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Abstract—The alternating direction implicit (ADI) method
is adopted in the full-vectorial beam propagation formulation,
which was discretized in the longitudinal direction via the stan-
dard Crank–Nicholson scheme. Through proper operator de-
composition, operator inversions for the cross-coupling terms
existing in the full-vectorial formulation are avoided and second-
order accuracy along the propagation direction is achieved in
the proposed algorithm. With the aid of the ADI method, our
full-vectorial algorithm also has good performance in efficiency.
This implicit scheme can theoretically be shown to be numeri-
cally unconditionally stable. Several numerical simulations have
been performed and compared with those obtained by the finite
difference mode-solving scheme based on the shifted inverse
power method (SIPM) in order to examine the accuracy of our
algorithm.

Index Terms—Alternating direction implicit (ADI) method,
beam propagation method (BPM), full-vectorial field propaga-
tion, optical waveguides.

I. INTRODUCTION

T HE beam propagation method (BPM) is at present the
most widely used tool employed in the study of optical

devices, largely owing to its numerical speed and simplicity
[1]. Basically, it constructs a relation between the electro-
magnetic fields in two axially separated parallel planes, i.e.,
the field distribution in one plane is calculated numerically
from the distribution in the preceding plane. This procedure
is recursively implemented, thus completing the simulation of
wave propagation step by step with an arbitrary excitation.

Discretizing the BPM formulas in three dimensions via
the standard Crank–Nicholson scheme results in an implicit
relation between two axially separated parallel planes, and
it requires operator inversions to complete the propagation.
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Several different approaches have been used to perform the
operator inversion [2]–[4]. A widely adopted approach is to
use the relaxation methods, in which an inversion is initially
guessed and successively modified via feedback mechanisms
[5]. The successive over relaxation method and the conjugate
gradient method represent typical algorithms [6]. Because of
the iterative nature, it may require a lot of iterations to assure
the accuracy. Besides, the iterative process not only is time-
consuming but also cannot guarantee convergency in some
cases. Therefore, the main disadvantages of the relaxation
methods are the efficiency and divergence problems. In this
paper we seek another way to perform the operator inversion.

The alternating direction implicit (ADI) method is a non-
iterative procedure for solving multidimensional partial dif-
ferential equations [6]. Yamauchet al. [7] proposed a three-
dimensional (3-D) BPM algorithm based on the ADI method,
which was a scalar algorithm with the operator inversion
implemented via the ADI method. Algorithms based on the
semivectorial wave equation were also proposed [8]. How-
ever, full-vectorial algorithms have not been well developed
until recently due to the difficulties resulting from the cross-
coupling terms. To avoid performing the operator inversion
of the cross-coupling terms, a full-vectorial algorithm was
proposed by Mansouret al. [9], in which the preceding electric
field was used to estimate the central-point field. It is not a
Crank–Nicholson approach, and hence is only of first-order
accuracy in the direction. The explicit form of the cross-
coupling terms may also become a problem in stability. On
the other hand, the algorithm of [9] was proposed to work
together with a smoothing digital filter, which is doubtful in
some cases especially when the fields contain high frequency
components.

In this paper we propose a 3-D full-vectorial BPM algorithm
purely based on the standard Crank–Nicholson scheme and the
ADI method. In so doing, our proposed algorithm is of second-
order accuracy in the direction, and numerical stability is
also assured thanks to the pure implicit form. Because of the
noniterative nature of the ADI method, our algorithm also
has very good performance in speed. Section II gives the
mathematical formulation for the proposed BPM algorithm.
Several numerical examples are presented in Section III and
the BPM calculation is compared with that employing a finite
difference mode-solving scheme based on the shifted inverse
power method. The conclusion is drawn in Section IV.

0733–8724/99$10.00 1999 IEEE



2390 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 17, NO. 11, NOVEMBER 1999

II. M ATHEMATICAL FORMULATION

We derive the formulations for electric fields here. Formu-
lations for magnetic fields can be derived in the same way.
Starting from Maxwell’s equations, the vector wave equation
for the time-harmonic electric field in a linear,
isotropic, and time-invariant medium is derived as

(1)

where is the refractive index as a function of position, and
is the wave number in vacuum.

If the refractive index does not vary along thedirection,
or if the variation is very slow compared with its and
dependences, the propagation of the electromagnetic wave
is governed by two coupled equations with and
components only. By defining an envelope fieldsuch that

(the slowly varying envelope approximation),
and considering the and components in (1), we obtain

(2)

where

(3)

(4)

(5)

(6)

From (2)–(6) it is clear that and denote the cross-
coupling effects between the two transverse fields.

