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~ Abstract—The alternating direction implicit (ADI) method Several different approaches have been used to perform the
is adopted in the full-vectorial beam propagation formulation, gperator inversion [2]-[4]. A widely adopted approach is to
which was discretized in the longitudinal direction via the stan- use the relaxation methods, in which an inversion is initially
dard Crank—Nicholson scheme. Through proper operator de- d and ivel ’ dified via feedback hani
composition, operator inversions for the cross-coupling terms guUessed an suc_:cesswey L |_|e Via IeeaDack imec gnlsms
existing in the full-vectorial formulation are avoided and second- [5]. The successive over relaxation method and the conjugate
order accuracy along the propagation direction is achieved in gradient method represent typical algorithms [6]. Because of
the proposed algorithm. With the aid of the ADI method, our the iterative nature, it may require a lot of iterations to assure
full-vectorial algorithm also has good performance in efficiency. the accuracy. Besides, the iterative process not only is time-
This implicit scheme can theoretically be shown to be numeri- - b. | ! .
cally unconditionally stable. Several numerical simulations have €ONSUMING but also cannot guarantee convergency in some
been performed and compared with those obtained by the finite cases. Therefore, the main disadvantages of the relaxation
difference mode-solving scheme based on the shifted inversemethods are the efficiency and divergence problems. In this
power method (SIPM) in order to examine the accuracy of our paper we seek another way to perform the operator inversion.
algorithm. The alternating direction implicit (ADI) method is a non-
Index Terms—Alternating direction implicit (ADI) method, iterative procedure for solving multidimensional partial dif-
beam propagation method (BPM), full-vectorial field propaga- ferential equations [6]. Yamaucet al. [7] proposed a three-
tion, optical waveguides. dimensional (3-D) BPM algorithm based on the ADI method,
which was a scalar algorithm with the operator inversion
I. INTRODUCTION implemented via the ADI method. Algorithms based on the

HE beam propagation method (BPM) is at present tﬁgmivectorial wave equation were also proposed [8]. How-
most widely used tool employed in the study of optica‘?ver' full-vectorial algorithms have not been well developed

devices, largely owing to its numerical speed and simplici il r_ecently due to thg difficulties_ resulting from th_e Cross-
[1]. Basically, it constructs a relation between the electr oupling terms. To avoid performing the operator inversion

magnetic fields in two axially separated parallel planes, i.é).f, the cross-coupling terms, a full-vectorial algorithm was

the field distribution in one plane is calculated numericall .roposed by Mansowt al. [9], in which the preceding electric

from the distribution in the preceding plane. This procedu éeld was used to estimate the central-point field. It is not a

is recursively implemented, thus completing the simulation &ff@nk-Nicholson approach, and hence is only of first-order

wave propagation step by step with an arbitrary excitation, 26Curacy in thez direction. The explicit form of the cross-
Discretizing the BPM formulas in three dimensions Vigouplmg terms may also become a problem in stability. On

the standard Crank—Nicholson scheme results in an implifi¢ Other hand, the algorithm of [9] was proposed to work

relation between two axially separated parallel planes, amgether with a smoothing digital filter, which is doubtful in

it requires operator inversions to complete the propagatiocip™e cases especially when the fields contain high frequency
components.
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Il. MATHEMATICAL FORMULATION Equation (8) can be rewritten in an alternative form
We derive the formulations for electric fields here. Formu- d [E, —j [Peo Puy E,
lations for magnetic fields can be derived in the same way. 9z [EJ = 2n0ko |:Pyac pyy} [EJ
Starting from Maxwell’'s equations, tne vector wave equation A+ A c b
for the time-harmonic electric fieldZ(z,y, z) in a linear, = [ =+ Ay } [A“’} 9
D B, +B,| | E,

isotropic, and time-invariant medium is derived as
whereA, andA, denote thes-dependent and thg-dependent
parts of ..., respectively, with

. —j (0 (100n2E)\ 1,5, 4 .-
AE, = [ L A B 22 22,
2noko <8x <n2 oz + 2 (n no) 0

wheren is the refractive index as a function of position, and (10)
ko = 2w/ o is the wave number in vacuum. ‘ )

