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Full-Vectorial Beam-Propagation Method
Based on the McKee—Mitchell Scheme
with Improved Finite-Difference Formulas
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Abstract—The alternating-direction implicit method proposed Since the field and its derivatives are often discontinuous,
by McKee-Mitchell is applied to full-vectorial paraxial wave the conventional FD formulas severely deteriorate the numer-
equations. The high computational efficiency of the present ;oo ragyits. In the case of a semivectorial analysis, several

method is demonstrated in comparison with an iterative . d ED f | h b d hich attai
solver. Novel finite-difference formulas that take into account 'MProve ormulas haveé been proposed, which attain

discontinuities of the fields are proposed and employed to ensure COnsiderable accuracy [8], [9]. This fact encourages us to

second-order accuracy. Calculations regarding the effective index develop improved FD formulas even for the mixed derivatives
of rib waveguides show that the present results remarkably in the VBPM.

;g;;%évlth values obtained from the modal transverse resonance In this paper, we propose a novel VBPM based on the

' McKee—Mitchell (MM) scheme [7], and demonstrate its better

Index Terms—Finite-difference methods, optical beam propa- stability than the VBPM based on the well-known Peace-

gation, optical waveguides. man—Rachford (PR) scheme, while maintaining high com-

putational efficiency. Special attention is paid to evaluation

|. INTRODUCTION of mixed derivatives as well as second derivatives. We pro-

ONSIDERABLE effort has been directed to improvin ose new FD formulas taking into account discontinuities

: : f refractive indexes. The new FD formulas ensure second-
a full-vectorial beam-propagation method (VBPM) from . : .
order accuracy even in full-vectorial calculations. The present

various viewpoints. The VBPM’s developed so far have Ofte\?BPM can also be used in imaginary-axis propagation. We

caused problems in terms of stability and/or accuracy. This . .
) . . o . assess the accuracy of the present VBPM in the eigenmode
is due to the existence of mixed derivatives in coupled wave . : . .

alysis in a rib waveguide as a classical benchmark test,

equations. Since vectorial treatment is absolutely necessar)‘/'Jl 15 . . :
. o : : since reliable data on propagation constants are available [10].
simulate polarization-dependent and coupling devices, ac

. Lhlculation shows how appropriate evaluation of the mixed
rate and stable numerical methods should be developed. erivatives imoroves convergence behavior. Negligence of
Pioneer work on a VBPM has been made by Huang and P g ’ glg

. . . . : A . “discontinuities of the first derivative in previous works results

[1] using finite-difference (FD) techniques with an iterative . .
: . . . . . In poor convergence. Remarkable agreement not obtainable in
solver. Since the iterative solver is somewhat time-consumin

Mansour et al. [2] introduced the alternating-direction im—ﬁﬁgﬁﬂ?aﬁvs\:gfsfrggjﬁgﬁi Vr\rl:g:ht:; [rl%s]ul[tflij erived by the
plicit (ADI) technique into the VBPM. Their formulation ' '

was based on the Peaceman—Rachford scheme. Although the

Peaceman—Rachford splitting is effective in scalar [3] and II. MCcKEE=MITCHELL SCHEME

semivectorial calculations [4], [5], the application to the full- . L .
vectorial case often causes instability in numerical results.Assumlng that th_e refrachye index varies SIOWIY along.
Yevick et al. [6] introduced the ADI technique using linesVe solve the following paraxial vector wave equations [1]:
at +45° to the principal axis. This technique, the so-called OF ~ ~
Douglas—Gunn splitting, yields stable results but is extremely 25kno 8; =(Dyy +Dyy +v)E, + Dy E, 1)
complicated. On the other hand, McKee—Mitchell [7] have aE ~ ~

developed an ADI process for parabolic equations with a 25kng —2 =(Dyw + Dyy + V)Ey + Dy, E, (2)

mixed derivative, which is known to yield reasonable results i
with simpler splitting. However, no attempt has been made {ghere
apply the McKee—Mitchell scheme to a VBPM. i
One should also note that inaccuracy in previous VBPM's - _al1/ro 4
. . . . DaaEa —a |- 2\ 9 (7’L Ea) (3)
stems from improper treatment of the mixed derivatives. da | n? \ O
PE
i . i DozozE,B = f (4)
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with o, 8 € {z, y}, andv = k*[n?(z, y, z) —n], in which & We first express the fields;_; and¢;; using Taylor-series
is the free-space wavenumbei(z, y, z) is the index profile, expansionsg;_; is given by
and ng is the reference refractive index. 2 a2 3 a3