For simplicity, we rewrite (2) as

(7)

which is a second-order partial differential equation describing
the transverse field . If we adopt the paraxial assumption
here, the second-order derivative term is dropped off, and (7)
becomes the full-vectorial paraxial BPM equation

(8)

which is a first-order partial differential equation to be solved
as an initial value problem. We shall discretize (8) via the
Crank–Nicholson scheme and evaluate it step by step with the
aid of the ADI method.

Equation (8) can be rewritten in an alternative form

(9)

where and denote the -dependent and the-dependent
parts of , respectively, with

(10)

(11)

Similarly, and denote the -dependent and the-
dependent parts of , respectively, with

(12)

(13)

while and denote the
cross-coupling terms.

In the semivectorial formulation the cross-coupling terms
are assumed negligible, resulting in

(14)

(15)

Equations (14) and (15) can be individually evaluated via the
standard ADI method [8]. For (14), the discretization form
becomes

(16)

or

(17)
Implementing the ADI method by adding second-order error
terms to (17) yields

(18)

or

(19)
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In so doing, it becomes not difficult to perform the operator
inversion in each substep, and the inserted error terms do not
reduce the accuracy, since the Crank–Nicholson scheme is also
of second-order accuracy.

But in the full-vectorial formulation the extra cross-coupling
terms become an impediment to implement the ADI method.
Discretizing (9) with the Crank–Nicholson scheme we obtain

(20)

(21)

If and are neglected, (20) and (21) reduce to the
semivectorial formulation discussed above. On the contrary,
if and are considered, it is not so trivial to implement
the operator inversion with the ADI method, sinceand
can not be inversed via the ADI method. In [9], (20) and (21)
are approximated by

(22)

(23)

that is, and are used to replace
and , respectively, in order to avoid

performing the operator inversion of and . Such treatment
of the cross-coupling terms is similar to the simple Euler
method, and hence is only of first-order accuracy in the

direction. Furthermore, because of the explicit form, the
stability is doubtful. In fact, the algorithm of (22) and (23)
was proposed to work together with a digital low-pass filter
in order to filter out extra numerical noises in [9]. Here, we
propose an alternative formulation to achieve an algorithm of
second-order accuracy.

Rewrite (9) as

(24)

After discretizing with the Crank–Nicholson scheme, we ob-
tain

(25)

Adopting the ADI method, (25) becomes

(26)

It can be easily proven that and are interchangeable. To

accomplish propagation, the electric field is multiplied
by , divided by , multiplied by , and finally divided
by , or

(27)

The operator multiplication in (27) is trivial, and the operator
inversion is also not difficult. For example, if we are going to
perform the inversion of

(28)

or

(29)

We can formally solve the equation
first in order to obtain , and then solve

to obtain
.

Since this formulation is a pure Crank–Nicholson scheme
together with the ADI method, it is a scheme of second-order
accuracy in the direction. It can theoretically be shown
by the von Neumann analysis [6] that (27) is numerically
unconditionally stable.

In our implementation the reference refractive indexis
adaptively chosen during propagation. To fulfill the slowly
varying envelope approximation, should be chosen such
that the variations of transverse fields along the longitudinal
direction are minimized, and the optimum refractive index
should be the average of the effective indexes of all the
propagating modes involved in the propagation process [5].
We use Rayleigh quotient at each step to adaptively choose the
optimum reference refractive index. From Rayleigh quotient
the reference refractive index can be obtained by

(30)

where is the adjoint of the electric field , and is that
in (7).

To implement the transverse derivatives for operator,
instead of using the graded-index assumption which is ques-
tionable especially in strongly guiding structures, we use the
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(a)

(b)

Fig. 1. Contours of the electric field distributions of thex-polarized HE11
mode of a step-index optical fiber. (a)Ex and (b)Ey .

finite difference schemes in and directions similar to
those in [10] and [11], in which the finite difference schemes
can assure truncation errors of second order in the transverse
directions.

For boundaries of the numerical window, both the transpar-
ent boundary condition (TBC) [12] and the perfectly matched
layer (PML) [13], [14] boundary condition can be adopted in
our algorithm in order to absorb outgoing waves.

III. N UMERICAL RESULTS AND COMPARISONS

To verify the practicality and accuracy of the proposed
3-D full-vectorial BPM algorithm, we report four numerical
examples.

As a first example, we investigate a step-index single-mode
optical fiber, whose exact analytical solutions can be used
for an easy comparison. The refractive indexes of the core
and the cladding are taken as and ,
respectively. The radius is m and the wavelength is

m. Initially we launch the LP mode and obtain
the guided mode profile in the output plane after propagating
a long distance of 5 mm. We set the discretizations with

m and m. Fig. 1 shows

Fig. 2. Cross section of a D-shaped fiber.