If the refra_ctl_ve mdex does not vary along_tha_jlrecnon, A B, = —J <8 E, I l(ng B n%)k%E}) (11)
or if the variation is very slow compared with its and ¥ 2noko \ Oy? 2
dependences, the propagation of the electromagnetic wave
is governed by two coupled equations with, and E, Similarly, B, and B, denote thez-dependent and thg-

components only. By defining an envelope fididsuch that dépendent parts afy,, respectively, with

VxVxE=V(V-E)-V?E =n?2E (1)

E = Eeinokoz (the slowly varying envelope approximation), . —j (82 ) 1 )
and considering the andy components in (1), we obtain ~ B,E, = Y 4~ (n? - nd) K E, (12)
27’Loko 8372 2
i 8  9\[E, —j [Pow Poy|[E. R —j (8 10n2E,) 1 .
~ - _—J ~ ) _ . e e 2 T2 2y12
<2n0k0 922 + 82) [EJ 2noko [wa Py | | E, ) B,E, 2noko \ Oy \ n2 By + 5 (n no) koEy

where (13)

. . while C = —j Py, /2noko and D = —j P, /2noky denote the
A d [ 1 9(nkE, O%E, A - i .
pob =9 <_ (n )) n n (n2 B n%)kéEm cross-coupling terms

In the semivectorial formulation the cross-coupling terms
3) are assumed negligible, resulting in

. O’E, 0 (1 0(n%E,) s v,z g —(a +A)E 14
Poyby = 83:2y Ay <ﬁ84yy + (n® = ng) ko By 887: o= (Ao + 4 Es (14)
(4) gEy = (B, +By)E,. (15)
2
Pway = 9 <i2aiEy> (5) Equations (14) and (15) can be individually evaluated via the
gz \n ‘93’2 standard ADI method [8]. For (14), the discretization form
Pybl = aﬂ(%aaiEAx) (6) becomes
y\n° dx - 7 7 -
& En-l—l . En-l—l En
% = (4, —i—Ay)%ﬂ (16)
From (2)—(6) it is clear that’,, and F,, denote the cross- &
coupling effects between the two transverse fields. or
For simplicity, we rewrite (2) as Az . Az .
<1 - 2’ (A, + Ay)> £l = <1 + 27 (As + Ay)> En.

< ;& +3>E ) _pF, (7) (17)

2noko 022 Oz t= 2noko Implementing the ADI method by adding second-order error
terms to (17) yields

which is a second-order partial differential equation describing < A
z
1 —

2

the transverse field,. If we adopt the paraxial assumption
here, the second-order derivative term is dropped off, and (7)

Az\? X
(A, + Ay) + < 2’) AmAy> Ertt

becomes the full-vectorial paraxial BPM equation Az A\ 2 X
, . = <1+ 5 (Az + Ay) +< 5 ) AwAy>E;” (18)
~ _] = A
E, = PE
dz t 2nokg t (8) or
o , I . . Az Az S
which is a first-order partial differential equation to be solved 1- Az )1 - —A4, |EY
o . . - 2 2
as an initial value problem. We shall discretize (8) via the
Crank—Nicholson scheme and evaluate it step by step with the — <1 + —d Aw> <1 + —d Ay> Em, (19)
aid of the ADI method. 2 2
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In so doing, it becomes not difficult to perform the operatokdopting the ADI method, (25) becomes
inversion in each substep, and the inserted error terms do not atl (1 - [ Ay OD
reduce the accuracy, since the Crank—Nicholson scheme is als Er} _ 2 b B