Based on the MM scheme, which is known to yield reag,_; = ¢; — Ax 99 | Az 9 (/)22 _ Ao (/;Z + O(Azh).
sonable results with simpler splitting than the Douglas—Gunn Oz 2 Oz 6 Oz (10)
scheme [7], we derive FD equations from the coupled paraxial
wave equations. Since (1) and (2) have a similar form, Waith respect top,, 1, the continuity relations at the interface
only treat (1) in the following. After integrating (1) over anshould be satisfied. Leppr and ¢ refer to the fields at
interval of Az, we get the infinitesimally right and left of the interface, respectively.
When ¢r is used,¢;1 can be written as

Ar Opr  Ax? 0%¢pr  Az® FP¢r

i1 =dr + 2 Or + 8 Iz2 + 48 9z®
+O(Az?). (12)

Az

2jknolEZ T — EY] = =

[(83 + &; + v) (BT + ET)
+ 63, (Bl + B (6)

where the differential operato®,,, D, and D, are re-
placed by difference operatofg, 6%, and 67, respectively.
Using the assumption 06'5;“”L ~ E7, we obtain

On the other hand, using;, ¢ can be expressed as
Az O¢;  Ax® 0%¢; Az P

— 4
A Pt e TS e T as aw PO
[1 - 4jka (52 + 65 + ;/)} Ett (12)
0
Since the relation betweepir and ¢, [8], [9]
Az~ Az - 4 L
=1 2 2 Y| BT 2 B, 7
[ + e (6m+6y+1)} "t S o2,Er. (D) b —
The ADI process, derived by McKee—Mitchell, is in unsplit 9tr = 9L
form Jx oz
A 1 A 1 AL :9[82% + K (nf — 0 1)¢L}
1— — i 4|1 --= G (- EntL ox? ox? ' L
45kng 2 45kno\ 'Y 2 93 93 9
A 1 A 1 P _TIL 12 n? = n2,,) 2L
= [1 + 4%75 <5§ + 3 Vﬂ [1 + 4%‘2 <5§ + 5 Vﬂ E" or3 ox3 i i+1) "5,
A Jo JHmo $i+1 can be rewritten in the form
Z 2 n
2jkmg v (8)

1
Gir1 =0(1 + mAa:Q)d)i + [1 + 6 + mAz? <9 + 5)}
Now we introduce the Douglas—Rachford type splitting, so

; Az d¢; Az? 92 Az® 93¢,
== 1 = 1 =
that we obtain 5 Ba +(1+6) 1 a2 +(1+96) 3 .3
1— Az 52 + 1,/ Ernt= + O(A$4) (13)
Ajkno \'* 2 ’ 27,2 20,2 2
Az [~ 1 Az 1 whered = nf/niy, andm = k*(ni —n,)/8.
= [1 + — <6§, + = /> + <6§ + - L/>:|E;L The FD formula for the second derivative can be obtained
A4J kno 2 2jkno 2 by eliminating the first derivative from (10) and (13) [9]
2z -
+ oo 6By (9a) P 2(azgi 1+ bagi + Pita
2jkng VY 5 ( N +1) + O(Az?) (14)
A 1 where ay; = (6 + 1)/2 + mAz T, by = —(30 + 1)/2
1-— z 824+ -y )| Entt 2 2 ; :
Akno \¥ T 2 * —mAz“(@ + '), andd = 1+ 6 + mAz*I', in which

A 1 ' = 6/2+ 1/6. The coefficientd can be approximated by
e Z <5§ + = ,,) E". (9b) 1+ & without significant effects. Equation (14), regarded as
4jkno 2 an extension of Stern’s formula [12], is a special case of (6)
Equation (9) involves the solution of only two tridiagonal set§! Our previous paper [9]. Note that recently Vassallo [13]
of equations at each propagation step. This is in contrastai§0 developed similar improved FD formulas for the second

the Douglas-Gunn splitting, which requires the solution &erivative.

