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Purpose:

Practical implementation of the discrete Hankel transform in the context of BPM.

Summary of DHT:

What the discrete Hankel transform should do is a counterpart of the continuous formulas for the Hankel
transform (here we restrict our attention strictly to the zero-order transforms):
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Forward and backward transformation has exactly the same form, and one can verify these formulas using the
orthogonality relation for the Bessel functions:
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Indeed,
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This forward-backward symmetry is something that can be preserved in the numerical implementation, too.
First, assume that the function f(r) is nonzero only for r € (0, Rinaz), and that also its spatial spectrum F'(k)
is band-limited, and vanishes for wavenumbers k£ beyond some maximal spatial frequency. The first assumption
allows to restrict the computational domain to a finite (radial) interval starting at » = 0 and extending up to
Rpaz- The limited bandwidth assumption makes it possible to use a finite number of grid points to capture all
necessary spatial frequencies.

The computational grid in the real space is then given by a set of points
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where «j is the k-th zero of Jy, and M determines the grid resolution and therefore the maximal spatial
frequency it can support. Note that the very first grid point lies at non-zero distance from the axis r = 0. The
last point 73— is also away from the boundary R, at which f(Ry..) = 0; The grid spatial resolution can
be roughly characterized by R,.q./M, but the points are not spaced at equal distances.

The corresponding grid in the spectral space is
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The minimal spatial frequency is 1/ Rynaz (a1 & 2.4048). This is the counterpart of the transverse wavenumber
“quantum” 2 /L for a linear spatial domain of length L. The maximal frequency supported by the grid is kpr—1,
and it scales up with the number of points M.

Functions representing optical beam profile amplitudes will be sampled at these points, and notations
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will be used. The discrete version of the Hankel transform is simply matrix multiplication by the same matrix
H
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Since the continuous transform is its own inverse, the same is expected of the discrete version, so the square of
H should give an identity matrix:

k
Johnson [1] gives the explicit form for H:
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Reference [1] also provides a proof that (8) holds in the limit of large M: repeated application of H is
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which is orthogonality relation (11) in Ref. [1]. For finite M, above is not strictly true, but even for smallest
Mss the accuracy is rather high. Deviations will show up as non-zero off-diagonal elements in H? which should
be an identity matrix if the orthogonality was analytically exact. Typically, few hundred of points are used to
populate a radial computational domain, and the corrections are practically lost in the numerical “noise.”

[1] H. Fisk Johnson, Computing discrete Hankel transform, Computer Physics Communications 43(1987)181.

Task 1: Implement a Matlab script for a DHT function. It should carry a structure holding the transformation
matrix, and arrays of coordinates in both the real space and spectral space (i.e. transverse wavenumbers).

Instructor’s solution: myDHT.m, plus a testing script testDHT.m, which just creates a DHT object, defines a
select mode in both the real space and spectral space, and calculates the corresponding transformed counterparts.

Task 2:

Use your DHT implementation to perform simulation of the Poisson’s bright spot similar to that done in the
previous work-package. Utilize the program/script previously written for the 2D, FFT-based BPM to execute
the same simulation with programs implementing both methods. You should obtain numerical results which
agree very well — this will be the first test of the DHT-BPM. Note, that the simulation time required for the
DHT approach is just a fraction of that needed for the 2D FFT method.

Instructor’s solution: Scripts plFFT.m and p2DHT.m are be set-up to execute “the same” simulation. Results
are written in amplitude_vs_.x_FFT.dat and amplitude_vs_radius_DHT.dat, respectively, and can be used to plot
the resulting field amplitudes for detailed comparison.
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