00 O Ui WK

DO DD = = = s s e e e e
—_ O © 00 1O Ul W = OO

OPTI-547 Exercise: Simple absorbing boundary conditions 1

Summary:
e Implementation of Hadley‘s absorbing boundary conditions (ABCs).

e Appreciation of both pros and cons of this particular way to handle the edge in a computational
domain:
— it is extremely efficient computationally
— it works very well in “typical” situations
— but it is not difficult to cook up regimes that break this ABC-method

0.0.1 Implementation of absorbing boundary using method by Hadley

Task 1: ABC implementation, take one
For this exercise, we can re-use program(s) we wrote for the basic Crank-Nicolson method using a
tri-diagonal Thomas algorithm solver. The first task consist in a modification of the treatment of
the boundary values as described in the Hadley‘s paper. As a first step, we shall assume that the
division required to estimate the ghost point electric field is always possible, i.e. we hope that during
the simulation, our program will not encounter any divisions by zero. Of course, such an approach
is nothing to rely on in practice. Here we do this as a part of a numerical experiment to illustrate
certain aspects of Hadley’s absorbing boundary conditions.

The program section below shows the modification implementing the ABC. This is a sloppy real-
ization which does not guard against division by zeros, and it doe not check that the wave is outgoing.

Listing 1: 1D Crank-Nicolson BPM with a “shortcut” ABC
idelta = lixzstep /(4.0xk0xdr*dr);

for row=1:n

A(row) = —ideltaxA(row);
B(row) = +1.0 — idelta*B(row);
C(row) = —idelta*C(row);

end

% LHS matrix elements need a modification:
B(n) = B(n) + C(n)xEold(n)/Eold(n—1);
B(1) B(1) + A(1)xEold(1)/Eold (2);

% RHS vector needs a modification:
LBNDRY = Eold(1)/Eold(2)*Eold(1);
RBNDRY = Eold(n)/Eold(n—1)*Eold (n);

row = 1;

R(row) = Eold(row)+idelta x(LBNDRY —2.0xEold (row)+Eold (row+1));

for row=2:n-1
R(row) = Eold(row)+idelta*(Eold (row—1)—2.0%xEold (row)+Eold (row+1));
end

Beam Propagation Method M. Kolesik, Spring 2016

22
23
24
25
26

OPTI-547 Exercise: Simple absorbing boundary conditions 2

row = n;
R(row) = Eold(row)+idelta*(Eold(row—1)—2.0%Eold (row)+RBNDRY) ;
Enew = TDMAsolver (A, B, C, R);

There are two modifications on top of the plain C-N algorithm. Both assume that a “ghost”
amplitude sample is added to a virtual grid node just outside of the boundary. This value is represented
by the ratio(s) that appear in lines 13, and 14.

The first modification is to the left-hand-side of the linear system solved at each step. In lines 9,10
the off-diagonal matrix elements collect the ghost value from beyond the domain edge, and add them
to the diagonal elements. After eventual multiplication of the diagonal element with the corresponding
amplitude value, the effect is the same as if we extended the array with the ghost values defined in
lines 13,14. Note that this extension is locally explicit, because we guess the “new” amplitude sample
with the help of the “old” ones.

The second modification occurs in the right-hand-side evaluation. This is done with the help of
the ghost boundary values estimated in lines 13,14. They are used in the very first and very last rows
1 and n.

Instructor‘s solution: CrankNicolson.m, Main.m

Task 2: Test

Check that the ABC implementation works. One way to do this is to set-up a simulation with an
initial beam propagating under angle with respect to the axis, and observe how its amplitude decreases
after each bounce from the domain edge. One should be able to verify that the boundary conditions
work well as long as the field close to the boundary has a profile that submits well to extrapolation.