four tridiagonal sets of equations at each propagation step. Consideration is now given to the treatment of the mixed
derivative. No attempt has been made to evaluate the mixed

derivatives accurately. Direct discretization of the mixed
derivative results in poor convergence behavior, as will be

We treat three consecutive mesh points with a discontinugjrown in Fig. 5. To evaluate the mixed derivative correctly,
between pointg and: + 1 and derive FD formulas when thewe consider the first derivative, since the mixed derivative is
interface between different media is located midway betweenmposed of the combination of the first derivatives. As in
two mesh points. the case of derivation of (14), we can derive the following

Ill. IMPROVED FD FORMULAS

Authorized licensed use limited to: HOSEI UNIVERSITY KOGANEI LIBRARY. Downloaded on August 31, 2009 at 23:53 from IEEE Xplore. Restrictions apply.



2460 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 16, NO. 12, DECEMBER 1998

0 T T T T 0.6 T T T 42
~~~w-Av~-.,\v~v~“""“"’“;""""’"ﬁ~'”_M ti
_ 0.5+ ime memory 136
T 3 A h 2 MM —=o oo
) “. g A g
lge] 1] - .
= 5 %*Bi-cGSTAB o—o 30 5
= -8} B @, ]
& o 031 124 :i
b . = ) 2
o— " ot - =
a -121 Azl pm] 4 S o2} 118<
= MM(0.5) N & g T o
&~ O L o
° e PR(0.3) 0.1} e 12
° -16) s PR(0.4) R Lo
_________________ 0.0 L L
PR(0-5) 0 10000 20000 30000 40000
-9 1 { 1 1 i X
% 20 40 60 80 100 NeX Ny
propagation distance z[u m] Fig. 2. Comparison in computational effort between the McKee—Mitchell

scheme and the iterative solver.
Fig. 1. Overlap integral between the numerical and exact fields for a minor
component of HE; mode of a step-index fiber as a function of propagation

distancez.
< 3.0um » I Y,
three-point FD formula for the first derivative by eliminating X 3
H . — s —P
the second derivative from (10) and (13): Y ar
A

Op; _ arpi—1 +bidi + Piy1 9 ¢ 1O0pm T n,

B Ay + O(Az?) (15) - y =
wherea; = —(6 + 1)/2 and b, = (1 — 6)/2 — mAz?6. Y n
Equations (14) and (15) are utilized to evaluate the first and ’ "
second derivatives in (9). For example, (14) is applied to y

82 or (3), and to8? or (4) with § = 1. Equation (15) iS fiy 3 Rib waveguide geometry.

used fordEz/d3 and9Es/dc in 62, [see (5)] withe = 1.

(8/983)(n*E3) may be evaluated by another FD formula, in ) o )

which the interface conditions of electric flux density are High computational efficiency of the MM scheme is demon-
satisfied. Following the similar procedure mentioned aboveirated in Fig. 2, in which comparison with the VBPM using

we obtain an iterative solver (Bi-CGSTAB) [14] is made. The computing
3(/;‘ (/; 4 (/; +9<7)< time in the Bi-CGSTAB depends on a tolerance factor for
S e B *1 L O(Az?).  (16) convergence. The tolerance factor is chosen in such a way

dz dAz that the results obtained by the Bi-CGSTAB are comparable
Corresponding formulas similar to (14)—(16) are also derived those obtained by the MM scheme. In the MM scheme, the
when the discontinuity lies between points- 1 and< (see standard Thomas algorithm can be used, leading to less CPU
the Appendix). time and memory.
For a step-index fiber, we cannot correctly assess the accu-
IV. RESULTS racy of FD formulas due to discretization error of a circular

We first compare the MM scheme with the PR scheme fi9re. Hence, we next consider a rib waveguide (shown in
propagation behavior of HE mode of a step-index fiber. Fig. 3) used as a classical benchmark [10]. The configuration
Fig. 1 shows the overlap integral between the numerig@@rameters are; = 3.40, ny = 3.44, A = 1.15 pm, rib
and exact fields for the minor component as a function #fidth = 3.0 xm, central rib height= 1.0 xm, and lateral
propagation distance. The exact fields are chosen as inpaight= ¢ varying from 0.1 to 0.9:m. The computational
fields. The transverse mesh size is taken toMd{e- Ar = domain parameters ad, = 0.5 um above the top of the rib,
Ay) = 0.071 pm. The total number of mesh points isYs = 3.0 um below the guiding layer, and’, = 2.5 ypm (or
