OPTI-547 Exercise: Implicit Finite-Difference Scheme 1

Implementation of the implicit BPM scheme

It is often convenient, both for derivation and for ease of implementation in a program, to represent
the core of the numerical algorithm in the form using matrices, or operators. It is practically a rule
in the BPM field...

Here we take the opportunity to practice such an approach in the most simple case. What is
done next will be utilized in the subsequent sections, and in particular in different variations on the
Crank-Nicolson theme...

Write the implicit BPM-update scheme in the “operator” form

Eogq = L(i)Enew)

where the matrix acts on the vector (array) storing our one-dimensional complex amplitude repre-
senting the profile of the beam:

(LOF) =3 LG By = {E:i — 8(Bi1 - 2B, + Eiya)}
"k

with ¢ standing for the factor
1Az

o 2]€0A$2
formed from the “nonphysical” parameters characterizing the discrete form of our BPM equation. It
will be illuminating to think of § as the parameter that controls the departure of operator L(~) from
the identity matrix. Similar matrices, and in particular L(+), will appear in our derivations very soomn.

In this exercise, we implement the BPM solver in Matlab, and in doing so we take advantage of its
matrix-handling functionality. We simply define the above matrix equation, and ask Matlab to apply
whatever solver it deems appropriate to solve it. So the core of our main program will contain lines
similar to (see instructor‘s solution in Main.m):

%% PROPAGATE
Eold = EO; % starting from the initial condition EO

]

for k=1:nsteps

z = kxdz; % keep track of the actual propagtion distance
Enew = IM\Eold; % finds solution to LM Enew = Eold
Eold = Enew; % current beam profile always resides in Eold...
Observer_Report % output/visualization after each step

end

%% END PROPAGATE

The matrix or operator defining our implicit update scheme happens to be tri-diagonal. This is an
important property that in fact influences and guides the design of much of the core BPM methods.
However, at this point, we leave it to the linear system solver to recognize the specific type of the
matrix and we just hope that the solver will use it to its advantage. We will look at how to solve this
kind of the system efficiently later in this course.

The most error-prone step in setting up a BPM simulation is often the stage when the linear
system matrix is defined. In this case, L(~) consists of the diagonal and two adjacent upper- and

Beam Propagation Method M. Kolesik, Spring 2014

OPTI-547 Exercise: Implicit Finite-Difference Scheme 2

lower-diagonals. The following lines (from Method.m) tell Matlab to insert the corresponding matrix
elements into a sparse matrix LM holding operator L(~):

delta = dz/(2xk0*xdx " 2);
idelta = lixdelta;
LM_diag = zeros (NX,1); % NX is the grid dimension
LM_diag (1:NX) = 1 + 2«idelta; % this is the vector that constitutes the diagonal
offdiag = ones(NX—1,1)xidelta; % both off —diagonals are shorter by one element
IM = sparse(1:NX—1,2:NX, —offdiag, NX,NX)-+... % fills in the upper diagonal
sparse (1:NX, 1:NX, LM_diag, NX,NX)+... % fills in the diagnal
sparse (2:NX, 1:NX-1,—offdiag, NX,NX); % fills in the lower diagonal

The reason that we utilize a sparse matrix holder here is that most the matrix elements in L(~) are
zeros. This fact not only reduces the necessary memory storage, but also makes calculation with such
a matrix (e.g. matrix-vector multiplication) much more efficient.

Note that in any other than Matlab programming environment, we would store the elements of
the matrix in auxiliary arrays. For now we trust Matlab to execute the operations we ask for in an
efficient way. The drawbacks of such an approach is that the user does not enforce the most efficient
method explicitly. The obvious advantage of it is that it only takes a few lines of the code to implement
what is actually a non-trivial program. This is just what we need at this stage. The above lines of
code implement the most important part of the implicit method studied in this exercise. The rest
is “support” code that realizes the initial conditions, simulation parameters, and visualization and
result outputs. Program Main.m calls the corresponding routines and executes the simulation that
demonstrates that the implicit BPM method is indeed stable. The run starts from an initially focused
Gaussian beam and propagates the solution beyond its focus region. Variation of the “nonphysical”
parameters such as Deltax, Az, Lx, ... shows that the instability of the explicit method has been
successfully eliminated...

Testing and accuracy

Every program, no matter how trivial, must be tested. Gaussian beam solution (in one transverse
dimension) is utilized here to test the BPM implementation. The initial condition is generated by
GaussianBeam1D.m, and the BPM solver propagates this over certain propagation distance where it
is compared to the target solution also generated by GaussianBeam1D.m.

Program in Test.m executes the numerical-vs-analytic comparison. Readers are invited to explore
various parameter settings and get a sense of:

e if the numerical solution agrees with the analytic-formula target
e where (in the real space) the deviations between the two show up
e what parameters control these deviations

e what properties of the numerical method underline this behavior

Beam Propagation Method M. Kolesik, Spring 2014

OPTI-547 Exercise: Implicit Finite-Difference Scheme 3

The following figure illustrates such a comparison run.

