OPTI-547 Exercise: One-Dimensional Maxwell Solver 1

0.0.1 Simulation of beam propagation in the Fraunhofer regime

Purpose: This exercise illustrates numerical difficulties in FFT-BPM propagation in far field. Con-
cretely, we look at:

a) how cyclic (periodic) boundary conditions imposed by the Fourier transform prevent a truly
long-distance simulated beam propagation,

b) simple numerical technique of a boundary guard, which is a kind of “poor-man’s” method to
mimic transparent boundary conditions at the computational box edge,

a) and effects of grid-resolution in the spectral domain, that show up especially in case of an initial
condition with sharp edge(s).

(P2

The most important lesson of this exercise is that while such “poor man‘s” transparent boundary
conditions can be fully sufficient in some cases, one must be always rather careful and look out for
numerical artifacts introduced due to the modified boundary.

Task: Calculate the Fraunhofer diffraction pattern of a simple slit through the FFT-based beam
propagation. The aim of this exercise is to explore a situation which “amplifies” certain numerical
issues connected with FFT-BPM, and beam propagation in general.

Solution:

There are three Matlab scripts, pFarField_1.m, pFarField_2.m, and pFarField_3.m in this exercise
package. They are essentially identical, provided for easy comparison of different simulation regimes.
The situation simulated represents the Fraunhofer diffraction on a one-dimensional slit. The diffracted
field is propagated sufficiently far, so that an approximation of the far-field Fraunhofer pattern is
obtained.

Script pFarField_1.m utilizes a sufficiently large computational domain, and the boundary-guard is
not used. This example shows that a reasonable approximation of the far-field pattern can be obtained
if the domain is sufficiently large, and its spatial resolution is fine enough. Of course, it makes the
computation relatively expensive. Here, in this one-dimensional case it may not be an issue, but it
can in general (especially in two dimensions and in time-dependent problems) make the simulation
prohibitively expensive.

This motivates script pFarField_2.m which is an attempt to achieve far field simulation with a
smaller domain. Inspection of the boundary region in the simulated beam profile at the final distance
reveals artifacts that are due to wings of the pattern coupling back because of the cyclic boundary
conditions imposed by the FFT method.

Script pFarField_3.m switches on the boundary guard. It is designed to eliminate the problem
with the periodic domain boundaries. Readers should inspect the script to see what implementation
of the guard was chosen, and experiment with its settings.

In general, one has to choose the thickness of the boundary-guard layer. This is a part of the
domain that is essentially “sacrificed,” and not useful for obtaining any information form the simulated
solution. Another parameter of the guard is the steepness with which its absorption increases toward
the edge of the domain. If it is too steep, it can itself induce strong reflection, and thus make the
domain effectively smaller.
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OPTI-547 Exercise: One-Dimensional Maxwell Solver 2

By playing with these characteristics, it should be easy to realize that this way of handling the
unwanted “reflections” from the boundaries is a rather subtle business. The take-away lesson is that
with these simple boundary conditions, one has to pay keen attention to possible numerical artifacts.

One could say that the remedies we have used to improve the fidelity of our simulation on a
smaller lattice were designed to control waves with extreme transverse wavenumbers. These are the
components of the solution that propagate at steepest angles, and therefore experience first the finite
size of the computational domain. In line with the observations made in one-dimensional Maxwell
solver, it is the waves which belong to the edges of the resolved numerical bandwidth that tend to
cause problems.

Note: An alternative way to deal with the extreme wavenumbers in the beam propagation is
to design a propagator that will damp all waves with wavenumbers higher than a chosen threshold.
This can be realized as a boundary guard in the spectral domain. Similar to the situation in the real
space, the transition between the unperturbed and damped regions of transverse wavenumbers must
be sufficiently gradual. If this transition is sharp, wave-forms arise in the real space representation
that exhibit long non-decaying “tails,” with characteristic wavenumbers, namely those separating the
damped and un-damped wave-vectors.
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