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Beam propagation in geometries with piece-wise constant
refractive index.

It is well known that components of electric and magnetic fields satisfy “continuity” conditions
at material interfaces. Here we explore the less known conditions that are obeyed by derivatives
of these fields.

From the simulation or numerical point of view, an interface prevents us from using the same
stencil as in the bulk material, so we can not obtain approximations of spatial derivatives which
appear in propagation equations the same way. The problem therefore is how to tailor solutions on
each side of an interface into a single global function that correctly reflects properties of Maxwell
fields across a material boundary. One method to deal with this takes advantage of interface
conditions for the field derivatives. There is in fact a whole hierarchy of derivative relations, and
these can serve as basis to construct simulation schemes for finite-difference Maxwell solvers.
Here we restrict ourselves to the lowest order derivative conditions, and show how they can be
applied in the BPM context. This material applies to waveguiding structures with piece-wise
constant material properties.

15.1 Boundary conditions for field derivatives in Maxwell’s equations

Assume a sharp interface between two homogeneous, non-magnetic dielectrics. Let us orient
our local coordinate system such that the interface coincides with x = 0 plane. The textbook
boundary conditions for fields then require that fields

D, E, E. (15.1)

are continuous across the interface (at least when no surface charges are present), as are all
components of the magnetic field (when no surface currents exists).

The question is what are the interface conditions for the first (and higher) spatial deriva-
tives of the electromagnetic fields? Also, is it possible to incorporate such conditions into beam
propagation simulation methods?

The boundary conditions in question can be derived in a systematic way. The interested
reader is referred to Ref. XXX which show this in a straightforward, but little abstract manner.
Here we pursue a perhaps more concrete approach.

Take these two Maxwell equations first:

VxH=0,D V.H=0, (15.2)

and write them in an explicit, component-by-component form,
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0=0,H, +0,Hy,+0.H,
0Dy =0yH, — 0, H,
8t-Dy = asz - aacHz

Obviously, these component equations are invalid right at the interface (z = 0) since the deriva-
tives in general do not exist there (keep in mind that we are considering an ideal, infinitely
sharp boundary between two materials). However, we can subtract two sets of equations be-
tween two infinitely close points, each on one side, and inspect the resulting terms that remain
after elimination of quantities that we know must be continuous.

We use AQ to denote the jump in the quantity Q, i.e. AQ = Q(z =07) — Q(z = 07). After
application of the standard continuity conditions to obtain

0=+A0,H,
0=0

Ay E, = — A0, H.,

AOE. = +Ad,H, (15.4)

From here we see that normal derivatives of parallel magnetic fields suffer a jump across the
interface. Thus, while they are continuous functions in space, material boundary still manifests
itself although in a subtle manner, namely as a cusp.

However, since we have formulated our propagation equation in the language of electric fields,
let us repeat the same procedure for the second set of Maxwell equations, namely

VxE=-0,B V.D=0 (15.5)

0=08,D, +d,D, +9.D,
~0B, = 0,E. — 0.E,
~By = 0.E, — 0,E.
~0;B, = 0,E, — 9,E, . (15.6)

Apply the jump operator A, and commute it with quantities and derivatives which are continuous
across the boundary to obtain:

0= A0, D+ (0yE, + 0,E.)Ae

0=0
0= 8.D,A(1/€) — A, E.
0= AdwE, — 9,D,A(1/e) . (15.7)

Above, we have also eliminated field E, which is discontinuous in favor of D,, so that derivative
jumps can be all expressed in terms of fields which have a defined value at the interface:

A8, Dy = —A(e)(9,E, + 0.E.)
A8, E, = +A(1/€)d,D,
A8, E. = +A(1/€)9.D, (15.8)

These constraints suggest a numerical wave-propagation method for structures with piece-wise
constant material properties. We can use homogeneous-medium discretization for grid-regions
that are contained within a constant-index regions. The interface conditions then can be used to
obtain electric field samples located directly at the material boundaries, and result in coupling
between constant-index regions.
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In the BPM context, it is also possible to eliminate the longitudinal electric component.
Again, one can take advantage of the piece-wise constant index assumption, which means that
not only V.D = 0 but also V.E = 0 everywhere where the derivatives needed to form divergences
are properly defined, i.e. away from interfaces, but also arbitrarily close to them.