A CD
0 B,

of second-order accuracy. E, (1 - % [ @
But in the full-vectorial formulation the extra cross-coupling olTa o
terms become an impediment to implement the ADI method. (1 + 7[0” B, D E "
Discretizing (9) with the Crank—Nicholson scheme we obtain 4 n:[4, o]} {E }
2 |D B
(=% a]) &
Ertl _ Er+ly fro Ertl g B _Ts T (B " oip e [Ee |
mAZ “’:(Am—i-Ay) : 2+ O 2 ’ ZEF_Q[EJ =Ll FI[EAJ '
(20) (26)
E;“rl - Eg _ DE;}H + E;} Bt By)ESH + EA;}. Itcan be.easily prove.n thﬁt;1 anng,. ar(? irhlzerrlc.hangegblle. To
YA 2 2 accomplish propagation, the electric fle{lﬁ " is multiplied
(21) by I'y, divided byI's, multiplied by I's, and finally divided
by I'y, or
If ¢ and D are neglected, (20) and (21) reduce to the £, ntl . s [ET
semivectorial formulation discussed above. On the contrary, [EJ =Tl T [EJ (27)

if ¢ and D are considered, it is not so trivial to implementryg onerator multiplication in (27) is trivial, and the operator
the operator inversion with the ADI method, sin€eand D jnyersion is also not difficult. For example, if we are going to
can not be inversed via the ADI method. In [9], (20) and (2}erform the inversion of'»

are approximated by

A m—+1 A m
e e
En-l—l _ En En-l—l En N Y Y
el Br g pay= P ofn (22) o
Az 2 Y N m ~ m—+1
En—l—l _ En . En—l—l + En |:Eac:| — ]__‘2 |:Eac:|
= DE} + (Be + By)———  (23) By By
z

A m—+1
(1224 O [E (29)
. . A . 2 | D B, E, )
that is, CE} and DE} are used to replace& (£, + Y Y

Em)/2 and D(E2+! + E2) /2, respectively, in order to avoid We can formally solve the equatidit — AzA, /2) B+ =
performing the operator inversion 6f andD. Such treatment £;° first in order to obtain £"+', and then solve

of the cross-coupling terms is similar to the simple Euld—&2D/2)ET™ + (1 — AzB,/2)Ey*! = EJ to obtain
method, and hence is only of first-order accuracy in thé; ™.

= direction. Furthermore, because of the explicit form, the Since this formulation is a pure Crank-Nicholson scheme
stability is doubtful. In fact, the algorithm of (22) and (23)together with the ADI method, it is a scheme of second-order
was proposed to work together with a digital low-pass filteéccuracy in thez direction. It_ can theoreticall_y be shc_>wn
in order to filter out extra numerical noises in [9]. Here, w8Y the von Neumann analysis [6] that (27) is numerically

propose an alternative formulation to achieve an algorithm gficonditionally stable. o
second-order accuracy In our implementation the reference refractive indexis

Rewrite (9) as adaptively chosen during prqpagation. To fulfill the slowly
varying envelope approximatiom, should be chosen such

. . that the variations of transverse fields along the longitudinal

9 [Ew} - [AwJFAy c } [Ell direction are minimized, and the optimum refractive index

9z | By D By + By | By . should be the average of the effective indexes of all the

<[Am C} N {Ay 0 D [EA,,} (24) Propagating modes involved in the propagation process [5].
0 B, D B, E, | We use Rayleigh quotient at each step to adaptively choose the

optimum reference refractive index. From Rayleigh quotient
After discretizing with the Crank—Nicholson scheme, we otihe reference refractive index can be obtained by
tain S

AECED) -0 Sl s)) :

Nz \ By E, 0 B, D B, where £ is the adjoint of the electric field, andP is that
E' n+1 E, n in (7) =

ET} + |:ET:| ) To implement the transverse derivatives for operator

instead of using the graded-index assumption which is ques-
(25) tionable especially in strongly guiding structures, we use the
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Fig. 1. Contours of the electric field distributions of thepolarized HE1
mode of a step-index optical fiber. (&), and (b)Ey.

finite difference schemes im and y directions similar to
those in [10] and [11], in which the finite difference schemes
can assure truncation errors of second order in the transverse
directions.

For boundaries of the numerical window, both the transpar-
ent boundary condition (TBC) [12] and the perfectly matched
layer (PML) [13], [14] boundary condition can be adopted in
our algorithm in order to absorb outgoing waves.

