OPTI-547 Exercise: One-Dimensional Maxwell Solver 1

Boundary conditions for computational domains are an important and difficult numerical and
modeling issue. Throughout this course we will revisit this topic a few times, discussing different
methods with increasing complexity. The purpose of this exercise is to explore a simple version of
the so-called absorbing boundary conditions (ABC) in the one-dimensional Maxwell solver which we
have implemented in the previous exercise. While the method examined here does not apply directly
to the beam propagation, it will help us to identify important issues related to ABC implementation
in the simplest possible setting.

The role of the ABCs is to truncate the computational domain in such a way that waves which
reach the edge of the computational box will disappear as if they propagated freely into open space.
Needless to say this is not an easy problem to solve. It should also be obvious that there is no ideal
implementation of transparent boundary conditions (TBC) as they are also often called. The quality
of any particular boundary condition is often characterized in terms of its reflection coefficient. Any
numerical wave will partly reflect from the domain boundary, and the reflection coefficient says what
is the amplitude of the reflected wave provided the incident has a unit amplitude. Reflectance, or
fraction of the wave energy reflected, is also often used. Reflection coefficients are in general functions
of the wave frequency (temporal or spatial) and also of the angle of incidence at which the wave
approaches the domain boundary.

The method illustrated here is called Mur ABCs. [Gerrit Mur, IEEE Trans. on FElectromagnetic
Compatibility, EMC-23 (1981) 877.] The idea is very simple, at least when applied in one spatial
dimension as we do it here. It is based on a local modification of the propagation equation in the
region of the computational grid adjacent to the boundary.

The one-dimensional wave equation, which is what the 1D-Maxwell solver effectively simulates,
can be exactly factored into two one-way propagation equations:

Each of the operator factors represents waves propagating in a distinct direction. For example
(0 — O0x)A(z,t) = 0 is an equation satisfied by waves propagating to the right. If we assume that
our boundary condition at the left edge of the computational box is such that it absorbs outgoing
waveforms completely, the wave equation can be replaced by this one-way equation in the vicinity of
the boundary. In fact, this “replacement” is only done at a single point, right at the end, where we
require:

(at + ax)E<xboundaryv t) =0 , (at - 895)E(xboundarya t) =0 (2)

for the right-hand side and left-hand side computational domain boundary, respectively. These bound-
ary conditions in effect say that the wave propagation if forced in the outward direction at both
boundaries.

The above equations must be discretized and realized on the grid. This can be accomplished in
many different ways. The simplest discretization formula is

cAt — Ax

Eg(t+ At) = Ey(t _
s(t+Al) I()+0At+Ax

[Er(t+ At) — Ep(t)] , (3)
where subscript B denotes a field sample located right at the domain boundary, and subscript I marks
its nearest neighbor inside the computational box. Obviously Az and At stand for the spatial grid
spacing and integration time step, respectively. To apply this prescription, the inside value Ej(t+ At)
must be evaluated first. So the whole update proceeds as before for all grid points inside the domain.
The inner update is then followed by calculating the Ep values on both ends.
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Similar boundary conditions could be required for the magnetic field. However, magnetic boundary
conditions can be by-passed altogether. We make sure that the boundary domain edges are placed
exactly at grid positions that carry electric field samples. With such an arrangement, all magnetic
fields have both left-hand and right-hand electric-grid neighbors available for the update step. It is
assumed in the following that the computational grid has been chosen accordingly.

This absorbing, or transparent as they are also called, boundary conditions belong to the family
of algorithms that estimate the wave-form close to the boundary and assume that the solution is
outgoing. This results in a fast, inexpensive algorithm with fairly good properties (low reflectivity
coefficient). However, things become more complicated in higher dimensions which bring into play
different angles of incidence. More accurate ABCs are possible, for example by using higher-order
approximations of the outgoing solution, or by adding so-called perfectly matched layer to the outside
of the computational domain proper. We will examine both types of ABCs designed specifically for
the BPM methods.

Exercise: One-Dimensional Maxwell Solver and Absorbing Boundary Conditions

A) Starting from the one-way continuum conditions (2), derive the finite-difference approximation

(3)-

B) Use the Maxwell solver implementation from the previous exercise, and modify its periodic
boundary conditions to absorbing boundary conditions.