N, x N, = 160 x 160. The configuration parameters are ab.5um for ¢t = 0.9 ym) aside from the rib lateral side.
follows. The core radius i = 0.71 pm, and the refractive  The fundamental mode can be calculated by the imaginary
indexes of the core and cladding ag, = 1.3 andn,.; = distance procedure in which the coordinaté the propaga-
1.0. A wavelength of A\ = 1.55 um is used, so that thetion direction is changed tgr [15]. The effective index is
normalized frequency i = 2.4. This fiber is not realistic, evaluated by the growth in the field amplitude [16], as shown
but is considered to investigate sensitivity of the schemesiin(17) at the bottom of the next page. For evaluation of the
a strongly guiding structure. It is found that the MM schemeffective index defined by..s = (/k, the reference index
allows a larger propagation step lengfx than that in the no has to be a value close to the exact one. It should be
PR scheme. Further calculation shows similar tendency in theted, however, that the exact value is unknown in practice.
major component. The PR scheme is efficient only for scalbrthis paper, we adopt a new technique of iteratively renewing
[3] and semivectorial cases [4], [5]. no [17]. The effectiveness of this technique is shown in
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Fig. 4. Convergence behavior of the normalized propagation conBtaas
a function of propagatiorr. 0.3255 . . .
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A m
Fig. 4, in which the normalized propagation constd&ht= Len]
(n2g—n?)/(n2,—n?) is presented as a function of The data
are for the quasi-TE mode with= 0.5 zm. The transverse
mesh sizeA(= Az = Ay) and propagation step lengtkr are

Fig. 5. Convergence behavior of the normalized propagation conBtaast
a function of transverse mesh size

TABLE |

taken to beA = 0.025 ym and A7 = 0.05 um, respectively. NORMALIZED PROPAGATION CONSTANT B OBTAINED WiITH MTRM
As the input field, we choose a step function as AND DEVIATIONS IN' SEMIVECTORIAL AND FULL-VECTORIAL CASES
(5, 3, 0) = { 1, for|z] < 1.5 umand0 <y <1 pm quasi-TE mode
0, otherwise t |MTRM[10] sv_ fv  svem fvem
for the major component and zero for the minor component. g:; g:ggig :g :i :; Jg
When we fixng to ben, or (ny + n:)/2, B converges to 0.5 | 0.3270 +1 +4 3 0
a different value. In contrast, renewing, iteratively leads 0.7 0.3510 +4 +5 +1 +1
to monotone convergence to the same value regardless of an ~ 0-9 | 0.3883 +6 AC IS 0
initial value of ng (it has been confirmed tha® converges quasi-TM mode
to the exact value in a two-dimensional waveguide [17]). The t |MTRM[10] sv fv SVemn  $Verm
convergence value is close to a value obtained with the modal 0.1 0-26711 +§ +§ 0 0
transverse resonance method (MTRM) as will be discussed in 8:2 gizggo % b ; g
detail. 0.7 | 03107 o+ 2 1
The convergence behavior &f for the quasi-TE mode as 0.9 0.3455 +1 +1 -1 -1

a function of transverse mesh size is shown in Fig. 5,
wheret is chosen to be 0.wm. In this calculation, A7 is

fixed to be 0.05um regardless ofA (although a largeiAr the MTRM. The four-digit values oByrra’S are believed

is available whenA is large). For comparison, the resultdo be exact [10], [11]. Table | also presents extrapolated
obtained using the combination of other FD formulas [1], [12]alues atA = 0 and indicates that the difference between

are also shown. It is revealed that the use of (14)-(16) achiet¥ks semivectorial and full-vectorial results is slight. It should

faster convergence. Although not illustrated, a similar tendenbg noted, however, that the data on the full-vectorial case
is also observed in the quasi-TM mode. The results regardiremarkably agree witlByrry'S. The deviation for fyxrr

the semivectorial (sv) and full-vectorial (fv) cases with the& only within 1. It can be said that accurate evaluation of

improved FD formulas are found to have almost the santtee mixed derivatives greatly contributes to improvement of
convergence behavior. accuracy in terms of agreement with the MTRM.