(a)

(b)

Fig. 3. Contours of the electric field distributions of thex-polarized guided
mode of the D-shaped fiber withd = 0. (a)Ex and (b)Ey .

the final electric field distribution at mm, which is
essentially identical to that of the true HE11 mode. Fig. 1(a)
and (b) depicts the dominant component and the minor
component, respectively, of the-polarized mode. The ratio of
the maximum magnitudes between and is found to be
about 9.95 10 in this case. The calculated effective index
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(a)

(b)

Fig. 4. Contours of the electric field distributions of they-polarized guided
mode of the D-shaped fiber withd = 0. (a)Ex and (b)Ey .

is . Compared with the exact effective
index , the difference is on the order
of , which is very small. The accuracy can be further
improved by using finer discretization grids.

The second example deals with the D-shaped fiber structure,
which is a fiber with one side polished, producing the D-shaped
cladding. As shown in Fig. 2, the refractive indexes of the
core, the cladding, and the vacuum are taken as ,

, and , respectively. As in the first
example, the radius of the core is 2m and the wavelength
is m. The distance between the core and the
interface is a variable parameter and is denoted as. Initially
we launch the LP01 mode of the fiber, propagating a long
distance of 2 mm, and obtaining the guided mode profile in
the output plane. We simulate the propagation on the structure
with the full-vectorial BPM algorithm for the electric fields
and the magnetic fields, respectively. The differences in the
calculations involving electric and magnetic fields are basically
in the transverse operators , and in (3)–(6),
and the transverse operators for magnetic fields can be derived
from Maxwell’s equations in a similar manner as those for
electric fields. The discretizations in the simulation are set

(a)

(b)

Fig. 5. Contours of the magnetic field distributions of thex-polarized guided
mode of the D-shaped fiber withd = 0. (a)Hx and (b)Hy .

with m. Figs. 3 and 4 show the
contours of the final electric field distributions for for the

-polarized and the -polarized guided modes, respectively,
and Figs. 5 and 6 show the corresponding magnetic field
distributions. The ratios of the maximum magnitudes between
the minor and the dominant components for Figs. 3–6 are
found to be 1.40 10 , 1.04 10 , 7.20 10 , and
9.05 10 , respectively. The field patterns are found to be
identical to those obtained by a finite difference mode-solving
scheme based on the shifted inverse power method (SIPM) and
with the same transverse discretizations. The SIPM algorithm
can provide guided mode solutions with high accuracy. The
accuracy of the propagation constant of the guided mode
obtained by our SIPM code is found to be up to at least seven
effective digits as compared with the theoretical values of
certain step-index fiber structures. We analyze three cases with
different ’s, and the calculated effective indexes are listed
in Tables I and II. It can be seen that the effective indexes
obtained by the 3-D BPM agree very well with those obtained
by the SIPM, with differences at most on the order of 10.
The proposed BPM algorithm can thus be applied to such
mode-solving problems with high accuracy.
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(a)

(b)

Fig. 6. Contours of the magnetic field distributions of they-polarized guided
mode of the D-shaped fiber withd = 0. (a)Hx and (b)Hy .

TABLE I
COMPARISON OFEFFECTIVE INDEXES FOR THED-SHAPED FIBER CASE

OBTAINED USING THE ELECTRIC-FIELD BPM AND THE SIPM

TABLE II
COMPARISON OFEFFECTIVE INDEXES FOR THED-SHAPED FIBER CASE

OBTAINED USING THE MAGNETIC-FIELD BPM AND THE SIPM

The third example deals with a strongly guiding waveguide
structure, which is not easy to be analyzed by conventional
vectorial BPM’s. The structure is shown in Fig. 7, which a
rib waveguide with refractive indexes of the substrate, the

Fig. 7. Cross section of a rib waveguide.

(a)

(b)

Fig. 8. Contours of the electric field distributions of thex-polarized guided
mode of the rib waveguide. (a)Ex and (b)Ey .

guiding layer, and the cover layer being ,
and , respectively. The dimensions are m,

m, and the wavelength is taken to be 1.55
m. We analyze the structure with the BPM algorithm for

the electric and magnetic fields and set the discretizations as
m. Sometimes simulating with the

magnetic fields is preferable because it has the advantage that
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(a)

(b)

Fig. 9. Contours of the electric field distributions of they-polarized guided
mode of the rib waveguide. (a)Ex and (b)Ey .

magnetic fields are always continuous at the interfaces, and
thus numerical noises produced by discontinuous electric fields
at these interfaces are avoided.

