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0.0.1 Calculation of the longitudinal vector component

Summary:

• Vectorial nature of light can be easily implemented into spectral beam propagation methods.

• The longitudinal component of the electric field amplitude need not be simulated along the
whole propagation distance. Rather, it can be calculated from the divergence condition only
when needed.

Background:
We pointed out in the introductory section that the beam propagation method usually works only
with the transverse field components, whether electric or magnetic. But sometimes, one needs the
longitudinal vector component of the field, for example for calculation of a nonlinear response.

It is possible to write the evolution equations for the longitudinal field component, and these can
be solved along with the equations for the dominant polarization(s). This becomes especially simple
in the case of a spectral method applied to a homogeneous medium, since the algorithm is exactly
the same as for the transverse field components. Different polarization components are completely
de-coupled, and each satisfies the same wave equation. The identical FFT-BPM algorithm therefore
operates on each polarization component of the electric field. Naturally, one must make sure that
the initial condition exhibits zero divergence, otherwise the solution could not represent a solution to
Maxwell equations. However, such an approach would be unnecessary...

In the case of spectral FFT-based method, the longitudinal component can be obtained easily
without actually “propagating” it. This is possible because the simulated medium is homogeneous,
and the divergence constraint can yield the z-component exactly. The electric Gauss law in the
real-space representation,

∇. ~E(x, y, z) = 0

translates into the spectral-space representation

Ax(kx, ky, z)kx +Ay(kx, ky, z)ky + kzAz(kx, ky, z) = 0

where the z component of the wavevector can be fixed by requiring that the dispersion relation is
satisfied, namely

k2x + k2y + k2z =
ω2n(ω)2

c2
.

Thus, having calculated Ax,y(kx, ky, z) for the given z where Ez is required, one transforms the
Ex,y(x, y, z) into spectral representation, and a calculates

Az(kx, ky, z) = − Axkx +Ayky√
k20 − k2x − k2y

.

This formula must of course be restricted to those wave-vectors that result in a real-valued kz. Testing
for this is usually necessary because the longitudinal components only become significant in non-
paraxial regimes. In such situations, BPM usually utilizes spectral space grid (kx, ky) that encompasses
regions corresponding to evanescent waves. They would normally carry negligible amplitudes.

Task 1:
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• Starting from the implementation of the 2D FFT-BPM from the previous practice package, add
a function which will calculate the Ez component of the electric field. You may assume that
Ey = 0, or that the dominant field components is oriented along axis x.

• Set up a simulation to illustrate that a significant longitudinal field evolves in the focal point of
a beam. Note the ratio between the field strength EX and Ez, and how it depends on the focal
length.

Solution:
Instructor‘s solution example is stored in pEzInFocus.m, for a simulation showing a tightly focused
beam. It executes the “scalar” (single polarization component) simulation exactly as before. When
the final propagation distance is reached, the Ez field is calculated, using the formula above, as follows:

Listing 1: Calculation of the longitudinal field

1 % c a l c u l a t e the s p a t i a l spectrum of Ex :
2 spat i a l spec t rum = f f t 2 ( amplitudeX ) ;
3
4 % eva luate the wave−number dependent f a c t o r Ez/Ex :
5 operator = ze ro s (NX,NX) ;
6 f o r x=1:NX
7 f o r y=1:NX
8 i f ( k0ˆ2 > kx ( x )ˆ2 + kx ( y )ˆ2 )
9 operator (x , y ) = −kx ( x )/ s q r t ( k0ˆ2 − kx ( x )ˆ2 − kx ( y ) ˆ 2 ) ;

10 end
11 end
12 end
13
14 % apply to s p a t i a l spectrum and trans form back to r e a l space
15 amplitudeZ = i f f t 2 ( spat i a l spec t rum .∗ operator ) ;

To emphasize the strength of the longitudinal vector component, one needs a tight focus. One
convenient was to set up a simulation is to use the analytic Gaussian beam formula evaluated at
a given distance before the beam focus. In the example that follows the beam waist was chosen
equal to the wavelength λ = 633nm. Note that the fact that this analytic formula does not describe
accurately tightly focused beam solutions is irrelevant: It does represent some initial condition, and
the longitudinal part is not initially specified. The beam is propagated into focus, and EZ is calculated
there. The result is illustrated in the figure that follows.

Comparison of the two panels shows that the intensity ratio Ez/Ex is about one tenth. Thus, even
in the most tightly focused beam, the longitudinal component is relatively weak. This is one of the
rationales for neglecting Ez in many beam propagation approaches.
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Dominant Ex (left) and longitudinal Ez (right) fields in the focal point. Prop-
agation of Ex was simulated over four Rayleigh range length, and then Ez was
evaluated form the ∇Ė = 0 condition. Note the ratio between the field strengths
in the two panels. Horizontal and vertical axes correspond to array indices of the
computational grid.

Task 2:
Set up a similar simulation illustrating the longitudinal field component in a beam that propagates
at a steep angle w.r.t. the axis. The high-angle Gaussian beam solution developed previously can be
utilized to create an initial condition.

The instructor‘s example can be inspected in pEzAtSteepAngle.m.
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