I1l. NUMERICAL RESULTS AND COMPARISONS

To verify the practicality and accuracy of the proposed 4 2 0 2 4
3-D full-vectorial BPM algorithm, we report four numerical x (um)
examples. (b)

As a first example, we investigate a step-index single-mogg. 3. Contours of the electric field distributions of thepolarized guided
optical fiber, whose exact analytical solutions can be usgwgde of the D-shaped fiber with = 0. (a) £ and (b) £y .
for an easy comparison. The refractive indexes of the core
and the cladding are taken as = 1.46 andn, = 1.456, the final electric field distribution at = 5 mm, which is
respectively. The radius is = 2 zm and the wavelength is essentially identical to that of the true ihEmode. Fig. 1(a)
A = 0.6328 pm. Initially we launch the LR, mode and obtain and (b) depicts the dominait, component and the mindt,
the guided mode profile in the output plane after propagatisgmponent, respectively, of thepolarized mode. The ratio of
a long distance of 5 mm. We set the discretizations withe maximum magnitudes betweéh and £, is found to be
Ar = Ay = 0.05 pm and Az = 0.1 gm. Fig. 1 shows about 9.95x 10~* in this case. The calculated effective index
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Fig. 4. Contours of the electric field distributions of teolarized guided Fig. 5. Contours of the magnetic field distributions of theolarized guided
mode of the D-shaped fiber withh = 0. (a) E. and (b) E,. mode of the D-shaped fiber with = 0. (a) H. and (b)H,.

is nex = 1.4578418138. Compared with the exact effectivewith Az = Ay = Az = 0.1 um. Figs. 3 and 4 show the
index neg = 1.4578423497, the difference is on the ordercontours of the final electric field distributions fée= 0 for the
of 10=%, which is very small. The accuracy can be furtheg-polarized and they-polarized guided modes, respectively,
improved by using finer discretization grids. and Figs. 5 and 6 show the corresponding magnetic field
The second example deals with the D-shaped fiber structudéstributions. The ratios of the maximum magnitudes between
which is a fiber with one side polished, producing the D-shap#te minor and the dominant components for Figs. 3-6 are
cladding. As shown in Fig. 2, the refractive indexes of thfound to be 1.40x 10~%, 1.04 x 10~3, 7.20 x 10~%, and
core, the cladding, and the vacuum are takemas= 1.46, 9.05x 10*, respectively. The field patterns are found to be
ne = 1456, and n3 = 1, respectively. As in the first identical to those obtained by a finite difference mode-solving
example, the radius of the core isg2n and the wavelength scheme based on the shifted inverse power method (SIPM) and
is A = 0.6328 pum. The distance between the core and thgith the same transverse discretizations. The SIPM algorithm
interface is a variable parameter and is denoted. dsitially can provide guided mode solutions with high accuracy. The
we launch the LR, mode of the fiber, propagating a longaccuracy of the propagation constant of the guided mode
distance of 2 mm, and obtaining the guided mode profile wbtained by our SIPM code is found to be up to at least seven
the output plane. We simulate the propagation on the structaféective digits as compared with the theoretical values of
with the full-vectorial BPM algorithm for the electric fieldscertain step-index fiber structures. We analyze three cases with
and the magnetic fields, respectively. The differences in théferent d's, and the calculated effective indexes are listed
calculations involving electric and magnetic fields are basicaliy Tables | and Il. It can be seen that the effective indexes
in the transverse operatofy;, Py, Pry, and P, in (3)—(6), obtained by the 3-D BPM agree very well with those obtained
and the transverse operators for magnetic fields can be deribgdthe SIPM, with differences at most on the order of 40
from Maxwell's equations in a similar manner as those fofhe proposed BPM algorithm can thus be applied to such
electric fields. The discretizations in the simulation are setode-solving problems with high accuracy.



2394

Fig. 6. Contours of the magnetic field distributions of thpolarized guided

mode of the D-shaped fiber with = 0. (a) H. and (b)H,.

