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Wide-Angle Beam Propagation Methods

The beam propagation methods discussed so far, with notable exceptions of spectral propagators,
can be characterized as paraxial. However, we have not invoked the paraxial approximation
explicitly in the course of the derivation that gave us the beam propagation equations. Yet,
analysis of their dispersion properties showed that they are indeed paraxial, and as such they
impose incorrect properties on waves propagating at large angles. One can ask where exactly
the paraxial approximation appears? In this chapter we will trace this to the uni-directional
approximation and the slowly evolving envelope approximation. We will see that while waves
propagating in the “opposite” direction need not be included in the simulation, the possibility
that they occur must be considered during the derivation.

14.1 Padè approximations for propagation operators

This section follows the original treatment by Hadley, who introduced Padè approximation into
the BPM field. Padè approximant is a function that approximates given f(x) in terms of a
rational function, or ratio of two polynomials of x:

f(x) ≈ R(x) =
M(x)

Q(x)
=

∑nP

j=0mjx
j

1 +
∑nQ

j=1 qjx
j

(14.1)

The feature that distinguishes this approximation from any other is that the coefficients in the
numerator and denominator polynomials are selected such that the Taylor expansion of f(x) is
reproduced up to a certain order that is determined by the number of free coefficients. Depending
on the order of the polynomials, Padè approximants come in different types. If the order of M(x)
and Q(x) are nM and nQ, respectively, then the Taylor expansion can be matched up to order
nP + nQ

f(0) = R(0) , f ′(0) = R′(0) , . . . , f (nQ+nM )(0) = R(nQ+nM )(0) , (14.2)

and such an approximation is called type (nM , nQ). Naturally, there are many approximants for
the same function, and which is best depends on circumstances. The main reason “Padeization” is
so useful in the field of BPM is that it helps to preserve sparsity of various discretized differential
operators as we shall see shortly.

Let us first discuss the original Hadley‘s method in which approximations for beam propa-
gation equations are introduced with the help of a recursion. Consider first a scalar Helmholtz
equation for the TE-polarized electric field in a space with a single transverse dimension
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206 14 Wide-Angle Beam Propagation Methods

(∂zz + ∂xx + k2
0n(x)2)E = 0 , (14.3)

and let us cast this in terms of the field envelope A,

E = eikrzA , (14.4)

where kr is a reference wavenumber that defines a reference refractive index such that kr = k0nr.
Then the envelope equation reads

(∂zz + 2ikr∂z + ∂xx + k2
0(n2 − n2

r))A = 0 . (14.5)

Denote
P = ∂xx + k2

0(n2 − n2
r) (14.6)

the transverse portion of the Helmholtz operator. For the TM polarization we would have

PA =
∂

∂x

1

n2

∂n2A

∂x
+ k2

0(n2 − n2
r)A . (14.7)

The propagation equation can be in both polarizations put in a form

∂z(1 +
1

2ikr
∂z)A =

i

2kr
PA . (14.8)

From here, the usual next step which results the paraxial approach is to neglect the second
term in brackets, and this is justified by the large value of kr. In the wide-angle propagation
context, the second derivative w.r.t. z has to be retained. At the same time, one wants to obtain
a first-order derivative on the left-hand-side. The equation can be formally solved as follows

∂zA =
i

2kr

P

1 + 1
2ikr

∂z
A . (14.9)

Of course, the reader should suspect that the expression in the denominator in fact represents an
inverse differential operator, and it is not immediately obvious that it exists. It is also not clear
how the above operation it represents can be practically calculated. However, imagine that we
already have an approximation for how ∂z acts on A. Then we could try the following recursion
suggested by the above equation:

∂z|n =
iP/(2kr)

1 + 1
2ikr

∂z|n−1

, (14.10)

and start with

∂z|0 =
i

2kr
P , (14.11)

which is a natural zero-order approximation, because it generates the well-known paraxial BPM
propagation equation. This will initiate a series of approximations for wide-angle beam propa-
gation equations. In the first order, we get

∂z|1 =
iP/(2kr)

1 + 1
2ikr

i
2kr

P
, (14.12)

in order two we have

∂z|2 = i
P/(2kr) + P 2/(8k3

r)

1 + P/(2k2
r)

, (14.13)
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14.1 Padè approximations for propagation operators 207

and order three yields

∂z|2 = i
P/(2kr) + P 2/(4k3

r)

1 + 3P/(4k2
r) + P 2/(16k4

r)
. (14.14)

We could continue this way to higher and higher orders, hoping that the process converges in
some sense.

From each of these expressions we obtain a propagation equation, for example the last one
gives

∂zA = i
P/(2kr) + P 2/(4k3

r)

1 + 3P/(4k2
r) + P 2/(16k4

r)
A . (14.15)

In the second order the propagation equation is

∂zA = i
P/(2kr) + P 2/(8k3

r)

1 + P/(2k2
r)

A , (14.16)

and the lowest order coincides with the paraxial propagation equation

∂zA = iP/(2kr)A =
i

2kr

[
∂xx + k2

0(n(x)2 − n2
ref)
]
A . (14.17)

Setting aside the question of how to solve these propagation models, we should first ask if the
above procedure really leads to “healthy” propagation equations? Fortunately, all representations
that arise in this recursion can be justified with the help of Padè approximants to a “factorized”
Helmholtz equation. The latter can be obtained as a formal solution to (14.8):

∂A

∂z
= ikr

(√
1 + P/k2

r − 1
)
A . (14.18)

Substitution and formal manipulation with the square root of an operator indeed shows that if
this equation is fulfilled, (14.8) will be satisfied, too. An alternative way to look at this is to
write Helmholtz with addition and subtraction of the chosen reference wavenumber,

(∂zz + ∂xx + k2
0n(x)2 − k2

r + k2
r)E ≡ (∂zz + P + k2

r)E = 0 . , (14.19)

Inspired by the one-dimensional wave equation, one can factor the above to get

(∂zz + P + k2
r)E = (∂z + i

√
P + k2

r)(∂z − i
√
P + k2

r)E = 0 . (14.20)

The two operators in brackets represent waves propagating in opposite directions. