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Propagation equations for Finite-Difference Methods

Previous chapters introduced several methods that can serve as components in more complex
beam propagation implementations. For some approaches, namely the spectral ones, it was not
even necessary to speak about propagation equations, because the superposition principle was
sufficient to construct the method from scratch. For other cases, such as various versions of
the Crank-Nicolson method or the Alternating Direction Implicit method; we chose a simplified
geometry, mostly without waveguiding structure that is characteristic of the BPM in general.
Now it is the time to see how these tools can be applied in waveguiding structures with non-
trivial geometry. To this end, we re-visit derivation of the underlying propagation equations,
and have a closer look on how they can be discretized. Then we discuss semi-vectorial and
full-vector versions of BPM, together with description of implementation of ADI and iterated
Crank-Nicolson methods. The main goal of this chapter is to.demonstrate how the algorithms
discussed so far make it possible to build more complex BPM simulators. For simplicity, the
following treatment is restricted to isotropic and non-magnetic media.

10.1 Electric field equations

We assume a single-frequency, or monochromatic regime, and transform the Maxwell equations
into frequency representation:

V x E = —iwuoH (10.1)
V x H = +iwn’eoE (10.2)

Here, n represents the refractive index of the structure to be simulated, and is implicitly assumed
to depend on the location; it may vary as a continuous function of spatial coordinates, and it can
exhibit sharp interfaces between domains of different materials. The angular frequency w serves
as a fixed parameter-in this system, and the refractive index should take values specific for this
frequency. This system of equations is our stating point, and we take the usual route forward,
namely through the vectorial Helmholtz equations for both electric and magnetic fields. Let us
start with the electric equations first.

Application of the curl operator to the left- and right-hand sides of the first equation, while
eliminating V x H with the help of the second we obtain

VxVxE-n’k’E=0 (10.3)

Next, the well-known differential identity
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VXVx=-A+VV- (10.4)
used in the previous equation leads us to
AE +n*k*E=VV-E. (10.5)

It is often convenient to treat transverse components of the field (i.e. the z,y vectorial com-
ponents) and the longitudinal component E, separately. This will help to reduce the system to
E;,E, alone while keeping E. implicitly accounted for. So we split both nabla operators on the
right-hand side into longitudinal and transverse components, and take the transverse part of the
whole equation

AE; + n*k*E; = Vi(V, - E; + 0.E.) , (10.6)

where vectors carrying subscript ¢ are understood to live in the subspace spanned by z and y.
Similarly, the longitudinal part of the equation becomes

AE, +n2k*E, =V, (V; -E; + 0.E.) . (10.7)

Next, one eliminates the E, with the help of the divergence equations. Note that this is exactly
the point at which the divergence equations, or equivalently the initial constraints, are embed-
ded into the BPM machinery. Without free charges floating around, the electric displacement
divergence must vanish, so

V-D=¢V-(n’E)=0 (10.8)

which explicitly means that
V- (n*Ey) + 0.n°E, +n%0.E, =0, (10.9)

Here we have partial z derivative acting on both the refractive index function and on the
electric z-component of the field. Because only 0,E. appears in the equation before, one would
like to remove the second term. Fortunately, this is an excellent approximation most of the
time; While the last term can be estimated as kyE, = w/cE, = 27 /\E,, the second varies as
1/¢E, with ¢ standing for the characteristic length in direction of beam propagation over which
the refractive index changes significantly. If the latter is much longer that the wavelength, the
longitudinal field derivative can be isolated as

1
0:B; ~ = Vi ("°Ey) (10.10)

This is an expression which will be returned into Equations (10.6,10.7). Note that this is exact if n
does not change along propagation direction, which is in fact very often the geometry encountered
in the BPM context. This approximation (or an exact relation) leads to a wave equation equation
for transverse electric-field components,

1
AE+n*k*Ey = V[V - By — <V, - (n°Ey)] (10.11)
n
and also for the longitudinal electric field,
1
AE. + n’K°E, = V[V - By — 5V, - (n°Ey)] . (10.12)
n

The following, explicit component form emphasizes the symmetry of the system:

9 9 {1 9 O’E, 0°E,

9 9110 o [1 9, , _O0°E,
ViEe + [ ox | n? 8y(n Ey) 0x?  0x0y

n? Oz

+EknPE, =0 (10.13)

o <n2Ex)} +
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o1 d o1 0 ?E, O°E
2B, + — | = —(n%E — |5 (nPE,)| — 5L — - + kan’E, = 10.14
v y+8y [nz 6y(n ”)] +83/ [n2 x(n )] 0y? 3y3x+ on By =0 (10.1)
o1 d o1 8 PE, O°E
2Bt o | 5 0PE) | + o= | 5o (0PEy) | — 225 — =L 1 k2nE, = 10.1
VIE: + 92 [nz 61,(” )} o {nQ 8y(n y)] 0z0z  Oydz +kon 0 (1015)

This is a point of departure for various discrete grid representations of beam propagation
equations.