Thus, we can write

V.D = €(0,Ey + 0yEy + 0.E,) =0 (15.9)

arbitrarily close to a sharp material interface. The constant permittivity has been pulled out of
the derivative terms, because it is a piece-wise constant function. This in turn implies that

and application of the jump operator to this yields
A0E, =0. (15.11)

In other words, normal derivative of the normal component of the electric field is continuous at
the sharp interface. This makes it possible to reduce the system of equations needed for-BPM,
so that only transverse field components must be propagated,

A8, Ey =0
AD,E, = +A(1/€)d,D, . (15.12)

The minor complication is that the both the electric intensity and electric induction enter these
relations and will therefore appear in the discretized equations. However, one can always locally
switch from one field to the other, depending on what value is needed. One practical way to deal
with this is to store for grid nodes located at material boundaries those components of the field
that are continuous. The corresponding normal and parallel polarization components then can
be evaluated based on the local orientation of the-interface.

15.2 Interface derivative matching method

For simplicity, let us consider a situation in which the material boundary runs along one of the
numerical grid axes.

15.2.1 Normal field components

The natural variable to.consider in the vicinity of interface is one that is continuous across such
a boundary. In the case of the normal component, this is of course the electric induction D,.

Consider a _grid node located at the interface, and denote D, D¢, and Dp values at grid-
nodes which are left, at, and right of the interface. To keep notation simple, also assume that
the grid spacing.Ax is the same on both sides. Then the condition that requires continuity of
the normal derivative of the electric field

A0E, =0
can be approximated by (z-components are assumed in these expressions):

1Do—Dy 1 Dg—Dc
e, Ax e Az ’

(15.13)
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where the electric field has been expressed in terms of the continuous displacement field. From
here, we have
€ELER
De=——"—(EL+ ER) . 15.14
L (B, + ) (15.14)
This is the field value that, to second order accuracy in Az, ensures that the one-sided derivatives
of electric intensity are equal (while the field intensity itself is discontinuous).
Thus, when the numerical algorithm needs e.g. 9,,F, at a point next to the interface, one
can write

€L

El=—1 (E,+Eg
¢ €L€+€R( g )
E;=—" (E,+E 15.15
CT e (EL + ER) (15.15)

for values at the interface when approaching from a defined direction. This is then sufficient
to approximate spatial derivatives in the immediate vicinity of the boundary. For example, to
approximate discrete Laplacian values,

(aa:wEac)R
(azx Ex)L

~ (Eé,_ —2FERp + ERR)/A.’L'2

~ (Brr — 2EL + E;)/Az” (15.16)
with double-subscripts indicating the points that are next-nearest neighbors of the node located
at the interface. The effect is that the discretization schemes on different sides of the boundary
are coupled.

15.2.2 Parallel polarization components

This time we are going to use the second interface condition; namely

A8, B, = +A(1/e)d,D, = L — Ry D, (15.17)
€REL
One can approximate right hand side by a finite difference along the boundary between the two
materials (which the y direction in the present case). For example:

(0,D)c = 534 (Dely +49) — (Dely—Ay) (15.18)

and a three-point, one-sided finite differences can be applied close to interface corners (so as to
preserve the same accuracy order). Note that this means that the interface values of the normal
component of electric induction must be stored. The relevant boundary constraint requires

A0,E, = L= (0,D,)c (15.19)
€EREL,
where the right-hand-side is assumed to be discretized in the form shown above. Next, one must
set the B, = E¢g value located at the interface such that the above condition is fulfilled, which
leads to
ER — Ec EC - EL €

L —€R E; +ER €L — €R
= 0y D, E- = —A 0y D, 15.20
Az Az €EREL (OyDa)e or = 2 . €REL Oy Da)e )

Note that the expression for the right hand side also contains Ay so it does not vanish in the
continuum limit Az,y — 0. Having calculated the interface value of F, in this way, it can be
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used in evaluation of Laplacian expressions on both sides of the interface. The scheme couples
field samples at both sides of the interface, and also values of the continuous component along
the interface.

In practical terms, it requires modification of discretized equation at all point adjacent to the
material boundary. The implementation is relatively simple for geometries in which all interfaces
are parallel to one of the grid axes, which is in fact frequently the case. The resulting modified
discretization scheme can be applied equally to finite-difference (in z) schemes and to the method
of lines.



