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Exercise summary:

• Practice implementation of, and simulations with a modified, nonlinear Crank-Nicolson
method in one spatial dimension. The system of evolution equations for the electric field
envelope amplitude, derived in this Section, is as follows:
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• Application to simulation of spatial solitons of different orders. Existence of exact solutions
offers a conveniet testing opportunity.

0.0.1 Physical backround for spatial optical solitons

The equation to describe spatial soliton beam propagation is:

∂E
∂z

=
i

2k0
∆⊥E +

iω

2cn(ω)
P/ε0 =

i

2k0
∆⊥E + ik0n2Iunit|E|2E

It represents a beam propagating in one transverse dimension, and subject to self-focusing nonlinearity
due to optical Kerr effect. Single transverse dimension is an idealization, of course. In reality, the beam
would be confined to a planar waveguide, and n(ω) would be replaced by the effective index of the
fundamental mode — effective index approximation then results in the above propagation equation.
This dimensional reduction will be discussed later in the course. For the moment we accept this model
as given. Specifically for one transverse dimension, solutions exists in which the self-focusing effects
are balanced by diffraction. This balance is perfectly steady for the so-called fundamental soliton,
and it is “dynamic” for higher-order (which means higher energy or power in the beam) solutions.
Higher order solitons have the same spatial profile with the fundamental one at periodic propagation
distances. This is very convenient for our purposes, because it allows us to initialize higher-order
nonlinear solutions without explicit use of analytic formulas.

Fundamental solution
Solution for the fundamental soliton can be obtained easily from the following Ansatz
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Insert this into the propagation equation, and cancel some nonzero common terms that occur on both
sides, to get
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Once again, this is nothing but a solvability condition that determines the propagation constant and
thus chromatic dispersion properties of the soliton. For this to hold as an identity, both β, and A0
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must be fixed such that the propagation constant equals the first term on the right, and the two
x-dependent terms cancel each other. The latter condition relates the intensity to the spatial width
of the soliton:
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Since we have two parameters, A0 and w, only constrained by one relation, there is a whole family of
fundamental solitons. The wider is the beam, the lower intensity is sufficient to hold it together and
compensate the diffraction.

This is a special case of fundamental (spatial) soliton. It provides a convenient way to test numerical
implementation of the modified C-N method. One question is whether numerics can “preserve” an
initial condition which coincides with this exact solution. Another question can be what happens if
the initial beam has a bell shape but is not exactly the same as the fundamental soliton. We will see
that the soliton solution is rather robust: It will emerge from the initial condition which will shed
the excessive energy (beam power) and adjust its shape to sech(x/w). For the simulation to be able
to handle such a dynamics, transparent boundary conditions must be used. The radiation shed by
the to-be soliton will disappear through the computational domain edge, leaving us with a properly
formed soliton.

Higher-order solutions
Higher-order solitons can be initialized in a very similar way, because at certain distances, when

betaz = π/4, they assume the same spatial shape as the fundamental one. We can simply start
simulation from this special position along the z axis. However, one must adjust the relation between
the beam width w and its initial intensity A2
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Here N stands for the soliton number. If it happens to be an integer, a periodically repeating solution
will appear. This is yet another opportunity to put our nonlinear C-N implementation to a good-
strength test: Even without knowing the explicit functional form of the higher-order soliton, one
can easily tell if the numerical solution does what it should simply by inspecting if it creates a nice
periodic-in-z intensity pattern. The following is an example of the intensity profile in a third-order
spatial soliton:

Spatial profile of the intensity in a third-order spa-
tial soliton. With the initial cross-section is identi-
cal to that of the fundamental soliton, the evolution
along the propagation distance is shown over a sin-
gle period. The periodicity of a numerical solution
offers a convenient test — inaccuracies in the inte-
gration of the evolution equation accumulate until
a departure from the strict periodicity becomes ob-
vious after a few soliton periods. This trend is more
obvious in higher-order solitons.
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Of course, higher order soliton solutions are more difficult to simulate. Since they have more complex
profiles and richer dynamics, they require both finer spatial resolution and shorter integration step. As
a result, the computational effort needed to obtain even a couple of periods of a higher-order soliton
with a reasonable quality may be several times bigger than that required for a lower-order soliton.
The following figure illustrates these issues:

Numerical simulation of higher-order solitons. The
upper panel shows the evolution of the intensity in
the fourth-order solution. The result clearly shows
the periodic structure, and only has minor devia-
tions from the strict periodicity (visible as a slight
asymmetry in the middle of the panel). The lower
panel shows an attempt to simulate the soliton of
order five. While the numerical solution exhibits
the characteristic features with multiple symmetric
intensity peaks across the transverse dimension, it
is clearly not periodic along z. Higher resolution
and a finer integration step would be necessary to
correct the problem.