10.2 One-way propagation: A single envelope approximation

An important point to note at this stage is that the above wave equation can not be directly
used as a propagation equation for a beam, despite that the longitudinal field component has
been eliminated. This is because the equation is of second order with respect to the desired
propagation direction z. One might be first tempted to say that a second order system can
be equivalently formulated as a richer (i.e. having more unknown functions) first-order system.
This would however quickly reveal an obstacle. One would need two initial conditions to solve
a second-order equation, and that is not available when only a beam profile is specified at the
entrance into a device which is to be simulated. Estimating the derivative initial condition would
be also utterly useless, because the numerics would quickly show that the equation supports both
forward and backward propagating waves, and would “create” an unwanted backward solution
from numerical noise. An alternative way to look at this is to realize that instead of an initial
value problem, it is a boundary value problem that is naturally connected with the Helmholtz
equation; What is specified in practice is the input beam on the entrance of a device and absence
of an incoming beam on the output from the device. A shooting method can be in principle used
to solve it by repeating (shooting) solutions staring from the input, and correcting an unknown
initial derivative condition until a zero incoming beam is obtained at the output. However, beam
propagation equation systems are typically large and this would be very difficult. Thus we see
that to proceed toward a first-order evolution system of equations to describe beams, we need
to acknowledge the fact that the wave equation describes waves propagating in “all” directions,
and remove the undesired backward propagating field.

There are several way to deal with this problem, and accordingly various versions of beam
propagation methods. We will discuss three different treatments resulting in three subsets of BP
methods, including so called wide-angle BPM. In the following section we start with the simplest
approach which will produce numerical methods suitable for devices in which beams propagate
at no too large angles, and remain nearly paraxial.

The basic idea is to remove from the computational picture the fast changes related to the
carrier wave. At the same time, an advantage is taken of the fact that it is the carrier wave that
encodes the direction of propagation into a wavepacket. Assuming a general electric field of a
waveform propagating in a predominant direction (let it be z as usual), it can be represented as

Ei(z,y,2,t) = &(a,y,2)e 7 e (10.16)

where &;(x,y, z) is the field envelope function. The exponential function stands for the spatial
variation of the electric field intensity due to the carrier wave — this is the part we do not
want to represent on a numerical grid since it varies significantly over length scales comparable
to the wavelength. On the other hand, the envelope can be a slow function of its z-argument.
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Whether it actually is or is not, depends on the choice of k,.y — if this really corresponds to the
predominant wavenumber of the wavepacket, then the envelope must only take care of slower
(with respect to z) variations. Correspondingly, a single step of the simulated BPM evolution
may potentially be significantly longer than the light wavelength.

Here it should be emphasized that the concrete value of ks is chosen rather than given. In
particular, k.5 did not appear and has no place in the Maxwell equations. Another important
aspect to note is that the envelope function is complex-valued. However, by now we are used to
this “complexification”, and know that the apparent complication is out-weighted by the fact
that a much coarser grid is usually sufficient to represent &;(z, y, z) in comparison to that needed
for E;(z,y, 2).

Now we arrive at the point where semi-vectorial and Wide-Angle BPM separate. Let us follow
the simpler path for now, and return to WA-BPM when we know more about practicalities of
discretization in the presence of interfaces and variable refractive index.

After inserting the envelope representation of the optical field into Helmholtz, we drop the
second z-derivative of & — this is the well-know slowly evolving envelope approximation (SVEA).
This significantly simplifies the whole system, because SVEA turns it into an initial value problem
for the following first-order evolution equations

%‘? Ayl + AryE,y (10.17)
o€ P -
S = Ay + Ayt (10.18)

where the short-hands on the right represent these operators

Aot = g (g [Faptie| + S5 a2 —nipe.)  (woao)
Ay, = ﬁ (;y [n2 5 (n )} a;i + K3 (n? nief)5y> (10.20)
i G 55 e
A&y = ﬁ <(§; Lﬂ (%( ¢ )} — gjg";) ) (10.22)