0 This map shows the logarithmic intensity
-10 of a beam that initially propagated at an
-20 angle until it reached the boundary of the
-30 computational domain, where it suffered
residual reflection. This repeats multiple
times until all energy from the computa-
tional domain dissipates through the ab-
5 10 15 20 .
propagation distance (m) SOI‘blIlg boundarY'

transverse location (mm)

N
4
2
0

2

-4

.6 |

0

In an ideal case, the beam would simply disappear through the edge. In reality, the ABC has a
small but nonzero reflectivity. This is what gives rise to the reflected beam seen to emanate from
the place where the primary beam hit the boundary. Note that its intensity is orders of magnitude
smaller than that of the incident wave, meaning that the ABC works as it should. The color scale
in the above figure gives a rough idea about the (intensity) reflection coefficient of the transparent
boundary. Taken how little computational effort its implementation adds, and how simple it is to
implement, the result is quite impressive.

However, it is possible to create regimes in which ABC will cause instability. In many cases
increasing the length of the integration step is sufficient to cause problems. In the case used for

Beam Propagation Method M. Kolesik, Spring 2016

ST W N

OPTI-547 Exercise: Simple absorbing boundary conditions 3

this illustration, already a step twice longer leads to an abrupt deterioration of the solution with an
exponential grows of artifacts seeded from the computational boundary.

The same simulation executed with a
200 longer (2.5x) integration step. The
100
0
15 20
(m)

o

logarithmic-scale of the beam intensity
shows barely visible traces of the beam
going through first two reflections from
the domain edge, together with the
bright region representing exceedingly
large values caused by instability.

-5

transverse location (mm)
o

5 10
propagation distance (m

The figure above shows very clearly that the corruption of the numerical solution occurs at the
top boundary of the grid, when the magnitude of the solution becomes small. This is when the
solution starts to be dominated by numerical noise, and then it is impossible to tell what is the local
wavenumber of the beam incident on the boundary. As a consequence, the algorithm fails and the
update scheme becomes unstable.

Instructor‘s solution: CrankNicolson.m, Main.m, including Parameters.m and/or Parametersl.m

Task 3: ABC implementation, take two

Having seen that the simplest implementation of ABCs works most of the time, but occasionally fails
in a spectacular fashion, it is clear that the method needs refinement. To handle ABC-unfriendly
situations, we will add to the code a test to ensure that divisions are with non-zeros, and that the
estimated local wavenumber has a real part that corresponds to propagation in the direction of the
domain edge (i.e. outwards). Note that this addition was in fact contained in the original description
given by Hadley.

The listing below shows how the diagonal of the system matrix and the right-hand side vector are
both modified on both sides of the domain. The rest of the code remains unchanged. First of all,
one needs to make sure that divisions by zero do not happen. If the amplitude in the next-to-out-
most grid point is too small, we decide to do nothing, as there is in fact not enough information to
establish that the wave behaves as outgoing. This may very well be the case in the initial stages of the
simulation, especially with initial conditions that are very small in the vicinity of the computational
domain boundary. Interference could also potentially result in a (complex-valued) zero that this
implementation must avoid.

The second addition to the code consists in the calculation of the local wavenumber k,. Then,
only if this has a sign that corresponds to the outgoing wave, we proceed to apply absorbing boundary
condition.

Listing 2: 1D Crank-Nicolson BPM with Hadley’s ABC
if (abs(Eold(n—1)) > 1.0e—16)

kx = —lixlog(Eold(n)/Eold(n—1))

if (real (kx)>0)
B(n) = B(n) + C(n)*Eold(n)/Eold(n—1);
RBNDRY = Eold(n)/Eold(n—1)*Eold (n);

Beam Propagation Method M. Kolesik, Spring 2016

7

10
11
12
13
14
15
16
17
18

OPTI-547 Exercise: Simple absorbing boundary conditions 4

end ;
end ;

if(abs(Eold(2)) > 1.0e—16)
kx = —lixlog(Eold(1)/Eold(2))

if (real (kx)>0)
B(1) =B(1) + A(1)xEold(1)/Eold (2);
LBNDRY = Eold(1)/Eold(2)*Eold (1);
end;
end ;

It is left to the reader to verify that this implementation of ABC can execute the same simulation
that was failing with the “short-cut” method. With this test for the outgoing wave, the probability
that ABC fails greatly diminishes.

