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Purpose:
Practical implementation of the discrete Hankel transform in the context of BPM.

Summary of DHT:

What the discrete Hankel transform should do is a counterpart of the continuous formulas for the Hankel
transform (here we restrict our attention strictly to the zero-order transforms):

F (k) =
∫ ∞

0

rdrJ0(kr)f(r) , f(r) =
∫ ∞

0

kdkJ0(kr)F (k) (1)

Forward and backward transformation has exactly the same form, and one can verify these formulas using the
orthogonality relation for the Bessel functions:∫ ∞

0

rdrJ0(kr)J0(ur) =
1
k
δ(k − u) (2)

Indeed,

F (k)=
∫ ∞

0

rdrJ0(kr)f(r)=
∫ ∞

0

rdrJ0(kr)
∫ ∞

0

uduJ0(ur)F (u)=
∫ ∞

0

uduF (u)
∫ ∞

0

rdrJ0(kr)J0(ur)=
∫ ∞

0

uduF (u)
δ(k − u)

k
=F (k)

(3)
This forward-backward symmetry is something that can be preserved in the numerical implementation, too.
First, assume that the function f(r) is nonzero only for r ∈ (0, Rmax), and that also its spatial spectrum F (k)
is band-limited, and vanishes for wavenumbers k beyond some maximal spatial frequency. The first assumption
allows to restrict the computational domain to a finite (radial) interval starting at r = 0 and extending up to
Rmax. The limited bandwidth assumption makes it possible to use a finite number of grid points to capture all
necessary spatial frequencies.
The computational grid in the real space is then given by a set of points

rk = Rmax
αk

αM
, k = 1, 2, . . . ,M − 1 (4)

where αk is the k-th zero of J0, and M determines the grid resolution and therefore the maximal spatial
frequency it can support. Note that the very first grid point lies at non-zero distance from the axis r = 0. The
last point rM−1 is also away from the boundary Rmax at which f(Rmax) = 0; The grid spatial resolution can
be roughly characterized by Rmax/M , but the points are not spaced at equal distances.
The corresponding grid in the spectral space is

kn =
αn

Rmax
, k = 1, 2, . . . ,M − 1 . (5)

The minimal spatial frequency is α1/Rmax (α1 ≈ 2.4048). This is the counterpart of the transverse wavenumber
“quantum” 2π/L for a linear spatial domain of length L. The maximal frequency supported by the grid is kM−1,
and it scales up with the number of points M .
Functions representing optical beam profile amplitudes will be sampled at these points, and notations

Fn ≡ F (kn) fk ≡ f(rk) (6)
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will be used. The discrete version of the Hankel transform is simply matrix multiplication by the same matrix
H,

Fn =
∑

k

Hnkfk , fk =
∑

n

HknFn . (7)

Since the continuous transform is its own inverse, the same is expected of the discrete version, so the square of
H should give an identity matrix: ∑

k

HnkHkm = δnm (8)

Johnson [1] gives the explicit form for H:

Hmn =
2
αM

J0(αmαn/αM )
J2

1 (αn)
(9)

Reference [1] also provides a proof that (8) holds in the limit of large M : repeated application of H is

∑
k

HnkHkm =
4
α2

M

M−1∑
k=1

J0(αnαk/αM )
J2

1 (αk)
J0(αkαm/αM )

J2
1 (αm)

= δnm (10)

which is orthogonality relation (11) in Ref. [1]. For finite M , above is not strictly true, but even for smallest
Ms the accuracy is rather high. Deviations will show up as non-zero off-diagonal elements in H2 which should
be an identity matrix if the orthogonality was analytically exact. Typically, few hundred of points are used to
populate a radial computational domain, and the corrections are practically lost in the numerical “noise.”
[1] H. Fisk Johnson, Computing discrete Hankel transform, Computer Physics Communications 43(1987)181.

Task 1: Implement a Matlab script for a DHT function. It should carry a structure holding the transformation
matrix, and arrays of coordinates in both the real space and spectral space (i.e. transverse wavenumbers).

Instructor’s solution: myDHT.m, plus a testing script testDHT.m, which just creates a DHT object, defines a
select mode in both the real space and spectral space, and calculates the corresponding transformed counterparts.
Task 2:
Use your DHT implementation to perform simulation of the Poisson’s bright spot similar to that done in the
previous work-package. Utilize the program/script previously written for the 2D, FFT-based BPM to execute
the same simulation with programs implementing both methods. You should obtain numerical results which
agree very well — this will be the first test of the DHT-BPM. Note, that the simulation time required for the
DHT approach is just a fraction of that needed for the 2D FFT method.

Instructor’s solution: Scripts p1FFT.m and p2DHT.m are be set-up to execute “the same” simulation. Results
are written in amplitude vs x FFT.dat and amplitude vs radius DHT.dat, respectively, and can be used to plot
the resulting field amplitudes for detailed comparison.
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