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Purpose: This exercise illustrates numerical issues relevant for construction of initial conditions of
Maxwell equations. Utilizing a simple Maxwell solver, dispersion and stability properties of numerical
waves are examined and compared with theoretical predictions.

Take-away message:

• Unlike in BPM, initial conditions in Maxwell solvers require that the magnetic and electric fields
are properly “orchestrated.”

• Proper relation between the initial values of the electric and magnetic fields is determined by the
direction of propagation of the initial waveform, and is influenced by the dispersion properties
of the algorithm.

• The integration step of the numerical algorithm must be su�ciently small in order to avoid
instability.

• Carefully designed numerical experiment is required to verify the theoretical numerical dispersion
relation.

Tasks:

A) Implement one-dimensional Maxwell solver based on the Yee scheme. Code the discretized
equation derived in the class. To keep the program as concise as possible, assume periodic boundary
conditions (PBC). PBC mean that a point at the right-most end of the computational domain can be
identified with the very first point at the left end of the domain:

E[N � 1] = E[0] , H[N � 1] = H[0] .

Here, N stands for the number of points in the one-dimensional computational “box,” and c-like array
indexing is assumed (i.e. the very first array index is zero). Choose the unit of length equal to the
grid spacing, and the speed of light equal to one. With such a choice of units, the only free parameter
characterizing the method is the Courant ratio �t/�x. For your initial runs, set the Courant ratio
less or equal to 0.5.

To further simplify the programming, you can take advantage of the fact that the update of both,
H and E field can be done in-place, utilizing the same array holders for the current and new field
snapshots. However, keep in mind that this is not possible in higher dimensions and when simulated
waves interact with the propagation medium.

B) Construct the initial condition in a form of a pulse characterized by a given wavelength. Give
the pulse a Gaussian-shaped envelope. To ensure that the spectrum of the waveform is narrow, the
envelope must encompass at least several wavelengths. Assume that the electric field component is
given by the formula which you will implement. The question is how one needs to choose the magnetic
field in order to initialize the solution such that the pulse propagates to the right?

C) Execute a short simulation and inspect the outcome carefully to see if the solution indeed
propagates in the desired direction. Zoom in so that small features are not missed. Most likely, you
will find that while the bulk of the pulse does propagate in one direction, there is a low-intensity
“ghost” propagating in the opposite direction.
a) Explain the origin of the ghost
b) Discuss various options to achieve truly clean, one-way propagating initial conditions.
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D) Verify that the simulation method becomes unstable for the Courant ratio larger or equal to
one.

E) Design a method, and collect simulation data to verify the theoretic numerical dispersion
relation derived in the class. Briefly describe the method of your choice, and discuss specifically
what potential numerical artifacts could a↵ect the results. Make sure that your measured numerical
dispersion data span the whole region of wavelengths admissible for the discrete grid.

The following figure illustrates two cases of dispersion, and the accuracy you should achieve:

Figure 1. When an initial condition has a sharply-
defined spatial wavenumber, the numerical integration
algorithm produces a solution with a specific temporal
angular frequency. This figure illustrates the dispersion
relation which ties the spatial and temporal frequencies.
Curves show the expected relation derived from the up-
date scheme, and symbols are results of numerical sim-
ulations. Data for di↵erent Courant ratios indicate that
the dispersion relation depends on �t/�x. The contin-
uum limit corresponds to a straight line with unit slope.

Solution

Task A)

The implementation of the one-dimensional Maxwell integration step is straightforward. Here we
use C-language to illustrate that the core of the procedure is nothing but a direct realization of the
scheme derived in the class. A complete instructor’s solution can be viewed in OneDMaxwell.c

Listing 1: 1D-Maxwell integration step implementation

1 void OneStep ( double ⇤E, double ⇤H, double dtoverdx , i n t n) {
2 i n t i ;
3
4 f o r ( i =0; i<n�1; i++) E[ i ] = E[ i ] + dtoverdx ⇤(H[ i +1] � H[ i ] ) ;
5 E[ n�1] = E [ 0 ] ;
6
7 f o r ( i =1; i<n ; i++) H[ i ] = H[ i ] + dtoverdx ⇤(E [ i ] � E[ i �1 ] ) ;
8 H[ 0 ] = H[ n�1] ;
9 }

Periodic boundary conditions are realized in lines 5 and 8 for electric and magnetic fields, respec-
tively. The way they are implemented here requires one additional grid point where the field sample
is a copy “slaved” to the value on the other side of the grid. An alternative method would utilize
indexing which wraps the indices that “reach” beyond the array end like this:

H[i+ 1] ! H[(i+ 1)%N ]

This is computationally more expensive than the addition of an additional boundary grid point.
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Note that there seems to be a slight asymmetry in the way electric and magnetic field arrays are
indexed. This depends on the chosen correspondence between the index and the location in space it
represents. In the present case H[i] is located on the left from E[i].