0.3 ‘ ‘ ‘ Testing the implicit BPM implementa-

M tion versus the analytic Gaussian beam

0.2¢ * 1 solution. Initially collimated Gaussian

/ \ ‘ beam is propagated over several Rayleigh

o1r | \ /] ranges, and the numerical and analytic

\ ,’ / solutions for the electric field are com-

ol / ‘w‘ ’/ | | \ / \ AAA—— pared here. The agreement of the two in

J the on-axis region around = = 0 indicates

0.1 \] that the implementation of the method

/ . V probably works as it should. The gap

_o0.2}] between the two solutions is clearly visi-
0 5 10 ble further from the axis...

transverse coordinate [m] x107°

electric field [arb.u.]

The very first question that this comparative simulation invites is of course if the deviation seen
between the analytic and numerical results is due to the limitation of the method itself, or it is caused
by how the method was implemented. Since the analytic solution is generated by the formula from the
parazial Gaussian beam, one should expect that if the method is properly implemented, one must be
able to choose simulation parameters to control (minimize) the error. In other words, one expects this
method to converge to the continuum limit of the paraxial beam propagation equation, to which the
Gaussian beam is an exact solution. It is left to the reader to verify that the numerical solution can
be made closer to its analytic counterpart by choosing a sufficiently fine grid resolution Az, and/or
the integration step Az.

It is important to give a proper interpretation to the error observed in the numerical solution. In
the above figure it becomes obvious that the error appears largest away from axis. This is because it
is the wave components that propagate at an angle w.r.t. the axis that contribute most to this portion
of the solution. At the same time, we know from our experience with the numerical Maxwell solver
that these waves must suffer from the effects of numerical dispersion. In other words, they are not
even expected to propagate the same way their continuum-limit counterparts do. This is the reason
why the error is most visible off-axis. To verify that the reason just put forward indeed applies, the
reader could execute a simulation with a single plane wave propagating at an angle, and study the
error as a function of its propagation angle. The manifestation of the numerical dispersion, and more
specifically of its deviation from the continuum limit, is that the numerical waves propagate at angles
different (smaller) from those that should correspond to their transverse wavenumbers.

Mapping the numerical dispersion relation

It is instructive to investigate the numerical dispersion with the mapping method previously applied to
the one-dimensional Maxwell solver. The initial condition is a white noise for both the real and imagi-
nary part of the solution. This is numerically evolved over some propagation distance, while snapshots
of the beam profiles are stored after every integration step. The resulting transversexlongitudinal spa-
tial profile of the complex envelope is Fourier transformed to obtain a spatial-spatial spectrum. This
spectrum reveals energy accumulation in the vicinity of the locus that corresponds to the numerical

Beam Propagation Method M. Kolesik, Spring 2014

OPTI-547 Exercise: Implicit Finite-Difference Scheme 4

wave dispersion.

x 10°

-6 5 Spatial spectrum of the BPM-
5 4 propagated (initial) white noise reveals
the dispersion relation for all possible
5—4 3 waves supported by the numerical
g 3 algorithm. The parabolic structure in
::j 2 the center corresponds to the continuum
T2 ; limit dispersion relation of the paraxial
§ \ I beam propagation equation. Waves
s \ f 0 with higher transverse wavenumbers
0 \“/ are strongly damped — this is the
-1 consequence of the implicit nature of the

% 4 2 o0 2 4 & integration scheme.

transverse wavenumber x10°

This figure shows sharply defined longitudinal propagation constants for waves with small trans-
verse wavenumbers. At higher transverse wavenumbers, the imaginary part of the numerical propa-
gation constant causes damping of such waves. This has two consequences, both visible in the figure.
First, there is less “energy” in these waves because it was partially dissipated during the propaga-
tion. Second, their energy is spread, or blurred over a region of propagation constants, this blurring
manifesting the finite lifetimes of the wave.

4 | ' | ' |

N
|
|

Comparison of the numerical dispersion
curves for the implicit finite-difference
BPM, and the exact non-paraxial beam
propagation. Curves shown were gener-
ated for A = lum, and grid spacing of
Az = 0.25\. The propagation step is
0~8m. Imaginary parts of the numerical
and non-paraxial curves were scaled by
a factor of fifty and one tenth, respec-
tively.

propagation constant [1 Oe/m]

transverse wavenumber [1 07/m]

That the measured dispersion relation behaves the way it is supposed to can be checked by evaluat-
ing the theoretical dispersion formula derived in the class. Figure above shows the real and imaginary
parts of the numerical propagation constant versus transverse wavenumber. For comparison, the exact
non-paraxial curves are also shown. They indicate the width of the light cone in this figure, and thus
show which waves are physical, and which should not be present in the BPM simulation.

