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Fractal structure of eigenmodes of unstable-cavity lasers
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We show that the eigenmodes of unstable-cavity lasers have fractal structure, in contrast with the well-known
stable-cavity eigenmodes. As with all fractals, the dynamic range over which self-similarity holds is limited; in
this case the range is set by diffraction, i.e., by the Fresnel number of the resonator. We determine the fractal
dimension of the mode profiles and show that it is related to the aperture shape.  1998 Optical Society of
America

OCIS code: 050.1940.
The eigenmodes of stable-cavity lasers can easily be
calculated analytically to be the well-known Hermite–
Gaussian modes; as such they hold no surprises.
In contrast, finding the eigenmodes of hard-edged
unstable-cavity lasers is far from trivial, and one gen-
erally has to resort to numerical techniques, such as
virtual-source theory.1 – 3 The outcome of such calcu-
lations is a rather complicated mode profile with many
Fresnel ripples that defies intuitive interpretation. In
this Letter we show that these mode profiles have
an unexpected underlying structure: We demonstrate
that they are self-similar or fractal in nature.

To illustrate our point we discuss as a generic ex-
ample a one-dimensional hard-edged confocal unstable
cavity (Fig. 1). The aperture of this strip resonator is
defined by the small outcoupling mirror.

Unstable cavities are characterized by two numbers,
the round-trip magnif ication M and the equivalent
Fresnel number N , which for a confocal cavity is given
by

N ­
1
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where a is the mirror radius, l is the wavelength, and
L is the cavity length.4

The eigenmodes of such a cavity are fully determined
by M and N . We restrict the discussion to the lowest-
loss mode. The transverse intensity profile for this
mode is shown in Fig. 2 for three values of N , as
calculated with virtual-source theory by use of the
paraxial approximation.5

It is clear that for higher Fresnel numbers more
details are present. A physical argument for the size
of the smallest details is as follows: A uniformly
illuminated lens of radius a and a Fresnel number N
give a focal spot size of the order of ayN .4 We thus
expect the smallest details to be separated by 1yN on
the horizontal scale in Fig. 2, which agrees with the
details of the curves.

Our key observation is this: Each round trip leads
to a magnif ied image of the intensity distribution in
the aperture plane; this is an essential property of
unstable-cavity resonators that is absent in stable-
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cavity resonators. The eigenmode intensity distribu-
tion in the aperture plane does not change after one
round trip (otherwise it would not be an eigenmode).
But a round trip amounts to magnif ication, so the
eigenmode must be invariant under magnification, and
this is exactly the definition of a fractal. As with all
physical fractals, this self-similarity cannot hold down
to infinitely small scales; there is always a physical
limit. In our case this limit is set by diffraction as
discussed above: We expect the self-similarity of the
mode profile to hold down to transverse distances of
the order of 1yN . In the limit N ! ` (e.g., l ! 0) the
magnif ied imaging becomes perfect in the sense of geo-
metric optics (i.e., no diffractive spreading), leading to
an ideal fractal.

To prove that the eigenmode intensity profiles in
Fig. 2 are indeed fractals, we now calculate the fractal
dimension D of the curves in Fig. 2. The fractal
dimension measures the degree of roughness of a self-
similar curve. To determine D we use the so-called
box-counting method6: We cover the curve with a grid
of boxes of size d 3 d and count, for each box size d, the
number of boxes n that are needed to cover the curve
fully. Then the fractal dimension follows as

D ­ lim
d#0

logsnd
logs1ydd

. (2)

If this recipe is applied to a smooth curve one will
find D ­ 1, since n ­ 1yd for small d, but for a fractal

Fig. 1. Geometry of a confocal unstable cavity; the two
mirrors share a common focus. We calculated the mode
profiles in the aperture plane indicated by the dashed line.
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Fig. 2. Intensity profiles for a strip resonator for different
Fresnel numbers N . The resonator has a magnification
M ­ 2. (a) N ­ 10, (b) N ­ 100, and (c) N ­ 1000.
Curve (b) is shifted downward by an amount 0.35 and
(c) by 0.6 to avoid overlap with curve (a).

one will f ind a noninteger value for D, since a fractal
has structure on any scale. We apply this method to
curve (c) in Fig. 2, the curve that we expect to be fractal
over the largest dynamic range. The result is given in
Fig. 3, which shows n versus d.