Task B)

In the beam propagation method, the initial condition is simply a specification of the electric
(vector) field for z = 0. It is assumed tacitly that the corresponding values of the magnetic field are
orchestrated such that the beam solution propagates in the forward direction. In most BPM versions,
magnetic fields are never calculated.

In the case of direct Maxwell solver, the issue of the initial condition is slightly more subtle. It is
up to the programmer to ensure that the whole (initial) electromagnetic field has desired properties.
Often it is the requirement that the initial field represents a pulsed waveform propagating in the
direction of positive z-axis.

The principle that guides the construction of the initial condition is that the relation between
the vector amplitudes of the electric and magnetic fields in the numerical solution should mimic that
in real electromagnetic plane waves. Because only one-dimensional propagation is considered in this
section, the relation simplifies. If one chooses the computational units such that the numerical field
samples represent E ! Ey and H ! cBz for propagation along x, then H = ±E corresponds to the
amplitude relation in a left- and right propagating harmonic wave. The choice of the sign selects the
propagation direction along the positive or negative x-axis direction.

So it seems that if one chooses H(x, t = 0) = ±E(x, t = 0) to define the magnetic field in the
initial condition the resulting wavepacket should propagate either forward or backward as a whole.
However, one must keep in mind that the numerical grid points for the two fields are staggered. This
is reflected in the following example:

Listing 2: Initial condition, take one

1 f o r ( i =0; i<N; i++) {
2 /⇤
3 We aim to o r ch e s t r a t e the magnetic f i e l d with the e l e c t r i c
4 such that the i n i t i a l waveform w i l l propagate to the r i g h t
5 Plane�wave p r op e r t i e s d i c t a t e the oppos i t e s i gn s between
6 the e l e c t r i c f i e l d and magnetic f i e l d ampl itudes
7 ⇤/
8
9 double x0 = 0 . 5⇤ ( ( double ) N) ;
10 double xe = ( double ) i ;
11
12 // same�index magnetic l o c a t i o n s h i f t e d by ha l f o f l a t t i c e spac ing :
13 double xh = xe � 0 . 5 ;
14
15 EF[ i ] = +I n i t i a l E l e c t r i c F i e l d ( xe , x0 ) ;
16 HF[ i ] = � I n i t i a l E l e c t r i c F i e l d (xh , x0 ) ;
17
18 // . . . which i s almost working . . . but not a c cu ra t e l y enough . . .
19 }
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Here, x0 only marks the location where we want to place the center of the wavepacket. xe is a
holder for the coordinate (derived from the array index i) corresponding to the spatial location of an
electric field sample. xh plays the same role for the magnetic field sample. In line 10, it is shifted left
by one half of the spatial grid spacing, and subsequently the same function is used to generate both
electric and magnetic field values. The result is that the spatial profile of the electric and magnetic
field is the same, as is expected for a one-way propagating electromagnetic pulse (in vacuum).

Inaccurate implementation of the one-way propagating
initial condition in a one-dimensional Maxwell solver.
The scale of the figure cuts the peaks of the waveform
in the initial (black) and propagated (red) pulses, in
order to emphasize the weak pulse in the left portion of
this figure. This is a wavepacket that propagates in the
opposite direction than the bulk of the pulse. It is an
unwanted artifact that can not be removed by refining
either grid resolution or the integration step.

Task C)

The figure above illustrates that this implementation of the initial does not work very well. It
appears that the initial pulse splits into two identically shaped waveforms that propagate in the
opposite directions. An undesired weak pulse is “ejected” from the initial condition. It is left to the
reader to verify that it can not be eliminated by better grid resolution or by refining the integration
step, because its amplitude decreases with smaller �x and/or �t but remains significant for all
practically usable parameters.

