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0.1 Practice track: BPM with a tri-diagonal linear solver

Summary: This practice-track package departs from the 1D method implemented in the previous
section, and illustrates the following:

• Modification for the radially symmetric beam solution.

• Validation against exact solutions, comparison with the Discrete Hankel Transform method.

• Solution with the help of the tri-diagonal matrix solver (Thomas algorithm).

• Packaging of the one-dimensional C-N solver for usage in more complex algorithms.

0.1.1 Thomas algorithm and radially symmetric, finite-difference BPM

Task 1:
Implement a solver for a linear system of equations with the left-hand-side given by a matrix that
only has non-zero elements on the main diagonal and on the upper and lower sub-diagonal. Assume
that the solver will only be used for problems that arise in the BPM context, with the implication
that the Gauss elimination forward step does not need to check for non-zero pivot. Your goal is a fast,
though specialized solver.

Solution:

The very first choice to make when implementing the solver is to decide how the input values will
be passed. The most practical way is to pass to the solver function the size of the matrix, plus arrays
(as pointers in C) that carry the lower, main, and upper diagonal. Of course, anther array is needed
for the right-hand-side vector, and one more to store the solution.

The algorithm is a simplified version of the Gauss elimination. An example of how it could be
written (in C) is shown next:

Listing 1: Thomas algorithm

1 void TDMsolver ( i n t n , complex ∗a , complex ∗b , complex ∗c , complex ∗v , complex ∗x )
2 {
3 /∗
4 ∗ n − number o f equat ions
5 ∗ a − lower−d iagona l −− i n d i c e s used = 1 . . . n−1
6 ∗ b − the main d iagona l
7 ∗ c − upper−d iagona l −− i n d i c e s used = 0 . . . n−2
8 ∗ v − r i g h t hand s i d e vec to r
9 ∗ x − s o l u t i o n ho lder

10 ∗ NOTE: array b w i l l be DESTROYED ! ! !
11 ∗/
12
13 /∗ Gauss e l i m i n a t i o n o f the sub−d iagona l e lements ∗/
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14 f o r ( i n t i = 1 ; i < n ; i++)
15 {
16 comple m = a [ i ] / b [ i −1] ; // no need to guard aga in s t b [ i −1]=0
17 b [ i ] = b [ i ] − m∗c [ i −1] ;
18 v [ i ] = v [ i ] − m∗v [ i −1] ;
19 }
20
21 /∗ Backward s u b s t i t u t i o n ∗/
22 x [ n−1] = v [ n−1]/b [ n−1] ;
23
24 f o r ( i n t i = n − 2 ; i >= 0 ; i−−)
25 x [ i ]=(v [ i ]−c [ i ]∗ x [ i +1])/b [ i ] ;
26 }

This listing show a simple program to realize what is the Thomas algorithm to solve a tri-diagonal
system of linear algebraic equations. There are two properties that are worthwhile of a note. The first
is about the non-vanishing matrix element, b[i−1] in line 16 used to eliminate the sub-diagonal value in
line i. Normally, whenever one divides by a value, a check that it is not zero is in order. Fortunately,
here we do not need to do such a check. The result is a faster running code, which the compiler
optimizer has a better chance to improve in terms of performance. This is of utmost importance,
because the algorithm shown above may be called hundreds of times during each propagation step in
a beam propagation method, such as alternate direction implicit method.

But how do we actually know that there will be no division by zero in line 16? Clearly, it can
not be true for a general tri-diagonal system. However, for a BPM application we can ’predict’ this
from what we know about physics of diffraction. Let us assume that a zero occurs at b[i]. It happens
during the elimination of the sub-diagonal element in the same matrix row. As a result there is only
one non-zero value in this particular row after this step, and that will imply that x[i] = 0. From
here, one could start the backward substitution and evaluate all x[j], j < i. It would also mean that
the solution vector splits at position i into two sections that “do not talk to each other,” and can be
calculated independently. This is, however, unphysical because in a homogeneous material diffraction
must communicate information across the point i from left to right and in the opposite direction.
Thus, for a diffraction problem type, one does not expect to encounter a situation in which b[i − 1]
vanishes.

Another important property of the Thomas algorithm is its stability. It means that numerical
noise does not grow during the solution even if the size of the problem, i.e. length of the vector x is
large. I other words, this simple algorithm can be applied in situations requiring large computational
domains.

The favorable properties of this algorithm can be shown shown rigorously for the so-called diagonal
dominant systems, in which

|b[i]| ≥ |a[i]|+ |c[i]| .

This constraint is just satisfied in a one-dimensional diffraction problem.

Task 2:
Implement a CN-based BPM simulator for radially symmetric solutions. Try to come up with a re-
usable design, producing an object that will be utilized in the subsequent practice sessions of this
course.
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Solution:
The instructor‘s solution, written in C++, is placed in file cn-bpm-radial.cc. The reader is encouraged
to utilize this program for inspiration, but write her/his own, perhaps in a different language. Since
this and the one-dimensional Crank-Nicolson algorithm will be re-used multiple times during this
course, the reader should attempt to design the CN solver as an object that encapsulates/hides all
auxiliary variables and can be used as a building block for more complex algorithms.

Task 3: Validate your simulator in a comparison with the exact solution of a Gaussian beam. The
solution to this task is completely analogous to a similar task for one-dimensional beam propagation
practice session. The only difference lies in using the analytic formula for a Gaussian beam in two
transverse dimensions. This should be a straightforward exercise and is left to the reader. The
following figure can be used as a guide for what this exercise should produce in terms of numerical-
vs-exact solution comparison

Testing the finite-difference BPM implementation. Ini-
tially collimated Gaussian beam was numerically propa-
gated over a distance corresponding to several Rayleigh
ranges — a length sufficient to produce significant
change in the beam profile, so that the comparison is
non-trivial. The numerical (symbols) solution is then
plotted against the analytic (lines). One should plot
both the real and imaginary parts of the amplitude to-
gether with its modulus. The two kinds of solution
should appear essentially identical on the scale of the
figure.
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