From Fig. 3 we conclude that the mode profile has
indeed fractal structure corresponding to a fractal di-
mension D ­ 1.6. The dynamic range over which the
mode profile is fractal extends to d ø 2 3 1023, which
is indeed approximately 1yN . This result shows that
diffraction is the cause of the finite dynamic range of
the fractal, as expected. (Note that we determined the
slope by using only the points for which 2 3 1023 , d ,
1021, since one expects no fractal behavior outside this
range: One needs small d for the box-counting method
to converge, but on a scale smaller than 1yN the mode
profiles are smoothed by diffraction.) We also found
that the field amplitude profile has the same fractal
dimension as the field intensity profile, as it should,
since this is a general mathematical result.7

We checked our calculation of D, using an indepen-
dent method based on analysis of the spatial-frequency
power spectrum of the mode profiles. When the power
spectrum follows a power law the exponent can be
related to the fractal dimension D.7 This approach
yielded results identical to those obtained with the box-
counting method.

What determines D? We calculated D for different
values of the Fresnel number N (10–1000) and found
that D is independent of N (always D ­ 1.6). We
found a very weak dependence on M (D ­ 1.59 1.51 for
M ­ 2 8), but it seems that this can be attributed to
the limited accuracy of the box-counting method owing
to the finite size of the data set.8 Only the dynamic
range over which the mode profiles are fractal was
found to depend on M and N , as expected. We also
checked whether D changes as a result of fine tuning of
N in the range 100–101, since it is known that in each
unit interval of N the mode profiles can change quite
drastically3,9; however, no inf luence on D was found.

Now that we have discussed the strip-resonator
case an intriguing question is: What will D be for
a cavity with a two-dimensional aperture? The case
of a square aperture is trivial, since the eigenmode
then is simply the product of two eigenmodes, one
for the x direction and one for the y direction, as we
found for the one-dimensional strip resonator (Fig. 2).
So this case yields D ­ 1.6 for the square aperture.
Note that the origin, defined by the optical axis of the
cavity, is also the center of magnification; therefore the
intensity profile on any line through the origin (i.e.,
not only lines parallel to the x or the y axis) has a
fractal structure with D ­ 1.6, as we have checked.
For a circular aperture the diffraction integral is one
dimensional, allowing straightforward computation5;
again we restricted ourselves to the lowest-loss mode.
The result is shown in Fig. 4.

Now we find a fractal dimension D ­ 1.3; again
this was found to be independent of N and M .
The difference between the square and the circular

Fig. 3. Application of the box-counting method to a strip
resonator, showing the number of boxes of size d needed to
cover curve (c) in Fig. 2. The straight line is a fit with a
slope of 21.58 6 0.03.

Fig. 4. Application of the box-counting method to an
unstable resonator with a circular aperture, M ­ 2, and
N ­ 1000, showing the number of boxes of size d needed
to cover the intensity mode profile of the lowest-loss mode.
The straight line is a fit with a slope of 21.26 6 0.03.
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aperture shows that D depends on the aperture shape.
To investigate this shape dependence further one
must be able to calculate mode profiles for arbitrarily
shaped apertures, which is far from trivial; neverthe-
less we have initiated calculations on polygon-shaped
apertures and hope to report on this in the near future.

In conclusion, we have shown that the eigenmodes of
a hard-edged unstable-cavity laser have fractal struc-
ture over a dynamic range limited by diffraction, i.e.,
by the Fresnel number. The origin of the fractal struc-
ture can be understood intuitively: The eigenmode is
invariant under magnification, which is the definition
of a fractal. The fractal dimension D was found to de-
pend on the shape of the aperture: We found D ­ 1.6
for a square aperture and D ­ 1.3 for a circular aper-
ture. It remains an open question why these values
are what they are. Note, however, that the ratio of
these two values is close to the diffraction spot width
difference between a square and a circular aperture.

It is known that unstable-cavity lasers have inter-
esting excess quantum-noise properties9 – 11 that are
strongly dependent on the aperture shape12; therefore
it would be interesting to see what the consequence of
the fractal nature of the eigenmodes is for excess quan-
tum noise in these lasers.

Finally, we note that fractal properties of fields dif-
fracted by nonfractal objects have also appeared in
other systems. Recently Berry and Klein discussed
the so-called fractal Talbot effect8: When a binary
grating is illuminated by a collimated beam of light,
the diffracted field contains a fractal structure. Es-
sential here are the hard edges of the grating slits and
the periodicity of the grating. A related unexpected
appearance of fractals is in the wave-mechanical prob-
lem of a particle in a box; because of the square well
potential (i.e., the hard edges), both the time and spa-
tial evolution of the probability density exhibit fractal
behavior, giving D ­ 1.5.7 We believe that the mode
structure of an unstable-cavity laser is related to the
wave dynamics of a particle in a box, which now has a
convex bottom (corresponding to the curvature of the
cavity mirror).
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