What is wrong with the above-described realization of the initial condition? The implementation
did take into account that the electric and magnetic field grids are staggered in space, but did not
account for the fact that they are also staggered in time. The temporal stagger means that the
waveform of the magnetic field, which represents time earlier by �t/2, must be shifted by the distance
that the radiation travels during that time. This shift is accounted for in the following modified code:
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Listing 3: Initial condition, take two

1 f o r ( i =0; i<N; i++) {
2 // here we aim to o r ch e s t r a t e the magnetic f i e l d with the e l e c t r i c
3 // such that the i n i t i a l waveform w i l l propagate to the r i g h t
4 // t h i s part i s the same as be f o r e . . .
5
6 double x0 = 0 . 5⇤ ( ( double ) N) ;
7 double xe = ( double ) i ;
8 double xh = xe � 0 . 5 ;
9
10 // . . . but one has to account f o r d i f f e r e n t time :
11 xh �= 0.5⇤ dtoverdx ;
12
13 EF[ i ] = +I n i t i a l E l e c t r i c F i e l d ( xe , x0 ) ;
14 HF[ i ] = � I n i t i a l E l e c t r i c F i e l d (xh , x0 ) ;
15 }

The addition is in line 11 where the the coordinate where the magnetic field is evaluated from the
function that specifies the electric field initial condition is shifted by 1/2c�t (with c = 1).

Better implementation of the one-way propagating ini-
tial condition in a one-dimensional Maxwell solver. The
scale of the figure is the same as in the previous one. In
this case the backward propagating pulse is not visible.

So it seems that the initial condition is properly constructed and does not produce any pulse
propagation in the unwanted direction. However, as soon as one zooms into the figure (shown below)
the artifact can be readily identified. We thus see that while the initial condition is much better, and
the artifact is about three orders of magnitude weaker, it is still not perfect. At this point the origin
of this undesirable feature may seem mysterious, but we shall soon understand that it originates in
the numerical dispersion; Numerical dispersion is the reason why the propagation speed of the initial
pulse is not exactly equal to c = 1. Because we have assumed just that in our correction of the initial
condition, the latter is not completely one-way propagating.
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The same data shown at a finer vertical resolution re-
veals that a very weak pulse propagating in the wrong
direction still exists...

It should be emphasized that the initial condition as constructed in this exercise is su�ciently
accurate for practical purposes. After all, in terms of pulse energy, only about one part in 1010

propagates in the wrong direction. Nevertheless, the appearance of the artifact, however minute,
illustrates that the numerical dispersion, discussed in what follows, a↵ects all aspects of the numerical
algorithm.

Task D)

For this part of the exercise, we set the Courant ratio equal to, say, 1.01. It is most instructive to
keep it quite close to unity, so that one has a chance to observe that instability develops gradually,
albeit extremely fast. This is illustrated in the following figures.

Instability onset in Maxwell simulation. One
hundred and twenty integration steps were ex-
ecuted with the Courant ratio chosen equal to
1.01, starting from the initial condition shown
in solid black. This simulation was inter-
rupted at a time chosen to reveal the very
onset of numerical artifacts. As it is often
the case, even-odd “oscillations” suddenly ap-
pear in the solution (red line) and continue to
grow.

Only thirty additional integration steps are
su�cient to amplify numerical artifacts by
several orders of magnitude. Exponential
growth of numerical noise is usually fast
enough to make the solution to deteriorate so
quickly that no gradual transition from a well-
behaved, smooth solution can be noticed.

In practice, numerical instability is manifested through solutions that appear noisy and exhibit
very large positive and negative values. It may also happen that an unstable solution appears smooth,
but growths exponentially.

E)
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There are many valid ways to solve this problem. We will illustrate two approaches, and invite
the reader to explore their variations.

The first issue one has to deal with is the setup of a solution with a well-defined wavenumber.
The initial condition must ensure that the wavenumber is preserved during the simulation and the
evolution will exhibit a single angular frequency — this will only happen if the wavenumber is chosen
from the discrete set of values implied by the grid resolution and the computational domain size. Of
course this relies on the periodic boundary conditions.

The second issue is how to deal with the fact that waves propagate in both directions. One must
either create truly one-way propagating initial condition (as we did in the first part of this exercise)
or, alternatively, one can take advantage of a symmetric situation in which the intensity of waves in
opposite direction is strictly equal. The second option is simpler, as it only requires that the initial
magnetic field is set to zero. Left-right symmetry of the update scheme then ensures that forward and
backward component of the waveform is exactly the same. We will therefore initialize the simulation
run with a standing wave with a chosen spatial wavenumber, and follow its evolution to see what
angular frequency it will “produce.”

