” IEEE
Photonics Technol. Lett. 6, 1248-1250 (1994).



Yioultsis et al.

11.

12.

13.

H. M. Masoudi and J. M. Arnold, “Spurious modes in the
DuFort-Frankel finite-difference beam propagation
method,” IEEE Photonics Technol. Lett. 9, 1382-1384
(1997).

P. Sewell, T. M. Benson, and A. Vukovic, “A stable DuFort-
Frankel beam-propagation method for lossy structures and
those with perfectly matched layers,” J. Lightwave Technol.
23, 374-381 (2005).

S. A. Teukolsky, “Stability of the iterated Crank—Nicholson
method in numerical relativity,” Phys. Rev. D 61, 087501
(2000).

14.

15.

16.

Vol. 26, No. 10/October 2009/J. Opt. Soc. Am. A 2191

G. Leiler and L. Rezzolla, “Iterated Crank-Nicolson
method for hyperbolic and parabolic equations in
numerical relativity,” Phys. Rev. D 73, 044001 (2006).

Y. Shi and D. Dai, “Design of a compact multimode
interference coupler based on deeply-etched SiO2 ridge
waveguides,” Opt. Commun. 271, 404-407 (2007).

K. Saitoh, Y. Sato, and M. Koshiba, “Coupling
characteristics of dual-core photonic crystal fiber couplers,”
Opt. Express 11, 3188-3195 (2003).