This is a closed system for the transverse field components. Also note that only refractive index
variations contribute to mixing between the two polarizations. If there are material interfaces
within the computational domain, some quantities may not exist directly at an interface. How-
ever, the fields that appear in this formulations are actually continuous across the material
interfaces. For example, consider a sharp boundary between two materials that is perpendicular
to z. Then n2E, that appears in A,, represents the normal component of the electric induc-
tion which we know is continuous (in the absence of surface charges, of course). So is the normal
derivative as implied by the divergence equation (in the absence of free charges). These properties
make the discretization easier.
The evolution system for the longitudinal component is somewhat different, and reads as

aag; = A..E. + B, &) (10.23)

with
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i i (6 6. 4 .
Azl = 2kres <3x2 o Thon nT&f)gZ) (10-24)

i 19 08, agy] (10.25)

. ~ o . \[10 ., b OE.
BEnE) = g (52 +itrer ) | g 260 + o (026 = = =

Here we can see that to solve for the longitudinal component, we must know the transverse
components first. These then drive, or control evolution of £,. However, most of the time, only
the transverse components are simulated. Besides the fact that £, can be eliminated, an additional
reason for this is that we have already committed to the SVEA, which in turn “guarantees” that
the longitudinal component is small.

10.3 Discretization of BPM equations

The discretization procedure of the equations derived above is described in detail next. In its
entirety it would be rather long and repetitive, because there are only a couple of “patterns”
that are actually needed. This is what we concentrate on now.

First, consider typical term from the evolution system, e.g.

_ a1
 2kyep Ox |2 0z

Apr&, (n%)} + .. (10.26)

Our next task is to design its finite-difference approximation, which is unfortunately not unique.
It depends on how smooth the refractive index function is considered to be. We will assume
that sharp interfaces may be present in the structure, and that we can not rely on smooth
approximations for the permittivity.

Our guiding principle is what we have learned with the Crank-Nicolson and Maxwell dis-
cretization; it is usually best to keep finite-difference expression as symmetric as possible. So, for
the discrete grid point point 7, we can pretend for now that necessary quantities are known for
locations in-between the spatial grid points, and write the derivative as follows:

(o) | | (Fortem)

which expression is of course second order accurate in Axz. Immediately, we face the question of
how to approximate 1/¢. Remember that it is usually only specified at grid-point locations, and
an analytic formula may not be available. In other words, 1/€|; 1/, must be written in terms of
the permittivity samples at grid points. Let us therefore take

(5)

This is of course nothing but a linear interpolation for the function 1/e. Next, using standard
symmetric first-order derivative approximation we get

A g - L L 1 (€Ea:)i+1 — (EEm)'L . L 1 (EEI),L — (eEw)i—l
2EEE Ax |\ 2¢; 2€; 11 Ax 2¢; 26,1 Ax

Nl
T Az

, (10.27)
i—1/2

T2 2641

(10.28)

i+1/2

(10.29)
which simplifies to:
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o1 fat+en
Ax? 2¢;

Apps Ei_1| . (10.30)

Fivi — E, <€z‘ + €41 n € +6i1> " €+ €1

26i+1 261',1 261‘

As a quick sanity check, we can see that if the permittivity is constant, this expression reduces
to the standard three-point approximation for 9,,FE as it should. Also note that this formula
can be viewed and implemented as the standard Laplacian approximation with the coefficients
(1,—2,1) replaced by location-dependent factors constructed from the local permittivity € = n2.

The other expressions in A, and A, can be discretized in the same way or they are familiar
second derivatives we have encountered many times. There is however a different kind of term in
the “non-diagonal” operator A,,. This vanishes for constant permittivity and that suggests that
we should discretize the whole of A, (and A,;) in one go, keeping all resulting terms together
such they can cancel in regions of constant e. To do this, consider a grid point (i,5) and its
four neighbors and add its four next-nearest neighbors on a square lattice. These points will
contribute to the discretized expression.