The third problem is a method to extract the numerical value of the angular frequency that the
algorithm produces. This can be done in many ways. For example, a direct though not very elegant
method is to let the simulation running, and simply count zero-crossings at an arbitrary but fixed
location in space. Together with the elapsed time this gives the information needed to calculate the
value of !. Another method is to compare solutions after a single step — for this approach one has
to derive a formula that relates the solution at two times, and isolate ! from it.

Two versions of instructor’s solutions are hidden out of sight in the sub-directory named Solution.
We describe their main features next. It is strongly recommended that the reader tries to come up
with his/her own approach before reading further.

Initialization

Listing 4: Initialization for dispersion measurement

1
2 // s e t the Courant ra t i o , d i s p e r s i o n w i l l depend on t h i s va lue
3 double dtoverdx = 0 . 1 ;
4
5 i n t e l ; // s ca l ed s p a t i a l wavenumber
6 double k0 ; // s p a t i a l wavenumber � we measure omega f o r each
7
8 // t h i s s t a r t s the main measurement loop
9 f o r ( e l=N/2�1; e l >0; e l �=100) {
10
11 // s p a t i a l wavenumber must have one o f the gr id�supported va lue s
12 k0 = e l ⇤2 .0⇤M PI/( ( double ) N � 1 . 0 ) ;
13
14 // the i n i t i a l c ond i t i on has zero magnetic f i e l d
15 f o r ( i n t i =0; i<N; i++) {
16 double xe = ( double ) i ;
17
18 EF[ i ] = +cos ( xe⇤k0 ) ;
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19 HF[ i ] = 0 . 0 ;
20 }

There are a couple of points to note in the above code snippet. First, �t/�x is fixed such that the
integration scheme is stable. The dispersion curve depends on this value, of course. Then the main
loop, controlled by el, scans values of spatial wavenumbers for which the angular frequencies are to be
measured. The wavenumber value k0 is carefully chosen in line 12 such that the corresponding plane
wave smoothly wraps around the periodic boundary condition of the computational domain. The
initial electric field is specified as a harmonic wave, and because the initial magnetic field vanishes,
this simulation will evolve a standing wave with the spatial wavenumber k0.

Counting zero crossings
The next code section runs the simulation for a chosen value of k0, and counts zero crossing of the

electric field at the grid point i = 0:

Listing 5: Counting zero-crossings

1
2 // t h i s i s the s p a t i a l point , i =0, where we f o l l ow temporal evo lu t i on
3 double EFold = EF [ 0 ] ;
4
5 i n t s t a r t = 0 ; // t h i s v a r i ab l e to i nd i c a t e the f i r s t zero�c r o s s i n g was detec ted
6 i n t i s t a r t = 0 ; // step at which the f i r s t c r o s s i n g was detec ted
7 i n t count = 0 ; // zero�c r o s s i n g counter
8
9 f o r ( i =0; count<50; i++) { // go un t i l f i f t y c r o s s i n g s
10 OneStep (EF,HF, dtoverdx ,N) ; // i n t e g r a t i o n step
11
12 // t h i s i s where we t e s t f o r zero�c r o s s i n g
13 i f ( EF[ 0 ] ⇤ EFold <= 0.0 ) {
14 i f ( s t a r t == 0) { s t a r t = 1 ; i s t a r t = i ; count=0;}
15 e l s e count++;
16 }
17
18 // keep the prev ious f i e l d va lue to compare with the new one
19 EFold = EF [ 0 ] ;
20 }
21
22 // here , the angular f requency i s approximated based on the number o f detec ted
23 // zero c r o s s i n g s
24 i��;
25 double T = 2.0⇤ dtoverdx ⇤( i � i s t a r t ) / ( ( double ) count ) ; // est imated per iod
26 double omega = 2.0⇤M PI/T; // est imated omega
27
28 // t h e o r e t i c a l va lue to show in the output
29 double YeeValue = 2.0/ dtoverdx ⇤ as in ( dtoverdx ⇤ s i n ( k0 / 2 . 0 ) ) ;
30
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31 p r i n t f (”%E %E %E\n” , k0 , omega , YeeValue ) ;
32 } // end o f wave�number�scan loop