C) Execute a short simulation to demonstrate that the absorbing boundaries work. Test the
boundary condition function on both sides of the computational domain. One way to do this simply
is to prepare the initial condition such that it will induce two identical pulses propagating in the
opposite directions. After a sufficiently long time these pulses reach domain boundaries, and will give
rise to weak reflected waveforms.

D) There will be small reflection from any numerical absorbing boundary implementation. Identify
the reflected pulses in your simulation and estimate the effective reflection coefficient.

E) Demonstrate that the effectivness of the absorbing boundary depends on the wavelength of the
incident wave.

Solution

Task A)

When developing a finite-difference approximation for an expression which contains derivatives,
the first thing to do is to choose a reference point. It is a location (in space and/or time) at which the
finite-difference expression attains its best accuracy. It is important that all terms that contribute to
the approximated quantity share the same reference point.

The second important issue is that symmetric approximations to derivatives are superior to one-
sided ones. In other words, the symmetric scheme

fla+ Az) — f(z — Az)
2Ax )

O f () =
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is more accurate than the one-sided

We will re-visit this and similar expressions in the section on finite-difference approximated propaga-
tion equations where we will prove that symmetric approximations are always more accurate.

Let us assume that the we have calculated all field samples for time ¢, together with all inner-
domain field samples for time ¢t + At, and consider the left-hand side domain boundary. Keeping
in mind the “symmetry issue,” the natural candidate for the reference point to construct our finite-
difference approximation (3) for the left-hand domain edge is the point centered between the nearest
field samples:

1 1
TREF :$B+§A$ tREF =t+§At (6)

‘ Derivation of the finite-difference approximation for the
~‘ t+At Mur‘s first-order transparent boundary condition. Electric
field samples at nodes of the computational grid marked by
squares are assumed to be known from the previous step (at
° At . o : :

REF integration time ¢) and from the inner-domain update of the
current step (at time ¢ + At). The boundary condition will
— l t determine the new boundary value indicated by the gray cir-
AX cle (upper-left corner). This value is adjusted such that the
boundary condition constraint is fulfilled with the best accu-

XB XB +AX racy at the reference point in the center of the grid square.

The boundary condition we aim to enforce is
(0r — 0z) E(xrEF, tREF) = 0 . (7)

Of course, we have no field samples available for either zrpr or trrpr. What is often done in such
a situation is averaging the derivatives on both sides of the reference point. For the spatial derivative
we average its values at the two time-levels
10

0 10
%E(xREF,tREF) ~ ia?E(xREFat + At) + 58?E($REFJ) . (8)

Now one can insert symmetric two-point estimates for each spatial derivative to obtain

0 1
fE(IL’REF,tREF) ~ m (E(xB + ACE,t+ At) — E($B7t+ At)) +

% (E(zp + Az, t) — E(zp,t))

9)

2Ax

Similar averaging procedure is applied to the temporal derivative

0] 10

—F t ~-—F Ax,t -—F t . 10

5 (TrEFtREF) 551 (zp + Az, trEF) + 5 Bt (B, tREF) (10)

After inserting two-point estimates of temporal derivatives one has

(E(zp,t+ At) — E(zp,t))
(11)

0 1 1
—F ~—(F A At) — F A —
ot (xREF,tREF) 2At( (I‘B‘i‘ .’E,t+ t) (.’EB+ Z‘,t))+2At
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With (9) and (11) we approximate (7) and collection of like terms gives us the expression we sought:

At — Ax

E(IB,t+At) = E(CC],t) + m

[E(xr,t+ At) — E(xp,t)] , (12)
One missing detail is that no propagation speed (c¢) appears in this formula. This is because we have
utilized scaled units in which ¢ = 1. To recover the the expression for normal units is simple, it suffices
to replace At with cAt.

One could repeat the whole procedure for the right-hand-side boundary of the computational
domain. It is however not really necessary. Suffice to realize that only two things would change in the
whole calculation. First, Az would change its sign and, second, the sign of the spatial derivative in
the boundary condition would also change. These changes would cancel each other and the result is
the same.

Task B)

The implementation in the code is simple. The following listing shows the update procedure, only
slightly modified in comparison to its counterpart from the previous exercise. The first lines reflect
that the whole update is done “in-place,” i.e. the same arrays holding the current magnetic and
electric fields are used to calculate and store the result of the current integration step. This makes it
necessary to store values close to the domain boundary.

The second step is the electric field update. Note that the loop leaves out the points ¢ = 0 and
1 =n — 1 which are the boundary values, and have not all neighbors needed for their update.