Let us look first at the simpler part of A,

2
A ggE )
o0xdy Oz Oy

Centering all finite difference expressions, we can write the approximation as follows:

o 0 1 ) 0
Ox Oy 2Ax [(3?/ >i+1,j <8y >i1,j

90 1 [Bigr =B B - Eil,jl}

ar oy~ 2Ax 27y 2y (10.31)

This term is a combination of field values found at next-nearest neighbor grid points. The portion
of A, that also depends on refractive index must cancel this in case of constant permittivity.
The procedure is analogous, one only needs to keep track of the local permittivity. Let us show
these steps explicitly for one of the terms, starting from

o (r0eB\ 1 [(19EY (1o
Or \ e Oy T 2Ax e Oy 1 € Oy i—1,5 7

and centering the products around the left and right nearest neighbors we obtain

090, 1 |:€i+1,j+1Ei+1,j+1 —ev1 1B o1 GomBicgpn —€im1 b
Jx Oy T 2Ax 2€;41,;4Yy 261, Ay

(10.32)
Putting (10.31) and (10.32) together gives the finite-difference expression of the non-diagonal
operator

1 €it1,j41 €i—1,j+1
Ap By me—— ST 1| By — | —22 1| By
Ty -~y 1Az Ay ("‘[ €it1 i+1,5+1 i1, 1—1,5+1
A2E it 1] Eip1-1+ [6‘”‘1 - 1] E,-_Lj_l) . (10.33)
€it1,j €i—1,j

Approximation for Ay, is of course completely analogous. For the sake of completeness, the
corresponding formulas read as follows

0 (10eB\ 1 [(10EY (108
oy \e oz )~ 24y |\ e oz it € dx ), 4|’
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1 €i+1,5+1 €i—1,5+1
Ay By & HLIH 1 B — | 1 By
yr iz 4AJ}Ay <+ |: Ei,j+1 i+1,5+1 6i,j+1 i—1,7+1
Citlj—1 1} Eiy11+ [61_171_1 _ 1} Eil,jl) . (10.34)
€ij—1 €ij—1

Having discretized the differential expressions, one can write the finite-difference approximation
for the whole right-and side of the evolution system for the two transverse field components.

These discrete approximations can be utilized in the Method of Lines without further mod-
ification. Another approach which does not require much further work is the iterated Crank-
Nicolson method. Together with the alternating direction implicit method, they will be discussed
in following sections.

10.4 Semi-Vectorial Approximation
Beam propagation problems are often solved in an approximation that neglects mixing between

different polarization components of the optical field. This approximation consist in throwing
away the nondiagonal operators A, and A, in

8;; = Apule + Ay, (10.35)
o0&, A
oL = Ayl + Aty (10.36)

The explicit form of these equations was derived in Section 10.2. For example,

. i 0190 0%
A S S [ e Sy ¢ - Y 10.
ey 2k <8x [n2 oy (n Sy)} 8x8y+> (10.37)

only contributes if the refractive index depends on y, since the above evaluates to

. i 0 [Ologn?
Auyy = riefax[ 5 Sy] . (10.38)

Similar term arises from the other non-diagonal (i.e. polarization scrambling) operator A,,. These
contributions are often small, and since without them the problem is significantly simplified, the
approximation is invoked in many practical situations. It is called semi-vectorial, because it
results in a a pair of equations for the transverse components,

0&,

5. = Apps (10.39)
o0&,
8—; = Ay, (10.40)

which are de-coupled and can be therefore solved in isolation. This is akin to splitting a waveguide
problem into TE and TM pair of sub-problems which are easier to solve. So what we have are
essentially scalar equations, but together their solutions represent a good approximation of a
vectorial field — hence the name semi-vectorial.
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10.4.1 Implementation with ADI

Without the complication of the mixing terms, each of the above equations now can be solved
straightforwardly with the ADI scheme. This requires fusion of the material we have covered in
three of the previous sections, namely modification of the C-N approach, ADI formulation, and
modification of the discretized Laplacian as discussed in this Chapter.

For the sake of completeness, let us bring these ingredients together into sort of a pseudo-
code. It is sufficient to do this for the £, polarization since the formulation is identical for &,.
The explicit form of the evolution equation is

9, i (919
0z 2kyey \ Oz [n2 0z

0%E,
oy?

(nQEQE)} + + k2 (n® — n?)gz) . (10.41)
Let E; ; represent the discrete beam solution at the grid point {,j}. Recall the discretization
scheme derived for the “modified Laplacian” that reflects changing refractive index, and distin-
guish the corresponding discrete operator with tilde

. €y + ey
(AeaB)ij = =5 ——"Fis1,; — Bi <
1

J
: Ei—l,j >

(10.42)
It must be remembered when implementing this in a program, that the coefficients of the Lapla-
cian may depend on where along y (i.e. what value index j has) this is evaluated. It may be
worthwhile to pre-calculate and store these coefficients for ease of use.
Derivative in the y direction stays standard,

€ij T €41y | G T 5i1,j> 4 Gy T i

2€i+1,j 261‘*1,]’ 267;,1'

