
OPTI-547 Exercise: Crank-Nicolson method in 2D 1

Summary:

• Computational complexity increases significantly in the two-dimensions: Here we are to ap-
preciate this difficulty with the finite-difference BPM using Crank-Nicolson method.

• Practice construction of sparse matrices to represent discretized differential operators

• Appreciate the advantages and disadvantages of direct linear-system solvers.

0.0.1 Construction of sparse-matrices for differential operators

Task 1: Implementation
Starting from the one-dimensional implementation of Crank-Nicolson-BPM (see Practice-Track pack-
age WP08), modify the program for two transverse dimensions. An important aspect of this exercise
is to re-use as much as possible from the previous implementation, and thus appreciate the common
parts of the algorithm.

Solution:

To reduce the code writing to a minimum, it is probably best to utilize the very first implementation
of the Crank-Nicolson based beam propagation as a point of departure for this exercise. In Practice-
Track package 08 we defined the operator pair L+, L− in terms of sparse matrices, and then the main
simulator loop only required a few lines of code. The most significant addition to the code is filling
in the sparse matrices representing the L+ and L− operators, while the main loop should not require
any changes.

The matrix representation of these operators must be based on sparse matrices, because the size
of the matrix is significantly larger in two dimension, and a great majority of the matrix elements are
zeros. We will look in detail on the construction of a sparse-matrix operator — it is a very common
and important task in many contexts.

To keep things simple, Matlab and its sparse-matrix capabilities are used in what follows. In this
case it is practical to view the sparse matrix structure as a black box; details of how it is implemented
are unimportant. Sparse matrices can be parameterized in several different ways. The simplest one
is to provide three lists of numbers specifying the rows, columns, and values of all non-zero elements.
The construction of these arrays is the first step.

To simplify the code, and thus reduce the room for errors, one can create first a sparse matrix ∆
that represents the discrete Laplacian operator on the given computational grid. If the sparse-matrix
library supports matrix algebra, L± can be simply derived from ∆.

The computational grid representing the transverse cross-section of the beam is now two-dimensional;
indices i and j will be used to specify a grid location along the x and y directions, respectively. It will
be assumed that the number N of grid points in both directions is the same. What we need next is a
mapping the location in the grid onto an index specifying a column (or a row) in the sparse matrix.
In Matlab, the following function realizes such a mapping:

M = @(i, j) j ∗N + i−N

Beam Propagation Method M. Kolesik, Spring 2016

OPTI-547 Exercise: Crank-Nicolson method in 2D 2

It should not be difficult to see that it assigns to (i, j) an index M(i, j) that represents the position
in the given grid as counted in the typewriter order. Alternatively, one can recall that there are no
“real” matrices in the computer memory. Rather, every array is stored as a linear vector. The above
is nothing but a position in such a vector. Note that the definition of this function will be slightly
different in different languages. In Matlab, where one starts indexing with one, the first position (1, 1)
maps to index 1 as it should. In C, the mapping would be j ∗N + i, with (0, 0) mapped to 0.

Having specified the correspondence between the sparse matrix index and the computational grid
location, we are ready to identify the non-zero matrix elements of the discrete Laplacian operator.
Recall that the diagonal elements of this operator (on an isotropic grid) are simply the number of
nearest neighbors but with a negative sign. For the non-diagonal elements, we have one +1 for each
pair of nearest neighbors. In other words, we need

∆ij,ij → ∆M(i,j),M(i,j) = −4 i, j = 1, . . . , N

for the diagonal part of the operator, and

∆ij,ij±1 → ∆M(i,j),M(i,j±1) = +1 i, j = 1, . . . , N

for the non-diagonal part originating in partial derivatives w.r.t. y, and finally

∆ij,i±1j → ∆M(i,j),M(i±1,j) = +1 i, j = 1, . . . , N

for the non-diagonal part representing partial derivatives w.r.t. x. From here, it is also easy to see
that the size of the matrix ∆ is N2 × N2, and the number of non-zero elements in it is not greater
that 5 × N2. We therefore need three arrays of this length that will hold the column, row, and the
value of each non-vanishing element of ∆.