By launching a Gaussian profile in the initial plane and
propagating a long distance of 2 mm, the guided mode field
distributions are obtained in the final plane. Figs. 8 and 9
show the electric-field contours of the-polarized and the
-polarized guided modes, respectively, and Figs. 10 and 11

show the magnetic-field contours of the-polarized and the
-polarized guided modes, respectively. The ratios of the

maximum magnitudes between the minor and the dominant
components are 4.02 10 4.11 10 2.49 10
and 2.54 10 for Figs. 8–11, respectively, which are
significantly larger than the ratios in the previous examples
since the present structure is a more strongly guiding one. The
effective indexes are calculated and listed in Tables III and IV.
Compared with the SIPM results, the differences are only on
the order of 10 –10 .

Finally, we consider a polished-type optical fiber coupler
[15]. The side view of the polished-type coupler is shown
in Fig. 12. Two cores are curved in parabolic shapes, and
between them an index-matching liquid layer (a slab layer)

(a)

(b)

Fig. 10. Contours of the magnetic field distributions of thex-polarized
guided mode of the rib waveguide. (a)Hx and (b)Hy .

is introduced. The refractive indexes of the core and the
cladding are and , respectively. The
core radius is 2 m, the radius of curvature of the curved
core is cm, the wavelength is m,
and the total longitudinal length considered is 2600m. The
refractive index and the width of the liquid layer are taken to
be variable parameters. We simulate the coupler performance
by launching the fundamental mode in the initial plane of
one core, propagating through the coupler, and obtaining the
output power distribution in the final plane. The discretizations
used are m and m. The
output power transfer ratio is desired in our simulation. We
obtain with our 3-D algorithm the power transfer ratios for
several coupler structures with different liquid layer indexes
and widths, and compare the results with those obtained by
the SIPM approach as described below.

To get the output coupled power of the coupler as shown
in Fig. 10 based on the SIPM mode-solving approach, we first
calculate the local coupling coefficient defined as

(31)



2396 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 17, NO. 11, NOVEMBER 1999

(a)

(b)

Fig. 11. Contours of the magnetic field distributions of they-polarized
guided mode of the ribwaveguide. (a)Hx and (b)Hy .

Fig. 12. Cross section of the side view of the polished-type optical fiber
coupler.

where and are the propagation constants
of the symmetric and antisymmetric modes of the coupler

TABLE III
COMPARISON OFEFFECTIVE INDEXES FOR THERIB WAVEGUIDE CASE

OBTAINED USING THE ELECTRIC-FIELD BPM AND THE SIPM

TABLE IV
COMPARISON OFEFFECTIVE INDEXES FOR THERIB WAVEGUIDE CASE

OBTAINED USING THE MAGNETIC-FIELD BPM AND THE SIPM

TABLE V
COMPARISON OFPOWER TRANSFER RATIOS FOR THE POLISHED-TYPE

COUPLERS OBTAINED USING THE 3-D BPM AND THE SIPM

structure, respectively, at a certain distancefrom the waist
of the coupler . Since the geometrical structure of the
coupler is symmetric with respect to the plane, the
coupled power can be calculated as

(32)

where is the power injected into the input fiber. In
our calculation is solved every 100 m from to

m, with those values at other points determined
by interpolation using the cubic spline method to save the
computing time. The power transfer ratios obtained by the
BPM and the SIPM approach are listed in Table V. Four
coupler structures with different liquid layer refractive indexes
and widths are considered. From the table it is seen that the dif-
ferences are on the order of a few thousandths, demonstrating
again that our proposed BPM algorithm provides simulation
results of high accuracy.

IV. CONCLUSION

A 3-D noniterative full-vectorial beam propagation method
purely based on the Crank–Nicholson scheme and the ADI
method is proposed. The axial component is discretized by
the Crank–Nicholson scheme, in which the necessary operator
inversions are performed by the ADI method. With proper
operator decomposition we have successfully applied the ADI
method to the full-vectorial formulation and avoided perform-
ing the operator inversion for the cross-coupling terms. The
proposed algorithm is of second-order accuracy along the
propagation direction, and it can be theoretically shown that
the implicit discretization scheme is numerically uncondition-
ally stable. Due to the noniterative nature of ADI method,
our algorithm has good performance in efficiency compared
with those using the relaxation approaches. The accuracy of
our algorithm is examined through several numerical examples
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by comparing our results with the exact effective index of an
optical fiber and those obtained by the finite difference mode-
solving scheme based on the shifted inverse power method.
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