TABLE |

COMPARISON OF EFFECTIVE INDEXES FOR THED-SHAPED FIBER CASE
OBTAINED USING THE ELECTRIC-FIELD BPM AND THE SIPM

d (pm) | Dominant ficld | Electric BPM SIPM Difference
0 E, 1.4574934 | 1.4574877 | 0.0000057
0 £, 1.4575080 1.4575152 | —0.0000072
0.5 L, 1.4576828 | 1.4576760 | 0.0000068
0.5 E, 1.4576901 1.4576905 | —0.0000004
1 E, 1.4577754 1.4577679 | 0.0000075
1 E, 1.4577755 | 1.4577745 | 0.0000010
TABLE I

COMPARISON OF EFFECTIVE INDEXES FOR THED-SHAPED FIBER CASE
OBTAINED USING THE MAGNETIC-FIELD BPM AND THE SIPM

d (pm) | Dominant field | Magnetic BPM SIPM Difference
0 H, 1.4574847 1.4574877 1 —0.0000030
0 H, 1.4575065 1.4575152 | —0.0000087

0.5 H, 1.4576765 1.4576760 | 0.0000005
0.5 H, 1.4576882 1.4576905 | —0.0000023

1 H, 1.4577709 1.4577679 | 0.0000030

1 H, 1.4577763 1.4577745 | 0.0000018
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Fig. 7. Cross section of a rib waveguide.
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Fig. 8. Contours of the electric field distributions of thepolarized guided
mode of the rib waveguide. (&, and (b) Ey.

guiding layer, and the cover layer being = 3.4, no = 3.44,
andn; = 1, respectively. The dimensions ai®& = 3 um,
D = H = 0.5 um, and the wavelength is taken to be 1.55

The third example deals with a strongly guiding waveguice™M- We analyze the structure with the BPM algorithm for
structure, which is not easy to be analyzed by conventiorfe electric and magnetic fields and set the discretizations as
vectorial BPM’s. The structure is shown in Fig. 7, which &z = Ay = Az = 0.1 pm. Sometimes simulating with the
rib waveguide with refractive indexes of the substrate, thmagnetic fields is preferable because it has the advantage that



HSUEH et al: THREE-DIMENSIONAL NONITERATIVE FULL-VECTORIAL BPM 2395

4 4 . . :
= o
| ° 1 9%
£ £ |
SO p SO b .
> >
-2 -2
'4.4 2 0 2 4 4y 2 0 2 4
x (um) X (um)
(@) (@
4 . 4

0 0
X (1m) x (um)
(b) (b)

Fig. 9. Contours of the electric field distributions of thepolarized guided Fig. 10. Contours of the magnetic field distributions of thepolarized
mode of the rib waveguide. (&> and (b) E,. guided mode of the rib waveguide. (&) and (b)H,.

magnetic fields are always continuous at the interfaces,
thus numerical noises produced by discontinuous electric fie
at these interfaces are avoided.

By launching a Gaussian profile in the initial plane an
propagating a long distance of 2 mm, the guided mode fie
distributions are obtained in the final plane. Figs. 8 and
show the electric-field contours of thepolarized and the

y-polarized guided modes, respectively, and Figs. 10 and launching the fundamental mode in the initial plane of

show the magnetic-field contours of thepolarized and the - core, propagating through the coupler, and obtaining the

y—pollarlzed gwd_ed modes, respectwgly. The ratios Of, trb%tput power distribution in the final plane. The discretizations
maximum magnitudes between the minor and the domlnangd areAz = Ay = 0.05 gm and Az = 0.1 pm. The

—2 —2 —2
components are 4.0% 107, 4.11 x 1077, 2.49 x 10 output power transfer ratio is desired in our simulation. We

2 . . .
a_nd 'f'2.54t|>< IlO ft%r F'gf" 8_,[1.1’ _rest?]ectlvely, which arleobtain with our 3-D algorithm the power transfer ratios for
significantly 1arger than ne ratios in the previous examples,qrg| coupler structures with different liquid layer indexes

since the present structure is a more strongly guiding one. T, d widths, and compare the results with those obtained by
effective indexes are calculated and listed in Tables Ill and IYhe SIPM eipproach as described below
Compared with the SIPM results, the differences are only ON1g get the output coupled power of the coupler as shown

the order of 16*-10-°. - . .
Fig. 10 based on the SIPM mode-sol h, we first
Finally, we consider a polished-type optical fiber couplelé1 9 ased on the mode-solving approach, we firs