The following listing illustrates the relevant code that constructs the sparse matrix operator for
the discrete Laplacian an a square grid:

Listing 1: Filling in a sparse matrix

1 % maximal number o f non−zero matrix e n t r i e s
2 nzmax = N∗N∗5 ;
3
4 % these ar rays w i l l encode spar s e matrix o f DELTA:
5 rows = ze ro s (nzmax , 1) ; %rows
6 c o l s = ze ro s (nzmax , 1) ; %columns
7 valp = ze ro s (nzmax , 1) ; %va lue s
8
9 % mapping g r id l o c a t i o n to matrix index

10 M = @(i , j) j ∗N + i − N;
11
12 % enumerate a l l non−zero matrix e lements
13 count = 0 ; % count how many non−z e r o s enumerated so f a r
14
15 % loop over each l o c a t i o n in the g r id
16 f o r i =1:N
17 f o r j =1:N

Beam Propagation Method M. Kolesik, Spring 2016

OPTI-547 Exercise: Crank-Nicolson method in 2D 3

18
19 % diagona l e lements
20 l o c = M(i , j) ; % c e n t r a l s t e n c i l po int l o c a t i o n
21
22 count = count + 1 ; % update count
23 rows (count) = l o c ; % l o c i s the row index
24 c o l s (count) = l o c ; % l o c i s the column index
25 valp (count) = −4; % diagona l element value
26
27 % nondiagonal elemens f o r g r id ne ighbors on the ‘ ‘ r i ght ’ ’
28 i f (i<N) %r i g h t ne igbor must e x i s t !
29 l o c = M(i , j) ; % c e n t r a l s t e n c i l po int l o c a t i o n
30 nnl = M(i +1, j) ; % and i t s nea r e s t ne ighbor l o c a t i o n
31
32 count = count + 1 ;
33 rows (count) = l o c ;
34 c o l s (count) = nnl ;
35 valp (count) = 1 ; %non−d iagona l va lue
36 end
37
38 % s i m i l a r code f o r g r id ne ighbors on ‘ ‘ l e f t ’ ’
39 . . .
40 % s i m i l a r code f o r g r id ne ighbors ‘ ‘ up ’ ’
41 . . .
42 % s i m i l a r code f o r g r id ne ighbors ‘ ‘ down ’ ’
43 . . .
44 end % j loop
45 end % i loop
46
47 % d i s c r e t e Laplac ian operator : i n s e r t e lements in to spar s e matrix
48 DELTA = spar s e (rows (1 : count) , c o l s (1 : count) , valp (1 : count) ,N∗N,N∗N, count) ;
49
50 % a u x i l i a r y Kronecked d e l t a (i d e n t i t y) matrix
51 KD = spar s e (1 :N∗N, 1 :N∗N, 1) ;
52
53 % cons t ruc t Lplus , Lminus
54 i d e l t a = 1 i ∗dz /(4∗ k0∗dx ˆ 2) ;
55
56 LP = KD + i d e l t a ∗DELTA;
57 LM = KD − i d e l t a ∗DELTA;

Needless to say, the above could be programmed more efficiently, but this codelet is meant to illustrate
the general idea of how sparse-matrix operators are constructed in numerical solutions of partial
differential equations. Instructor‘s version for this program is included in Method.m.

Beam Propagation Method M. Kolesik, Spring 2016

OPTI-547 Exercise: Crank-Nicolson method in 2D 4

0.0.2 Issues in 2D: computational complexity increase

Task 2: Testing
Test the implementation of the 2D beam simulator with the analytic Gaussian beam solution. Start
with a modest grid size and a not too-tightly focused initial condition in order to make the simulation
easier. Make sure to numerically propagate for at least one Rayleigh range so that the beam profile
exhibits significant change and thus serves as a basis for a non-trivial test. Reasonable agreement
between numerical and analytic solution must be achieved before proceeding to Task 3. While this
exercise should be relatively straightforward and is left to the reader, the following figure should give
a sense of what kind of agreement between the simulated and analytic solution one can expect for a
“modest” simulation with a relatively coarse grid resolution and a long integration step.

Testing 2D Crank-Nicolson BPM algorithm. Only real
part of the complex beam amplitude is shown for a sim-
ulation starting from an initial beam (dashed blue) fo-
cused to a distance of 0.5 m. Simulated (black) and an-
alytic (red) solutions are shown at a distance of 2f . The
computational grid was 300 × 300 points, representing
an area of 5 × 5 mm. The integration step was chosen
to be 1 cm for this beam with wavelength of 800 nm.
Note how the near-perfect agreement in the center de-
teriorates further from the beam axis.