Next lines (14,15) apply the absorbing boundary condition as discretized above. Here we use the
equivalent formulation using the parameter dtoverdz = At/Ax. Previously stored auxiliaries are used
in place of field samples at time ¢. Electric field array values are used for the just updated values for
t+ At.

The lines that follow constitute the update for the magnetic field. Note that the first value stored
in the array is not used and is (unnecessarily) set to zero at the end of the procedure.

Beam Propagation Method M. Kolesik, Spring 2016



OPTI-547 Exercise: One-Dimensional Maxwell Solver 5

Listing 1: 1D-Maxwell update modification for Mur ABC

void OneStep(double xE, double xH, double dtoverdx, int n) {
int i;

1

2

3

4 // since we do the update in—place, save these auxiliaries

5 double aux_L_.I = E[1]; // this is E_I at left domain end
6 double aux_.L_.B = E[0]; // this is EB at left domain end
7 double aux_R.I = E[n—2]; // this is E_.I at right domain end
8 double aux_.R.B = E[n—1]; // this is EB at right domain end
10 // update inside of the domain as before

11 for(i=1l;i<n—-1;i++) E[i] = E[i] 4+ dtoverdx«(H[i+1] — H[i ]);

13 // ABCs:
14 E[0 ]=aux_L_I+4+(dtoverdx —1.0)/(dtoverdx+1.0)*(E[1] —aux.L_B);
15 E[n—1]=aux_R_I+(dtoverdx —1.0)/(dtoverdx+1.0)*(E[n—2]—aux_R_B);

17 // update inside of the domain as before

18 for(i=l;i<n ;i++) H[i] = H[i] 4+ dtoverdx*(E[i ] — E[i—1]);
19
20 // this grid point is not used — it is outside
21  H[0] = 0.0;
22}
Task C)

In order to test performance of the boundary conditions around both edges of the computational
box, we need to direct an incident waveform onto both. A convenient way to achieve this is to generate
two identical pulses that propagate in opposite directions. The corresponding initial condition is one
that defines electric field in an arbitrary way, coupled with zero magnetic field.

Instructor’s solution is included in the working directory as OneDMazwell- WithBoundary.c. Three
runs were executed on a grid of 4096 points, integrating for 3500, 4000, and 5000 steps. With the
Courant ratio At/Axz = 0.5, these time correspond to moments before, during and after the waveform
hits domain edges.

The following figures show snapshots of the electric field at three different times. The first panel
illustrates how the initial condition gives rise to two identical wavepackets, and shows them at the
moment just before they hit the computational box boundaries.

The second panel demonstrates that the boundary condition indeed approximates a half-infinite
space in which the incident waveform disappears without deformation. Because the intensity is still
significant around the boundary, the figure scale does not allow to appreciate weak reflected radiation.

Task D)

The latter is evident in panel three, which depicts the reflected fields at appropriate scale. Note
that the waveforms preserved their shapes upon their (undesired) reflection from the domain edge.
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However, their amplitude is now significantly lower. The reflection coefficient can be roughly estimated
as r ~ 1.5 x 1074/0.5 (with 0.5 standing for the amplitude of the incident pulse).
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In tests like this one it is often useful to take advantage of the symmetry in the solution. In this
case we look for any differences in the behavior of the reflected pulses. The fact that the pulses appear
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OPTI-547 Exercise: One-Dimensional Maxwell Solver 7

to be mirror images of each other provides an indication that the absorbing boundary conditions work
as they should at both ends of the computational box.

Task E)

Reflection coefficients of numerical boundary conditions are in general dependent on the parameters
of the incident waves. In this one-dimensional case, the sole relevant parameter is the wavelength.
The following example demonstrates that the differences can be quite pronounced.

Wavepacket reflected from the absorbing
boundaries, simulated for two different wave-
lengths. The amplitude of the long-
wavelength (black line) solution is about an
order of magnitude smaller than that of the
short-wavelength pulse (red line). This is
yet another manifestation of numerical dis-
persion. This time it shows up in the dis-
cretized version of the boundary condition
which should exhibit no dispersion in the con-
tinuum limit. As the pulse wavelength in-
| . | . . | creases, the reflection coefficient improves, be-
1000 positzigr?c[)arb, ud] 8000 4000 cause the discreteness of the lattice is less and
less evident on the scale given by the wave-

length of the waveform.
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