alculate the local coupling coefficienfz) defined as
[15]. The side view of the polished-type coupler is shown ping tz)
in Fig. 12. Two cores are curved in parabolic shapes, and o) = Bsym(2) — Bantisym (%)
between them an index-matching liquid layer (a slab layer) i 2

dintroduced. The refractive indexes of the core and the
ﬁdding aren; = 1.46 andns = 1.456, respectively. The
ore radius is 2um, the radius of curvature of the curved
re isR = 25 cm, the wavelength is\ = 0.6328 um,
d the total longitudinal length considered is 2680. The
refractive index and the width of the liquid layer are taken to
variable parameters. We simulate the coupler performance

(31)
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Fig. 11. Contours of the magnetic field distributions of thepolarized
guided mode of the ribwaveguide. (&). and (b) H,.
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Fig. 12. Cross section of the side view of the polished-type optical fib

coupler.

CORE 2
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TABLE 1l
COMPARISON OF EFFECTIVE INDEXES FOR THERIB WAVEGUIDE CASE
OBTAINED USING THE ELECTRIC-FIELD BPM AND THE SIPM

Dominant ficld | Electric BPM SIPM Difference

E, 3.4025438 3.4023129 | 0.0002309

E, 3.4009172 3.4008152 | 0.0001020
TABLE IV

COMPARISON OF EFFECTIVE INDEXES FOR THERIB WAVEGUIDE CASE
OBTAINED USING THE MAGNETIC-FIELD BPM AND THE SIPM

Dominant field | Magnetic BPM SIPM Difference

H, 3.4020579 3.4023129 0.0002550

H, 3.4007541 3.4008152 | —0.0000611
TABLE V

COMPARISON OF POWER TRANSFER RATIOS FOR THE POLISHED-TYPE
CouPLERS OBTAINED USING THE 3-D BPM AND THE SIPM

Structure | ng | d (pm) | 3-D BPM | SIPM | Difference
1 1.443 1.1 0.1002 0.0987 0.0015
2 1.447 1.0 0.2912 0.2907 0.0005
3 1.450 1.0 0.4953 0.4943 0.0010
4 1.453 0.8 0.9830 0.9836 | —0.0006

structure, respectively, at a certain distanckom the waist
of the coupler(z = 0). Since the geometrical structure of the
coupler is symmetric with respect to the = 0 plane, the
coupled powerP.,pled Can be calculated as

Pcoupled = -Pinput SinQ <2/ C(Z) dZ) (32)
0

where P, is the power injected into the input fiber. In
our calculatione(z) is solved every 10Q:m from z = 0 to

z = 1300 um, with those values at other points determined
by interpolation using the cubic spline method to save the
computing time. The power transfer ratios obtained by the
BPM and the SIPM approach are listed in Table V. Four
coupler structures with different liquid layer refractive indexes
and widths are considered. From the table it is seen that the dif-
ferences are on the order of a few thousandths, demonstrating
again that our proposed BPM algorithm provides simulation
results of high accuracy.

IV. CONCLUSION

A 3-D noniterative full-vectorial beam propagation method
purely based on the Crank—Nicholson scheme and the ADI
method is proposed. The axial component is discretized by
the Crank—Nicholson scheme, in which the necessary operator
inversions are performed by the ADI method. With proper
operator decomposition we have successfully applied the ADI
method to the full-vectorial formulation and avoided perform-
ing the operator inversion for the cross-coupling terms. The
proposed algorithm is of second-order accuracy along the
propagation direction, and it can be theoretically shown that
the implicit discretization scheme is numerically uncondition-
ally stable. Due to the noniterative nature of ADI method,
our algorithm has good performance in efficiency compared

where .y (2) and Banisym (2) are the propagation constantswith those using the relaxation approaches. The accuracy of
of the symmetric and antisymmetric modes of the coupleur algorithm is examined through several numerical examples
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by comparing our results with the exact effective index of e~
optical fiber and those obtained by the finite difference mod
solving scheme based on the shifted inverse power methot
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