For further exploration:
i) The above illustrated simulation only requires several seconds to execute. Experiment with the

simulation parameters in an attempt to improve the numerical-analytic agreement.
ii) Observe the evolution of the numerical solution and identify the propagation distance when the

deviation from the analytic target becomes most obvious. Explain your observation.
iii) This implementation utilized a direct linear-system solver. This means that the matrix of the

linear system of equations must be prepared and passed to the library routine that implements the
solver. Initially this is a sparse matrix, but as the direct solution proceeds many of the zero elements
become non-zero in the transformed matrix. As a result, more memory is needed to store the matrix
and this shows up in the memory usage of the program. Readers should observe, during the simulation,
how the memory volume in use increases and subsequently fluctuates. This has two unpleasant effects:
First, depending on the solver implementation, memory may be repeatedly requested from and released
to the system. This is an expensive operation and may be a cause for poor performance when the size
of the problem is large. Second, it is in general difficult to know how much memory is sufficient for
the given problem because we do not know before hand what will be the filling effect on the sparse
matrix representing the linear system. These are just a few reasons why alternatives to direct solvers
are also often used, namely iterative solvers which do not require storage for the matrix at all. On the
other hand, they also do not guarantee that a solution will be found... We will have an opportunity
to experience and compare the advantages and disadvantages of direct and iterative solvers later in
this course.

Beam Propagation Method M. Kolesik, Spring 2016

OPTI-547 Exercise: Crank-Nicolson method in 2D 5

0.0.3 Issues in 2D: grid anisotropy

Task 3: Grid anisotropy manifestation
Set up a simulation with as tight focusing as feasible for a short simulation (experiment with parame-
ters!), and run the evolution until the focal region is reached. Inspect the central lobe of the solution,
and observe how the anisotropy of the grid shows up. Try to modify the integration step and/or
the grid resolution in order to reduce the observed anisotropy in the beam pattern. During these
simulations, note the memory usage and also the CPU utilization if running on a multiprocessor.

Solution:

To observe numerical anisotropy effects in the simulated solution, one needs to “populate” the
initial beam profile with waves that have sufficiently high transverse wavenumbers. Such waves show
the strongest difference between their propagation constants when the transverse wave-vector points
along the grid axis and along the diagonal. On the other hand, the reader should not impose a too
tight focusing geometry, because then the simulation needs shorter step and finer transverse resolution
otherwise the accuracy suffers. However, it should become evident with little experimentation with the
simulation parameters, that anisotropic wave propagation is actually rather easy to see. The following
illustration shows data obtained on a grid of 300× 300 points, with the computational domain size of
5 × 5 mm, for a beam with the wavelength 800 nm, and beam waist of 1 mm. The focal length was
chosen f = 0.4 and the propagation distance was the same.

Center of a simulated beam (real part of the amplitude)
close to its focus. Note the variation of the intensity evi-
dent in the rings. The pattern has a four-fold symmetry
inherited from the grid-symmetry. The origin of this ar-
tifact is that the phase velocity of the wave is different
when propagating along the grid axis or along the grid
diagonal.

This picture demonstrates that numerical anisotropy shows up readily. Readers should try several sets
of input parameters and attempt to reduce the anisotropy of the numerical solution — it will become
evident very soon that it is not an easy (or numerically inexpensive) task. In fact, this simulation is
an example of how a radially symmetric problem should not be solved on a rectangular grid.

Take-away lessons:

• two dimensional beam propagation becomes significantly more demanding, computationally,
than the problems in one transverse dimension explored in previous sections

Beam Propagation Method M. Kolesik, Spring 2016

OPTI-547 Exercise: Crank-Nicolson method in 2D 6

• the idea of the Crank-Nicolson method remains the same in two and in higher dimensions, and
the programming is not much different or more complicated if a direct linear solver library
routine can be used

• even a small problem may require significant memory with the direct linear solver, because the
originally very sparse system matrix fills up with many more non-zero elements during the course
of the solution

• numerical dispersion and accuracy issues become significantly more severe, because simulations
are in general executed with lesser resolutions and longer integration steps than in “smaller,”
one-dimensional problems.

• numerical grid anisotropy shows up readily in the simulated beam solutions

Beam Propagation Method M. Kolesik, Spring 2016