Table | tabulates thé3 values obtained from the present Typical field distributions in the quasi-TE and quasi-TM
technique in both the quasi-TE and quasi-TM modes. Timeodes are illustrated in Figs. 6 and 7, respectively. Singular-
mesh sizeA is taken to be 0.02m. For reference, the dataities and discontinuities of the fields are clearly displayed.
for the semivectorial case are also presented. Bhealues Comparison in deviations with other techniques is shown
are expressed with the deviatiof8 — Byrrv)x 10* from in Fig. 8. All the data are derived using an extrapolation

[m{/(/)(a:, y, 7+ A7) da dy} —ln{/¢(w7 Y, 7)da dyH 17)

AT

/3(7’) = nok +
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Fig. 6. Field distributions in the quasi-TE mode: (&). and (b) E,.
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Fig. 7. Field distributions in the quasi-TM mode: (&), and (b) E..

technique and expressed as a function @ne of the data was probably due to the fact that the Stern-type scheme avoids
obtained by Pregla using the method of lines (MOL) [10], [18fVvaluation of the fields at the corners of the rib waveguide. One
Another data was obtained using the Yee's mesh VBPM [1%hould note that quite recently, Hadley succeeded in deriving
[20]. In general, all the results relatively agree with the dag high-accuracy formula in the Bierwirth type [22]. It seems,
of the MTRM. Strictly speaking, however, the MOL achieve§owever, that the high-accuracy formula is effective except
better results in the quasi-TE mode than the quasi-TM mode! corner points.

while the Yee's mesh VBPM indicates opposite tendency. It

is noteworthy that the present method is successful for both V. CONCLUSIONS

the quasi-TE and the quasi-TM mode. We have presented an improved vectorial finite-
Fig. 9 shows another interesting comparison among thrggrerence BPM based on the McKee—Mitchell scheme.
different discretization schemes: Stern type (present), Biefne present scheme is more stable than the conventional
wirth type [21], and Yee type [20]. The rib waveguide configpeaceman—Rachford scheme and achieves high computational
uration to be considered here is the one used in [21]. Note t#ficiency in comparison with an iterative solver. The mixed
in contrast to the Stern scheme, the discontinuity lines are jégfrivatives in the coupled wave equations are evaluated
on mesh points in the Bierwirth scheme. Also note that in thgking into account discontinuities of refractive indexes. The
Yee scheme, the componentsibindH are interlaced within present BPM ensures second-order accuracy, provided that
a unit cell. It is worth mentioning that the present schentte discontinuity lies midway between two mesh points.
again shows the fastest convergence, although each schemighis propagation constants of a rib waveguide for a classical
second-order accurate. The reason why a Stern-type schdrachmark are evaluated using the imaginary distance
shows faster convergence than a Bierwirth-type schemepi®cedure in both quasi-TE and quasi-TM modes. The
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Fig. 9. Comparison in convergence behavior of the normalized propagatiohz]

constant B among three discretization schemes.
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obtained results remarkably agree with the values derived;

with the modal transverse resonance method.

APPENDIX
When a discontinuity lies between points 1 and:, the FD

(5]

(6]

formulas corresponding to (14)—(16), respectively, are derived

as follows:
0?¢;  2(pi—1 + bapi + cachit1) 2
dz2 dAz? +0(A7) (18)

whereby = —(30"+1)/2—m/ Az?(0'+17), co = (0’ +1)/2+
m/Az?TY, andd = 1+6'+m/ Az?T", in which¢’ = n?/n? |,
m' = k*(n? —n?_)/8, andl” = ¢'/2+1/6

i _ —pi1 —bidi+ c1din

2
oz dAz +0(Az7)

(19)
whereb; = (1 —6")/2 — m/Az*¢ andc; = (¢ +1)/2

—0'piy — brpi + c1iy1 2
— Az).
N + O(Azx?)

9p;
oz

(20)

The coefficientd can be approximated by + ¢’ without
significant effects.
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