Instructor‘s solution: CrankNicolsonABC.m, Main.m, including Parameters.m and/or Parame-
tersl.m

0.0.2 Boundary-induced artifacts: Multimode beam propagation

Task 4: Breaking it once more
It is important to understand how a numerical method works and also how it fails. Here we want
to visualize an interesting mode of failure in Hadley’s boundary conditions. These conditions are
designed under an assumption of a single wave incident on the domain edge. The method calculates an
auxiliary ghost point field value in a way that is non-linear; as such it does not respect the superposition
principle of the original beam propagation equation, which sounds like a serious violation of the original
equation. This suggest that if it happens that two waves with different transverse wavenumbers hit
the domain boundary at the same time, the algorithm becomes “confused” because the waveform does
not have one dominant transverse wavenumber. Unlike in the previous cases, where the field incident
on the boundary was either very weak, or it had a well-defined local wavenumber, the method can fail
easily.

To explore this kind of behavior, we can set up an initial condition with two beams propagating
at and angle, and position them in such a way that they will reach the domain boundary at the same
propagation distance.

Beam Propagation Method M. Kolesik, Spring 2016

OPTI-547 Exercise: Simple absorbing boundary conditions 5

1 Two-beam initial condition designed to expose

the computational boundary to a superposi-

05 tion of waves which does not posses a single

_ well-defined transverse wavenumber. Only the
2 {\ real part of the electric field envelope is shown
£ 0 & \ 1 here. The frequency of oscillations in these
g \J u profiles correlate with the propagation angle
05 of the given beam; the second beam shown in
read propagates at a steeper angle. It trans-
verse location was adjusted such that both

e 4 2 o0 2 4 6 8 beams reach the boundary at the same time.

transverse location (m) %107

This initial condition results in a situation in which there is a superposition of waves with suf-
ficiently different transverse wavenumbers approaching the domain boundary. Such a regime will
manifest the nonlinear nature of the ABCs implemented — one should observe that the reflection is
significantly stronger, and that new “frequencies” (i.e. transverse wavenumbers) appear that propa-
gate under angles different from those of the two beams. This is illustrated in the following figure:

—396m This simulation was stopped shortly after the
3 0';:] two beam reached the computational bound-
& ol J ary. The top panel shows the snapshot of the
& 02 1 (real part) electric field envelope as it propa-
03 5 0 5 B gates to the left. The same instant is shown in
£ 0 transverse location (m) x 10 the lower panel depicting the logarithmic in-
g tensity map. Clearly evident is the fast propa-
§ gating artifact consisting of waves with higher
B ° spatial frequencies. Note that its intensity is
g-s . . . still rather high, and that ABC fails in this
g0 5 10 15 20 particular case.

propagation distance (m)

The main reason Hadley’s boundary conditions do not work in this particular situation is the
superposition of waves that have comparable intensities, and it is therefore impossible to assign one
wavenumber to them, even locally at the boundary. This example also illustrates the nonlinearity
of this absorbing boundary; it does make a difference if there is one or more waves incident on the
computational domain edge.

The take-away lesson here is that while Hadley’s transparent boundary method is extremely ef-
ficient and applicable in many situations, there are regimes, in particular those characterized by
multi-mode propagation, in which this method should not be used. Nevertheless, the ease of imple-
mentation together with the negligible computational cost makes this ABC a good candidate to try
before taking on a more sophisticated transparent boundary algorithm.

Instructor‘s solution: CrankNicolsonABC.m, Test.m, including Parameters.m

Beam Propagation Method M. Kolesik, Spring 2016

