0 O Ui Wi

— =
N = OO

OPTI-547 Exercise: Basic Method of Lines 1

Summary:
e Practice implementation of MOL in its simplest version.

e Appreciate the “black-box” nature of this approach by comparing nominally equal implemen-
tations using different ODE-solver libraries.

This work-package directory contains two sub-folders, each with a simple implementation of a
BPM method employing the Method of Lines approach. One is written in C++ (wp15-C-MOL-
Radial-Arago), and the other is in Matlab (wp15-M-MOL-Radial-Arago). The two templates set up
a simulation of the Arago bright spot with equivalent numerical parameters to enable comparative
simulations.

The Method of Lines implementations invariably utilize canned libraries for the underlying Or-
dinary Differential Equation (ODE) solvers. Having two different implementations, even if they are
written to be in one-to-one correspondence, gives us the opportunity to appreciate how much the MOL
depends on the ODE library used and how much it behaves as a black-box object that requires careful,
so to speak experimental approach. We will see shortly that what might be two nominally equivalent
implementations can potentially produce different results. One important take-away message will
be that in the MOL it is up to the user to watch for potential problems and tune the ODE-solver
controlling parameters accordingly.

0.0.1 Simple test of a simple MOL code

The first task of this Practice-track session is to code up a simple MOL-based BPM, and test its
function in our standard test, namely by comparing the results of numerical and analytic Gaussian
beam propagation.

This example highlights the conceptual simplicity of MOL, and also its flexibility. For example,
the simple program created here for the radially symmetric situation would be very easy to modify for
two transverse dimensions. The same task could be much more demanding with other approaches, for
example for the Crank-Nicolson method. The following is a listing for a function that “propagates” a
given beam amplitude over a given distance. A few lines suffice to produce a functioning MOL code:

Listing 1: Method of lines BPM propagator
function [zsp enews] = Propagate(Ain,nr,dr,k0, zfin)
% Radially symmetric beam propagator
% Uses Method of Lines
% Implements PEC boundary
% Ain = input array (beam profile)

% nr = number of points in the radial grid
% dr = radial grid spacing
% k0O = propagation wavenumber

% zfin= final propagation distance to reach

idelta = 1i/(2xk0xdr"2);

Beam Propagation Method M. Kolesik, Spring 2016

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

OPTI-547 Exercise: Basic Method of Lines 2

options = odeset (’AbsTol’, 1.0e—03, "RelTol’,0.0e—03);
[zsp enews] = ode23(@rhs2,[0, zfin/2, zfin],Ain);
function df = rhs2(z,y)

laux = cireshift (y,+1);
raux = circshift (y,—1);

indx = linspace(1l,nr,nr).’ — 1;
df = ideltax(laux —2xy + raux + (raux—laux)./(2.0xindx));
df (1) = 4xideltax(y(2)—y(1));
df(nr) = 0;
end
end

In line 13, we set the options that control how the ODE solver of Matlab integrates our evolution
equations. In this case, it is essentially only the value of the absolute-error tolerance that we use.

In line 15, the ODE solver is invoked and returns its results. Here we specify (in the order from
the last to the first argument) the initial condition, the interval over which we ask to find a solution,
with how many intermediate points this interval is to be sampled, and finally we supply the name of
the function that defines the BPM problem.

The latter is where the given simulation problem, and in particular the discretized evolution
equation is specified. The few lines of the function evaluate the right-hand-side of the differential
equation system. Here it is realized in the vector form characteristic of Matlab.

The implementation in C++ is somewhat more complex, but this has to do more with the nature
of the language than with the problem being solved. The reader should inspect and compare both
codes in order to appreciate both their common structure, and the differences of invoking the ODE
solver.

To verify that the BPM actually works, we start with an initial condition representing a focused
beam, propagate it through its focal region, about twice the focal distance. Qualitatively, what one
expects to obtain as the output is the same shape of the beam amplitude but with opposite sign. The
latter is the consequence of the Gouy phase accumulated during the propagation. The following figure
shows the result, compared to the analytic formula target, and showing the resulting error.

With the program passing the standard test, it is left to the reader to experiment with the ODE
solver tolerance settings to see how much numerical effort does it take to compress the error below
some target. One should also note that as a function of the tolerance the integration step will decrease
and the computational time increases correspondingly. It is also interesting to compare result and
program running times for different ODE methods orders. One should see readily that a higher order
method may not always achieve the pre-set target accuracy of the final-z solution faster than a method
using a lower-order scheme that requires less function evaluations per one step. Thus, the choice of the
most efficient method to solve the ODE system within MOL is most often a matter of experimentation.

Beam Propagation Method M. Kolesik, Spring 2016

OPTI-547 Exercise: Basic Method of Lines 3

1 ' ' | n
= initial beam|
@ = MOL 'S 0.005
o 05 analytic Z,
] []
o S
g 0 & 0.000
) =
B =
= o
= -05 £
Qo -
g o -0.005 U
]

-1 =

0 1 2

radius [mm] radius [mm]

Gaussian beam propagation test. Initially focuses Gaussian beam (black, left) is
propagated by the MOL technique through its focus (symbols) and is compared
with the analytic target solution (red). The right panel shows the error of the
numerical solution.

0.0.2 Using different ODE solvers in MOL programs

For a more stringent test, we turn to the simulation of the bright spot of Arago — we have already
established in the previous exercises that this particular problem is ideal in the sense that it stresses
all aspects of a BPM method.

Task 1: Inspect both codes. In particular, compare how both codes access ODE-solver library
routines. In the ODE library used in the C++ code, the system to be solved is assumed to be real.
This is however not a practical limitation, as one can cast the type of the array depending on its use;
in the RHS function it is more convenient to treat it as an array of complex amplitude values, while
it may be passed to the ODE solver as an array of reals. However, one has to keep in mind that the
number of equations to be solved is twice the number of grid points.