(AyyE)ij = Eij41—2E; j+ Eijj_1 . (10.43)

Since there are indices that correspond to x and y directions in space, the notation is using
comma to separate indices that belong to different spatial dimensions. Indices not separated by
comma will represent matrix elements of an operator. For example,

i+l
(A E)ij = Z (Asz)ik,i B j

k=i—1

with the second index after comma being a reminder that the operator coefficient may depend
on j. With these notation the first sub-step in an ADI will be

Entl/2 _ gn 7 ~ - i . ik2(e _ nz) . .
Az2 ok A ek AN, Ay A E" i (E H2 4R ) . (10.44)

Here, only A, E is taken implicit, and the diagonal term is averaged between steps as in the
modified Crank-Nicolson.
The second step is‘completely analogous, this time it is Ay, E that is treated in an implicit way:

En+1 _ En+1/2 i

_ ikg(e = n7)
Az /2 2k, Az?

Amen+1/2
+ 1k,

Ayy En+1 4

(En+1+En+1/2) .

(10.45)
It should be evident that this is only a minor modification to the simplest ADI method discussed
previously. However, its coding may call for pre-calculated auxiliaries to hold all the position-
dependent coefficients that appear in these equations. These will make it less error-prone to
prepare the vectors that are passed to each tri-diagonal solve.

i
2k, Ay?
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Collecting knowns and unknowns on the right and left, respectively, gives the two-stage update
in a compact “vector form,”

(1 =00, Apy — i) E"HY2 = (1 406, A,, +i7)E" (10.46)

(1 —i0,Ayy —i7)E™Y = (1 +i0,A., +iy)EVTY2 | (10.47)
where A A K2 2
z z IR AZ €5 — Ny

= A 0 T A 0 T 4k, (10.48)

This can be written in an equivalent, but perhaps more explicit component form. The two stages
read like this:

1. For each y—index j = 1,..., Ny, solve this tri-diagonal linear system, for the vector of un-
knowns X = E,T:—;I/Q

Jj+1
Z((szk L LL)ZkJ Zézk’V’L])Xk: - (1+Z’7'LJ)E13 +MS Z JrLEznn ) 1= 177NL
n=j5—1
By =Xy, k=1,...,N, (10.49)
2. For each x—index ¢ = 1,..., N,, solve this tri-diagonal linear system, for the vector of un-
knowns Y}, = E”+1
y 1+1
. 1/2 1/2 .
Z(éjk_u; Ayy)jk—165k7i,5)Ye = (1+ivi ) E; n+ / +10g Z cx) mijZ,j;‘ / , J=1,...,N,
n=i—1
EfN =Y, k=1,...,N, (10.50)

In comparison to the straightforward one-dimensional C-N update, the second step has the
same structure of the vectors that are passed to the tri-diag solver as the three diagonals, but
there is a slight difference in calculation of the right-hand-side vector. Its “non-diagonal” part
“reaches” for neighbor field samples in the z-direction. This is also true for the right hand side in
step one, neighbor values are fetched from the orthogonal direction. Perhaps the biggest change
lies in preparing the linear system in the firs step, where different diagonals must be calculated
for linear solves at different locations along dimension y.

10.5 Vectorial BPM

10.5.1 2D BPM for structured media using an iterated C-N Method

Iterated Crank-Nicolson Method is motivated by the difficulty in efficient application of the
unmodified C-N approach to two dimensions. Indeed, with the tri-diagonal form of the matrix
lost. in two. dimensions, the method looses lot of its performance. In the iterated C-N method,
implicitness is given up in favor of the simple algorithm that tries to approximate the yet-to-be-
calculated field samples in an iterative procedure.

The reader should notice that what is described in this section is in fact one special case of
Method of Lines with a fixed ODE-solver method ( and also with a fixed integration step — it
is up to the user to ensure that accuracy is sufficient).
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In the previous section we have seen that the evolution system for the transverse field com-
ponents can be written in an abstract form

0, = A&

where £ stands for a vector of field samples composed of both E, and F,, and operator A is a
“super-matrix” with elements A;, Azy, Ayz, Ayy-
What one desires in the traditional implicit method is
5n+1 _ gn

_ AgnJrl/Z
0z

where £7T1/2 is approximated by averaging between current and previous z-step sample. Avoid-
ing the need to solve big linear system, one forfeits implicitness and chooses to estimate £7"*1/2
in a series of iterations as follows.

