
M
.K
O
LE
SI
K
O
PT
I5
47
/5
83

8

Alternating Direction Implicit Method

The following Section deals with the so-called Alternating Direction Implicit Method (ADI).
Its basics purpose is to address the increase of the computational complexity when one transi-
tions from a one-dimensional to a two-dimensional beam propagation problem. We have already
experienced this difficulty in a couple of contexts; for example direct application of the Crank-
Nicolson approach in two transverse dimension that utilized a direct linear solver turned out to
be significantly slower in comparison to simulations based on method of lines. Natural question
then is if the favorable properties of the Crank-Nicolson approach can be somehow “salvaged,”
or transferred to situations with two dimensional diffraction. The ADI method is one way to
achieve this.

8.1 Basic formulation of ADI for free space diffraction

For simplicity, we only consider the Laplacian part of paraxial propagation equation, but this
time in two transverse dimensions:

∂zE =
i

2k0
[∂xx + ∂yy]E (8.1)

ADI consists in processing each of the two dimensions of the above Laplacian in turns, by splitting
one complete integration step into two stages as follows:

En+1/2 − En
∆z/2

=
i

2k0∆x2
∆xxE

n+1/2 +
i

2k0∆y2
∆yyE

n (8.2)

En+1 − En+1/2

∆z/2
=

i

2k0∆x2
∆xxE

n+1/2 +
i

2k0∆y2
∆yyE

n+1 (8.3)

Note than in each, one direction is treated implicitly, i.e. a second-order derivative acts on the
new field sample to be calculated. Similarity with the C-N method may not be very obvious
at this stage, because the characteristic C-N feature of averaging between two integration-step
levels does not appear here. However once same-step field samples are collected together, and
the update scheme is written with the help of the same matrices we used before to formulate the
C-N method, the connection becomes obvious with

(1− i∆z

4k0∆x2
∆xx)En+1/2 = (1 +

i∆z

4k0∆y2
∆yy)En



M
.K
O
LE
SI
K
O
PT
I5
47
/5
83

162 8 Alternating Direction Implicit Method

(1− i∆z

4k0∆y2
∆yy)En+1 = (1 +

i∆z

4k0∆x2
∆xx)En+1/2 (8.4)

Notation can be further simplified, by specializing our familiar delta-parameter to two directions

δx =
i∆z

4k0∆x2
δx =

i∆z

4k0∆y2
(8.5)

and L± matrices to
L±x = 1± δx∆xx L±y = 1± δy∆yy (8.6)

Then the update can be written in a compact form

L−x E
n+1/2 = L+

y E
n

L−y E
n+1 = L+

xE
n+1/2 (8.7)

For these expressions, one has to keep in mind that the above matrix multiplications are symbolic
in the sense that if x matrices act on column vectors, y matrices must act on rows or the other way
around. Of course, one can also express the whole update as a “single” matrix-based operation
in Matlab-like expression

En+1 = (L−y )−1[L+
x ((L−x )−1{L+

y E
n}T )]T (8.8)

However, this would not be a good approach for practical implementation. There is no need to
create any matrices and/or their inverses explicitly.

A much more efficient way to program ADI is essentially a sequence of two Crank-Nicolson
type steps, utilizing the same tri-diagonal solver technique. One minor modification consists in
how the right-hand-side for each linear system is obtained, and another not so minor change
is that what may seem as a single C-N step application here is actually a series of mutually
independent actions, each working with a different row or column of our matrix representation
of the beam.

8.2 ADI relation to Crank-Nicolson method

The scheme just derived reduces the basic operation to one that deals with single-dimensional
arrays and only tri-diagonal matrices. This is indeed a great improvement when considering that
the original problem seemed to require a sparse-matrix solver with dimensions (NxNy)×(NxNy).
This seems too good to be true, so the question is what price in terms of accuracy, or perhaps
(in)stability one has to pay?

To understand this better, it is a useful exercise to show that ADI is almost “equal” to the two-
dimensional Crank-Nicolson. There appears a correction that is of second order in propagation
step ∆z and depends on higher-order spatial derivatives, but the overall truncation error turns
out to be the same as in the C-N method.

Subtracting the two equations

(1− iδx∆xx)En+1/2 = (1 + iδy∆yy)En

(1− iδy∆yy)En+1 = (1 + iδx∆xx)En+1/2 , (8.9)

one gets the expression for the intermediate step amplitude

2En+1/2 = (1 + iδy∆yy)En − (1− iδy∆yy)En+1 . (8.10)



M
.K
O
LE
SI
K
O
PT
I5
47
/5
83

8.3 Dispersion properties of ADI method 163

Inserting this into first equation results in the following

1

2
(

i

2k0∆x2
∆xx +

i

2k0∆y2
∆yy)(En+1 + En) =

En+1 − En
∆z

+
∆z

4
∆xx∆yy(En+1 − En) (8.11)

Obviously, the first two terms constitute the standard two-dimensional Crank-Nicolson method.
The last term on the right is the correction which scales in the continuum limit as the high-order
derivative ∂xxyyzE, and is proportional to δxδy on a discrete grid.