Propagation at angle
If one adds a linear phase-shift to the initial condition spatial profile, the outcome of the evolution

is still a soliton, but one that propagates at an angle proportional to its phase-front tilt. This is
expressed through the formula
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where the first term describes the envelope moving with a constant transverse “velocity,” and the last
expression show the change in the propagation constant.

Such solutions can be used to “probe” boundary conditions, as the fundamental soliton provides
a non-diffracting beam. This results in an interesting situation, because the Hadley‘s ABCs rely on
“free” propagation of waves in the vicinity of the boundary. Almost by definition, waves that constitute
a soliton can not be propagating as free, because the nonlinear interaction is strong enough to cancel
diffraction. So it is quite natural to expect that performance of transparent boundary conditions will
be negatively affected by the nonlinear interactions.

0.0.2 Numerical simulation of spatial optical solitons

Task 1: Simulator modification
Starting from the Crank-Nicolson method simulator for one transverse dimension with absorbing
boundary conditions developed in previous exercises, modify it to include Kerr-effect nonlinearity.
Make sure that boundary conditions work properly before proceeding to the next step. This can be
done easily with the nonlinear index set to zero and propagating for a sufficiently long distance.

Beam Propagation Method M. Kolesik, Spring 2016



OPTI-547 Exercise: Spatial Solitons 4

Solution:
Instructor‘s solution: CrankNicolson.m, SpatialSoliton.m , Parameters0.m, Parameters1.m,

The summary of the evolution equations shown at the beginning of this exercise indicates that the
nonlinear term evaluation requires to keep in the memory an auxiliary snapshots of the field amplitude
from the previous integration step. It is denoted Eoldold in the following listing:

Listing 1: Modification of the main loop

1 f o r m=1:M
2 z = z + dz ;
3 Enew = CrankNicolson (dx , k0 , Eold , Eoldold , NX, dz , n l c o e f f ) ;
4 Eoldold = Eold ;
5 Eold = Enew ;
6 end

where we have modified the call to the Crank-Nicolson routine to make room for the additional, older
amplitude array. The modification inside this function is a very simple single line where the nonlinear
term is added to the previously prepared right-hand-side, R, of the C-N linear system:

Listing 2: Modification of the solver

1 f o r row=1:n
2 R( row ) = R( row ) + n l c o e f ∗3/2∗Eold ( row )∗ abs ( Eold ( row ))ˆ2
3 − n l c o e f ∗1/2∗Eoldold ( row )∗ abs ( Eoldold ( row ) ) ˆ 2 ;
4 end

Task 2: Fundamental soliton demonstration
Set up initial condition (and other parameters) to demonstrate the fundamental spatial soliton. Specif-
ically, show that your simulation preserves the non-diffracting shape of the fundamental soliton. Ex-
periment with various simulation parameters. In particular, find out how big the computational box
must be in order to support soliton propagation for a significant distance before artefacts caused by
domain boundaries show up.
Solution:
Instructor‘s solution: CrankNicolson.m, SpatialSoliton.m, Parameters1.m

Task 3: Propagation at an angle
A more stringent test in the nonlinear regime requires propagation of a soliton beam at an angle,
because such a simulation must reproduce “an evolving solution,” and in particular the running phase
of the beam. Implement a spatial soliton beam function, using the formula given above, and verify
the correct function of you solver against this exact solution.
Solution:
Instructor‘s solution: Parameters angle.m

Note that parameters set in instructor‘s solutions do not result in very accurate agreement between
the final numerical and analytic solutions. It is left to the reader to explore the influence of various
settings that allow to achieve better accuracy.
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Task 3: Higher-order solitons
Demonstrate simulation of the second- and third-order solitons. Attempt simulation of yet higher
orders, paying attention to increasing demands for resolution in both dimensions.
Solution:
Instructor‘s solution: Parameters2.m, Parameters3.m

Task 4: Soliton from an arbitrary initial condition
Starting from a non-soliton initial condition, such as a Gaussian beam, show that if the energy is suffi-
cient for a fundamental soliton, the latter will be formed after excess energy is shed and subsequently
absorbed in the transparent boundary.
Solution:
Instructor‘s solution: Parameters GaussIC.m

Task 5: Instability at long integration steps
Nonlinearly modified C-N method is not unconditionally stable anymore. Set up a simulation to
demonstrate that by increasing the integration step instability can be induced.
Solution:
Instructor‘s solution: Parameters G unstable.m

Task 6: Boundary conditions and nonlinearity
Test the boundary condition implementation by bouncing a fundamental soliton propagating at an
angle from the domain boundary. Note that the reflectivity increases, and that it is not too difficult
to find a regime in which the absorbing boundary conditions fail.
Solution:
Instructor‘s solution: Parameters angle.m
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