The fact that all numerical waves are damped is most important, because dissipation affects not

Beam Propagation Method M. Kolesik, Spring 2014

OPTI-547 Exercise: Implicit Finite-Difference Scheme 5

only the noise but also the physical solution we seek to find. While in the context of the beam
propagation one does not really need to capture waves with transverse wavenumbers that represent
either steep propagation angles or are even beyond the light cone for the given wavelength, even
paraxial rays are damped and this is clearly not desirable. The same issue becomes even more serious
for example in quantum mechanics, where the preservation of energy in the beam corresponds to the
unitary nature of quantum wavefunction evolution.

Convergence study

In this exercise, we look at the basics of performing a convergence check of a BPM-method imple-
mentation. We have implemented an implicit finite-difference method to solve the basic paraxial
beam-propagation equation. The discretization scheme uses a three-point estimated of the second
spatial derivative, and as such it should result in a quadratic converge of the numerical solution to
the exact one. This rate of convergence will be tested here.

For this simple case, one can take advantage of the fact that an exact solution to the continuum
equation exist, namely in the form of a (paraxial) Gaussian beam. This is used to generate both the
initial conditions for the numerical simulation, and the target solution that this simulation should
approach.

To avoid accumulation of errors, and thus probe only the local error controlled by the discretization
scheme, the propagation distance should not be too long. At the same time it should be long enough
to create sufficient difference between the initial and target beam profiles.

In this particular example, the goal is to verify the methods properties as the discretization of the
spatial grid becomes finer and finer. To this end, a series of runs is executed, doubling the resolution
(or the number of grid points) every time. The distance between the numerical and target solutions is
evaluated for each resolution and the result is plotted in the log-log scale. The following figure shows
an example generated by the instructor‘s solution ConvergenceStudy.m.

s 1 The error of the numerical solution as a func-
1e-05¢ 3 tion of Az, the spatial grid‘s spacing. The
= i] slope of the linear part of the plot is close to
O 1e-06 E .
5 : E two, corresponding to the order of accuracy of
< 1e-07L] the discretized Laplacian in the paraxial beam
§’ propagation equation. The error is measured
1e-08L] as the maximum (over the spatial extent of the
g] grid) of |E(z)num — E(Z,)exact]- Other met-
10-00L STl v i rics could be used, leading to a qualitatively
1e-08 1e-07 1e-06 1e-05

Log10(dx) similar result.

There are three regions in the curve shown above. The first is controlled by relatively large Az
when the error decreases with decreasing Az but at a rate slower than one corresponding to the
accuracy order one expects based on the discretization scheme. This is simply the manifestation of
the fact that error~ Az behavior is only reached in the limit of small grid spacing.

The middle of the plot is where Az is sufficiently small to reveal quadratic decrease of the error.
This is the regime we look for.

Beam Propagation Method M. Kolesik, Spring 2014

OPTI-547 Exercise: Implicit Finite-Difference Scheme 6

For very small Ax, the spatial grid discretization error become so small that some other error
source starts to dominate. That is why decreasing Az even further does not actually reduce the error
any more. In this case, the residual error is controlled by the discreteness of the integration step Az.
This can be checked by running the same series of simulations with a smaller Az. The reader is invited
to check that it extends the region over which error decreases quadratically with Az. Eventually, for
a very small Az, the error will behave erratically as the machine number accuracy starts to affect
comparison of the exact and numerical solutions.

grom LR | T T ™
1e-05§ oo) 3 Convergence w.r.t. Az for two fixed values
- 1e-06 ¢ B-Eljijggz 4 of Az. The minimal error achieved for small
o 19_07:_ =] Az obviously decreases with Az, and this is
g, in line with “two” sources or discretization
T, 1e-08¢ 3 errors. However, first-order accuracy in Az
S 1e-09:— _ suggests that the improvement should only
F] be by about an order of magnitude, while the
19'10§ E figure shows two orders...
Todt D

1e-08 1e-07 1e-06 1e-05
Log10(dx)

Figure above compares convergence curves for two values of the integration step. As pointed out
in the caption, the minimal error improvement seen at the bottom part of the curve is better than
the expected one order of magnitude. This occurs because of the setup of this simulation. It is not
suitable for measuring convergence w.r.t. Az, because it does not ensure that “absolutely everything”
except the controlled quantity (Az in this case) remains unchanged during the whole convergence
study.

The following figure shows a properly executed convergence check w.r.t. the integration step.

T T T T

1e-05¢ Convergence of the implicit beam propagation
i methods with respect to the integration step

Az. The first linear part of the plot has a slope

% close to unity, and this is expected since the
1e-06¢ accuracy order of the method is one for this
i parameter. For very small integration steps,
the error levels off — this is when it becomes
limited by the grid spacing Az.
10000 o0 de-07 ie-06

dz

To conclude the convergence exercise, let us note that it makes it obvious that refining resolution
in one dimension only does not necessarily result in an improved solution. The interplay between
the non-physical numerical parameters becomes important, and very often decreasing one requires
a corresponding adjustment in the other. Obviously this has an unpleasant consequence that the

Beam Propagation Method M. Kolesik, Spring 2014

OPTI-547 Exercise: Implicit Finite-Difference Scheme 7

numerical work required increases even faster.

Beam Propagation Method M. Kolesik, Spring 2014