8.3 Dispersion properties of ADI method

As always, a most important issue is that of stability. Dispersion properties (i.e. accuracy and
stability) of the ADI method also turn out to be closely similar to those of Crank-Nicolson
approach.

The derivation method is standard, based on plane-wave anstaz. Start from the two-step
scheme written in the compact form

L−x E
n+1/2 = L+

y E
n L−y E

n+1 = L+
xE

n+1/2 (8.12)

and, as is usual in derivation of dispersion relation, consider translationally symmetric solutions.
Such plane-waves are characterized by two transverse wavenumbers kx, ky:

En = ein∆zβeikxx+ikyy (8.13)

for a whole n representing a finished integration step. At the “half step”, the solution must also
have the form of a plane wave, but possibly with a different amplitude

En+1/2 = Aeikxx+ikyy . (8.14)

With this parametrization, elimination of the unknown amplitude A gives an expression for the
single step propagator in the spectral space

ei∆zβ(kx,ky) =
1 + 2iδx(cos kx∆x− 1)

1− 2iδx(cos kx∆x− 1)

1 + 2iδy(cos ky∆y − 1)

1− 2iδy(cos ky∆y − 1)
(8.15)

This formula is a pure phase on the right hand side, and that means that the numerical-wave
propagation constant β(kx, ky) is real, and the method is consequently unconditionally stable.
Dispersion properties appear to receive contributions from each transverse direction

∆zβ(kx, ky) = Arg

(
1 + 2iδx(cos kx∆x− 1)

1− 2iδx(cos kx∆x− 1)

)
+Arg

(
1 + 2iδy(cos ky∆y − 1)

1− 2iδy(cos ky∆y − 1)

)
, (8.16)

where both terms are familiar C-N expressions. Taylor expansion shows that in the continuum
limit of small kx, ky this reduces to

β(kx, ky) = − k2
x

2k0
− k2

y

2k0
+
∆x2k4

x

24k0
+
∆y2k4

y

24k0
(8.17)

So, at order four there are no mixed terms which implies that ADI starts to differ from C-N only
in order six. This shows that ADI indeed preserves most of the desired properties built in the
C-N algorithm. It is also evident that ADI shares the unpleasant properties, an in particular the
anisotropy of the grid shows up in the numerical wave propagation at the same level.



M
.K
O
LE
SI
K
O
PT
I5
47
/5
83

164 8 Alternating Direction Implicit Method

8.4 ADI implementation

Let us assume that the current solution array Enx,y has been calculated at step n along the
propagation direction. Here, indices x, y stand for matrix array indices in the corresponding
directions, and asterisk ∗ will indicate a wild card index running over all components of a vector
in the corresponding dimension. It is a way to indicate what would be a vector operation in
Matlab-like notation.

The following is a summary of the ADI algorithm written in a pseudo-code

1. Calculate the first-stage right hand side R = L+
y E

n:
Operator Ly does not depend on index x, and that means that all operations can be performed
simultaneously with whole column vectors:

loopy : R∗,y = En∗,y + δy(En∗,y−1 − 2En∗,y + En∗,y+1)

Note that this is the same type of calculation we have done for a one-dimensional C-N
method, but executed in a loop for each row independently.

2. Next, look at matrix R as a collection of rows. For each index y solve a tri-diagonal C-N-like
system with each column of R playing the role of right-hand-side vector in the linear system

loopy : TRIDIAG(A−x , B
−
x , C

−
x , R∗,y, E

n+1/2
∗,y ) ,

where A,B,C stand for the three diagonals of the system matrix, and the result goes in
En+1/2.

3. Calculate the right hand side for the second-stage linear problem U = L+
xE

n+1/2:

loopx : Ux,∗ = E
n+1/2
x,∗ + δx(E

n+1/2
x−1,∗ − 2E

n+1/2
x,∗ + E

n+1/2
x+1,∗ ) .

In comparison to stage 1., dimensions x and y have exchanged their roles.
4. For each index x solve a tri-diagonal C-N-like system with rows of U fed as right-hand-sides

of linear-system solves:

loopx : TRIDIAG(A−y , B
−
y , C

−
y , Ux,∗, E

n+1
x,∗ )

This constitutes on complete step in ADI method. There are two favorable properties of this
algorithm. First, it can be efficiently parallelized, because all operations work with vectors (either
rows or columns of matrices) and are mutually independent. Second, the tri-diagonal solver
remains the only linear-algebra routine needed for the implementation.


