OPTI-547 Exercise: Poisson‘s Bright Spot 1

0.0.1 Strongly non-paraxial regime: Poisson‘s bright spot
Summary:

e This exercise shows how a 1-D implementation of the FFT-BPM can be easily modified for
two transverse dimensions...

e ... and illustrates the FFT-BPM strength in an application that bridges different proagation
regimes, from strongly non-paraxial to paraxial.

e In this context, the computational complexity becomes an important issue and we touch upon
question of performance and parallelization.

The physical context chosen for this work-package is that of diffraction of a collimated beam on a
circular, completely opaque screen. This gives rise to the famous effect called Poisson‘s bright spot,
or spot of Arago. A nice paper by R. Lucke (Eur. J. Phys. 27 (2006) 193) and related comment by
G.S. Smith (Eur. J. Phys. 27 (2006) L21L23) are convenient sources to read on the mathematical
background and in particular about two versions of diffraction formulas, Rayleigh-Sommerfeld and
Fresnel-Kirchhoff integrals.

Form the numerical point of view, the calculation of the diffracted field in the space beyond the
circular obstacle, and especially in the close vicinity of the optical axis and close to the screen, presents
a good opportunity to realize how important are the non-physical parameters underlying simulations,
such as the grid resolution. The reader will quickly appreciate that a calculation of the very same
quantity may require very different numerical efforts depending on the choice of the simulated problem
geometry.

Task 1: Simulation implementation

Possibly starting from the source developed for the previous exercise, write a program to calculate the
diffracted field behind the circular obstacle when illuminated by a finite-diameter collimated beam.
This will require an gextension of the FFT-BPM to two transverse dimensions.

Solution

The extension of the code from a previous exercise is not difficult. Let us comment on couple of
points where mistakes occur often. As in the case with a single trnasverse dimension, one needs to
prepare the linear propagator which in turn requires to calculate first the “allowable” spatial wavenum-
bers. These are of course obtained the same way as in one dimension. However, the realization of the
propagator must be specifically two-dimensional because of the non-parazial difraction regime that
needs to be properly captured (recall that while paraxial regime produces propagating beam which
is a direct product of two one-dimensional beams diffracting in their respective dimensions, such a
reduction does not occur in general). For simplicity, it is assumed that the size of the computational
box is the same along both transverse axes which we take as = and y, both sampled with NX grid
points. Then in C language, the core part of the propagator implementation could be written as in
this example:

Listing 1: Non-paraxial BPM propagator implementation in C

/* calculate transverse wavenumbers x/
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double kx[NX];
for (x=0;x<NX/2;x++) kx[x] = dkx*x;
for ( i xINX;  x++) kx[x] = dk*(xNX);

/% 2D propagator holder, use FFITW memory allocation =/
fftw_complex* pxy;
9 pxy = fftw_malloc (NXs«NX«sizeof (fftw_complex));
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11 for (x=0;x<NX; x++) {

12 for (y=0;y<NX; y++) {

13 // paraxial: comment out for this exercise!

14 pxy [xHNXsy] = cexp(—Ix(kx[x]+kx[x] + kx[y]«kx[y])/(2xk0)*dz )/(NX+NX);
15

16 // non—paraxial: use this version here!

17 pxy [xNXxy| = cexp(+Ix(csqrt (k0xk0 — kx[x]*kx[x] — kx[y]*xkx[y]));

18 pxy [xHNXxy| *= cexp(—Ixk0xdz )/(NX«NX);

19 }

20 }

In the last expression, the reference carrier-wave phase is taken out. This is mostly inconsequential
in the BPM context, since one is rarely interested in the absolute beam phase. Also note that when
one uses a fast Fourier transform library, as FFTW in this example, it is better for performance to
use the corresponding routines to allocate the propagator memory.

The physical nature of the simulated problem requires that the spectral beam propagation method
is applied as a series of shorter integration steps, and at least a poor man’s absorbing boundary
guard is applied periodically to the solution. The reason for this is related to the occurrence of the
complete spectrum of transverse wavenumbers, from very small ones, through waves that propagate
almost perpendicularly to the axis, to even evanescent waves. One roughly say that each “’bundle”
of plane waves that constitute a cone gives rise to the amplitude profile at certain distance from the
screen. Aiming at reconstructing the latter from zero to “infinity,” one must include waves with steep
propagation angles, and the wavepacket that thse constitute reach the computational boundary very
quickly. This is where they must be continually (or sufficiently often) destroyed by the boundary
guard.

As a side note, the above also works in the opposite direction. If one only needs to claculate the
beam profile at a specific large distance from the screen, a paraxial propagator will suffice as long
as it carries the waves with proagation angles subtended by the axis and a line that connects the
observation point on axis with the edge of the screen. In fact, this is exactly what was done in the
other practical exercise with the Poisson‘s bright spot.