This program can measure the numerical relation between the spatial wavenumber and angular
frequency with a good accuracy. There are a few obvious drawbacks. The accuracy of the temporal
period estimate, T , is limited by the (hard-coded in line 9) number of periods to simulate. Thus,
to increase the accuracy, length of the simulation run must be increased accordingly. Moreover, the
duration of the measurement at low wavenumber (and low frequency) increases as 1/!. Nevertheless,
these are simulation parameters that can be easily controlled and chosen to reflect the accuracy one
aims for. Because the one-dimensional Maxwell simulation does not require significant numerical
e↵ort, increase in simulation time is not a really serious issue.

It is an easy fix to increase the accuracy of this measurement without increasing the numerical
e↵ort. With only fifty period long simulation the the accuracy is limited to a few percent. This can
be easily improved by better localization of the first and last zero crossings. For example, one can use
simple linear interpolation to estimate the true location of the zero by linear interpolation between
the old and new field samples EFold and EF [0]. This allows to improve the measurement of the time
between zero crossing of the electric field to an accuracy better than �t. As a result, the the quality
of the measurement increases significantly. It is left to the reader to implement this improvement.

Extracting angular frequency from subsequent field snapshots
The previous method can be characterized as straightforward. It has a big advantage that the

numerical measurement is direct, and does not require additions to the simulation code that would
be based on “further development or considerations.” If designed as a test of the algorithm imple-
mentation, this is exactly what one wants. On the other hand, the method can be hardly considered
elegant. Next we show an alternative measurement of chromatic properties of the Yee algorithm. It
only requires a couple of simulation step to execute, and does not su↵er any accuracy issues. However,
it requires to derive a formula to relate the simulated field after one step to the initial one in order to
extract the numerical dispersion relation. Let us derive this formula.

Consider the electric field value, as evolved by the Yee algorithm, at a fixed location. The ob-
servation spot can be chosen arbitrarily with one condition that the initial field at this point is not
zero. When set up as in the method described before, i.e. with the initial magnetic field equal to
zero, the initial value of the electric field, denoted by E0 corresponds to time t = ��t/2. The next
value at time t = �t/2 is denoted by E1, but it turns out to be equal to E1 since the magnetic field
vanishes during the very first update of the electric field. The subsequent step creates the field value
denoted E2, and it corresponds to time t = 3/2�t. All three values are related, because they represent
harmonic oscillation with an “unknown” amplitude A:
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Thus, it is su�cient to to execute two steps to generate E2, and ! can be calculated from these
equations through elimination of A. Probably the simplest way to to this is to use
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Angular frequency ! can be expressed from the last relation as
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Numerical measurement based on this formula can be implemented as shown in the following
program listing

Listing 6: Angular frequency extracted from subsequent simulated field samples

1 // l i s t i n g s t a r t s with in the main wave�number�scan loop
2
3 // save the i n i t i a l f i e l d
4 EFold = EF [ 0 ] ;
5
6 // execute two s t ep s :
7 // t h i s s tep does not change e l e c t r i c f i e l d due to zero H
8 OneStep (EF,HF, dtoverdx ,N) ;
9 // and t h i s s tep does . . .
10 OneStep (EF,HF, dtoverdx ,N) ;
11
12 // formula XX
13 double omega=2.0/ dtoverdx ⇤ acos ( sq r t ( (EF[0 ]+3 .0⇤EFold )/EFold ) / 2 . 0 ) ;
14
15 // t h e o r e t i c a l formula value
16 double YeeValue = 2.0/ dtoverdx ⇤ as in ( dtoverdx ⇤ s i n ( k0 / 2 . 0 ) ) ;
17
18 // show r e s u l t s
19 p r i n t f (”%E %E %E\n” , k0 , omega , YeeValue ) ;
20 } // end o f the wave�number�scan

Application of either of the two methods will produce data similar to that shown in Figure 1.
Readers should experiment with di↵erent parameters for these simulations. In particular, it should
become obvious that numerical dispersion becomes more and more pronounced for high-frequency
waves. The deviation from the ideal, continuum-limit dispersion decreases with decreasing integration
step, but numerical waves with the spatial frequency in the vicinity of the Nquist frequency never
propagate as their real counterparts.
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