Another point worthwhile to note is the control of where or at what propagation distances the
solver produces its “outputs,” and this may concern the Matlab users. Because the MOL systems in
the context of BPM tend to be large, the Matlab user must pay attention to how the ODE routine is
invoked, and avoid too many solution snapshots be included in the output. In fact the way default
way Matlab ODE solver passes the solution is not optimal for very large ODE systems. In BPM, one
tends to process a single solution snapshot at a time, before moving to the next integration step.

Task 2: Execute simulation as set up in the templates, compare run times (these codes measure
the net time spent in the main beam-evolution loop for fair comparison), and resulting simulated
intensity profiles. Nice agreement between the two implementation should be evident.

With MOL implementations utilizing libraries of ODE solvers, one can easily switch from one
ODE-method to another. This is done in the wp15-C-MOL-... template, where the executable ac-
cepts the name of the method as its first argument (inspect the solver header to see what are the

Beam Propagation Method M. Kolesik, Spring 2016

OPTI-547 Exercise: Basic Method of Lines 4

names of acceptable methods). This figure compares results obtained with rk2 and rkf45 solvers, and
demonstrates the close agreement one should expect:

A \ | . Comparisons of MOL-BPM results for

0.5 \ m rk2 and rkf45 ODE-integrators. Full
0.4 [J\\\ | lines represent the rkfd5 method, while
' \1 4 the dotted lines and symbols are for the

|
:
]I / \\ - rk2 integrator. Green line shows the ini-
| \ . tial condition - a Gaussian beam which
/ encountered a circular obstacle. The in-
! tensity peak in the center is a “degraded”
‘w i W\/J bright spot of Arago. The lower intensity
1 vl i 1 1 | 1
-0.002 -0.001 0 0.001 0.002
radial location [m]

o
(S

intensity [arb.u.]
o
w

o
=

1
l
|
|
|
|
|
|

of the central spot is a consequence of il-
lumination with a finite-diameter beam.

It is interesting to compare the running times required to execute the above simulations. With
the tolerance set to the same value(s), and with the to methods solving the same problem to a desired
level of accuracy, the wall-clock time is the ultimate measure for the method comparison.

The higher order rkf45 method required 1366 steps to propagate the beam solution over the distance
of 0.5 meter. The lower order rk2 method needed 2766 steps to achieve the same,i.e. almost twice as
many. However, the running times for the two methods were 493 ms and 620 ms, respectively, which
is not a big improvement for the rkf45 solver. So, the higher-order method does what is promises,
namely it calculates the solution in a smaller number of integration steps. However, if we counted
the number of evaluations of the RHS of the ODE system solved, the numbers would be much more
comparable, and this explains why the actual gain in using the higher order method is not as big as
one might expect. Note that this is not an uncommon behavior, it is often more efficient to utilize
a simpler method with an inexpensive update scheme than a sophisticated one. This also illustrates
that with MOL, one should experiment and find by trial which of the ODE solvers made available by
the used library performs best for the given problem.

Task 3: Next we look at a similar comparison, but with a Matlab-based MOL implementation.
We invoke rk2 and rkf45 ODE solvers within our MOL code to see if their relative performance is
similar as we have seen in the C++ code. For this purpose, we modify the Matlab Propagation.m
as to call either ode23 or the ode45 solver. Re-running the simulations, we note the timing, and will
inspect the result again. The following figure illustrates the surprising outcome. Paying attention
to the small-scale details of the new solution, one can easily see that the ode45 solver produced a
significantly worse result. Moreover, while it took 5.2 seconds to execute with the ode23 solver, ode45
needed more than 11 seconds! Not only that the higher-order methods runs significantly slower, but
it also gives results that are worse than those from the lower-order ode23 method. Almost perfect
agreement with the c++ based solution is also lost; there are high-frequency spatial oscillations evident
in the new solution which are obviously unphysical.

Beam Propagation Method M. Kolesik, Spring 2016

OPTI-547 Exercise: Basic Method of Lines 5

beam profile [a.u.]

W
Wl
U\
i

-4 -2 0
transverse location [mm]

beam profile [a.u.]

0.52

0.5

0.48

0.46

0.44

I T I T T T

| — C++with GSL| |
\ [Matlab

| |
1.4 1.45 1.5
transverse location [mm]

Comparison of MOL performance utilizing ode23 and ode4) solvers in a Matlab
implementation of beam propagator, applied to the problem of Poisson’s bright
spot. The overall agreement is illustrated on the left. However, zooming into the
vicinity of the most prominent peak in the solution, one uncovers that one of the
solution suffers from numerical artifacts. Surprisingly, it is the higher-order solver
ode45 that runs into problems!

Take home lesson: Matlab and c++ implementation may use very similar methods with the
same embedded accuracy orders of five and four, but the results are disturbingly different both in
execution time and smoothness of the solution. This illustrates the fact that MOL often requires
some experimentation as to what ODE method and what accuracy-control parameters work best for
the problem at hand. This also demonstrates that when MOL runs into a problem, it may be very
difficult to diagnose.

That being said, MOL represents an extremely useful numerical tool. While not too commonly
used as a BPM method per se, it can serve as a very flexible component of many methods, optical
pulse propagation simulation being one such example.

Yet another worthwhile issue to note here is that the Matlab MOL solutions ran an order of
magnitude slower to compute the nominally equivalent problem. The lesson the reader should take
away is that while general-purpose compute environments like Mathematica or Matlab may do an
excellent job in any specific task, if a new simulation engine must push an envelope of the state of the
art, then it will be most likely written in an “old-fashioned” way, using a proven compiled language.

Beam Propagation Method M. Kolesik, Spring 2016