Going back to the boundary guard implementation, keep in mind that there is no universal recipe
to set this up. The following code snippet is just such an example:

Listing 2: Simple boundary guard
/* 2D boundary guard holder, allocated with FFTW routine x/
doublex bxy;
bxy = fftw_malloc (NX«NXxsizeof (double));
for (x=0;x<NX;x++) {
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for (y=0;y<NX; y++) {
// super—gaussian shape example: experiment with parameters!
bxy [xH\Xxy] = exp(—pow ((cx[x]*cx[x] + cx[y]*cx[y])/(LX«LX/5.0),8.0) );

}

It is to be emphasized that suitable parameters that control the shape of the guard should be obtained
with experimentation and careful testing. The profile of the guard must not be too steep to minimize
wave reflection from it. Moreover, a too frequent application of even a gradual absorption profile even-
tually creates an effectively smaller computational domain with a reflective boundary, thus defeating
it own purpose. This problem is a good place to experiment with these simple absorbing boundary
conditions. The reader will surely find parameter setting that will work well and many more that will
not work at all. The take-home lesson should be that of extreme caution in working with boundary
guards of this simplest kind.

Finally, the main loop of the code is pretty much the same as in one dimension, alternating
Fourier transform (in 2D), multiplication by the above propagator, following by the inverse Fourier
transform. Periodically, this step should be followed by annihilating the outgoing waves that near the
computational domain boundary.

The reader can find an instructors solution example in the corresponding practical exercise folder.
Both single-thread and parallelized version in C and Matlab are provided as examples.

Task 2: On-axis intensity of the Poisson‘s bright spot

Reproduce in simulation the analytical expression for the on-axis intensity of the Poisson‘s bright
spot. With a standing for the radius of a circular obstacle perpendicular to the beam propagation
axis, the amplitude at the propagation distance z is

z
Va?+ 22
The simulation should also capture the immediate vicinity of the opaque screen, which will need the
application of the non-paraxial propagator. It is left up to the reader to choose concrete parameters.

The main goal is to obtain data which will show an agreement with the analytic target at least as
good as that shown in the figure:

U(z) = (1)

Spot of Arago: FFT-BPM vs analytical

T T T ] Analytic and simulated profile of the on-axis
F e 8 intensity vs propagation distance. Beam with
5 0.8 = a supper-Gaussian cross-section intensity profile
% r 1 diffracts around a circular opaque obstacle and
‘5 0.6~ - gives rise to the famous Poisson‘s bright spot (the
g 7 T picture shows its intensity). The agreement be-
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Solution:

At this point, I strongly encourage the reader to stop reading, and attempt the solution. One should
quickly realize that it is not an easy simulation. Insuficient grid resolution may be suspect, but it can
happen that even grids with several thousand points across will not produce a satisfactory agreement
with the analytic formula... The deviations will mainly occur in the vicinity of the screen, while a
better agrement may appear further down the axis.

Clearly, the non-paraxial nature of the optical field just beyond the screen is difficult to capture
numerically, and is limitted by the maximal wavenumbers that are resolved by the numerical propa-
gator. Points on the axis that are close to the screen are iluinated by waves that propagate essentialy
perpendicularly to the beam propagation direction as a whole. Consequently, the transverse resolution
of the numerical grid must be better than the wavelength of the beam.

However, because the problem states that the parameters of the simulated geometry can be freely
chosen, we can cheat and by-pass the above described difficulties. Note that the wavelength does not
explicity appear in the formula (1)! If for a given radius a the wavelength is so large that a/\ is a
modest number, the simulation becomes very easy. This is indeed how the results shown in the figure
were obtained. With a = 2 mm, and A = 100um, a grid of 4096 x4096 point turns out to be sufficient.
The solution was sampled in 50 steps with a boundary guard applied after each FEFT-BPM step.

Instructor‘s examples provided in the practice folder in files cmp.c and instructors.c for serial and
parallel implmentation in C, and in p1.m for a Matlab version.

This is the first practical problem in this course in which the compute time becomes an issue, and
wishes that the simulation would run just a bit faster. So it is a good opportunity to experiment with
parallelization, too. While Matlab can parallelize for free, and possible even without users knowledge,
certain amount of work investment is required in a compiled language. The example given in this
practice package is for the OpenMP, pragma-based loop parallelization.

Task 3:

How sharp is the pattern in this diffraction scenario is, depends on how sharp and smooth the boundary
of the obstacle screen is. Design a modification of the initial condition that mimics a fuzzy obstacle
edge, and show that when the fuzziness affects one Fresnel zone, the central part of the pattern starts
to degrade.

Beam Propagation Method M. Kolesik, Spring 2016