1. Execute explicit Euler step:

(1)8n+1 _&n R

——— = AE"
Az

2. Estimate the field at the midstep

((/'TL+1/2 =a; (1)gn+1 + (1 _ al)gn
3. Repeat the first step with the estimated RHS:
(2)5n+1 _E&n

Az
4. Repeat averaging to improve the estimated midstep

_ A Wgntif2

(2)5n+1/2 = as (2)gn+1 + (1 o az)gn

5. Finally, assume the above is a good estimate of the required midstep value,
and execute Crank-Nicolson type step:

(c/'n+1 —gn

_ 4 @gn+1/2
Az €

All this method requires is-an algorithm to calculate the action of operator A on an arbi-
trary vector of field-amplitude samples. This is relatively simple to implement with the help of
expressions obtained in previous sections. The algorithm has also other attractive properties. It
only requires “local” calculations which can be efficiently parallelized. Because the method is
essentially explicit (or semi-implicit), it requires an integration step that is shorter than that in
the full 2D Crank-Nicolson. However, since each step is relatively inexpensive to calculate, the
overall speed of this approach is fully competitive with implicit methods.

10.5.2 Fully vectorial ADI method

Application of ADI method to a fully vectorial BPM problem requires little more care, and its
implementation is more involved. The purpose of this section is to summarize the method in
brief terms.
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Let us order the transverse polarization components of the electric field into a two-part
column vector

E= [Eﬂ , (10.51)
so that the propagation equations in the corresponding “matrix” form read
0.F =iAE . (10.52)

Here, A is a two by two matrix operator with the familiar form

i [An A
A= W] 10.53

for which explicit expressions were derived earlier in this chapter. To apply the ADI scheme, one
needs to decide on splitting the above operator into two portions, such that each can be'treated
implicitly along one coordinate direction. Moreover, we require that each operator component

which will lead to a linear system only couples computational grid points in one coordinate
direction. One such splitting can be written as follows:

- . R A(l) 0 A(Z) A(2)
A=A+ 4= 770 ey (10.54)
A0 Al
where

A 1 [o1 0 1
AVg = G2 Yz, k2% —n2 )E,

ng rief _ax n2 8$(n & ) + 2 O(n nref)g
. 1 [o%, 1

(2) _ x T12(n2 2
wa 51? 2kref I ayg + 2]470(71 nrej)gx:|

. 1 [o%, 1

1 — 2 2 2
A?(Jy)gy - 2kref I ax2y + §k0(n - nref)gy:|

e i [0 710 s ] Lo 2 2
A?(Jy)gy = 2kref aiy Lﬁaiy(n gy) + ik‘o(n — nmf)gy

; 1 o910 1 0%
A(Q)g — N | W 2((/* o Y

ry Y 2krer [ Ox |02 ay(” v) oxdy

i 1 Tof[10 1 0%¢
AWg — T2 L 2e,)| - £ 10.

v € 2krep [ Oy | n? Oz (& ) Oyox (10:55)

Without going into details, we can generalize previously derived formula for the ADI method
(9.19) and write the update as follows

bl _ 1 (1+i0Ay) (1+i0A)

_ ke E" | §=Az/4 10.56
(1—i64;) (1 —idAy) 1 / (10.56)

Execution of this scheme requires that the inverse operator actions can be solved as a linear
system with tri-diagonal matrices. For example, the last stage of the calculation will involve an
“intermediate” vector X, on which an inverse operator must be applied:

1

Y = mx . (10.57)

This is written as a linear system to be solved
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(1—-i0A)Y =X . (10.58)

In the matrix form,
1—isALY —isAll)
0 1—isAlY)

Yw] - M (10,59

Yy Xy

it becomes evident that this can be done in two steps. First, one takes the second row and solves
for Y,

(1—idA))Y, =X, . (10.60)

Having found Y, the first row is used to solve for Y
1—id ALY, = X, +i6AV)Y, . 10.61
T xy *Y

These two operations only require linear system solves that have tri-diagonal matrices generated
by Az(/%;) and Ag(,ly) in complete analogy to the semi-vectorial ADI-BPM. The only place where we
encounter mixed derivatives is the last term, but this is a simple matrix-vector multiplication
and as such it poses no problem. Naturally, the inverse (1 + iéflg)’l can be treated the same
way. All put together, the fully vectorial ADI method too can be implemented such that the
most “difficult” operation is the solution of a tri-diagonal linear system. As in the semi-vectorial
case, these operations can be executed in parallel across one of the transverse dimensions of the
computational domain.



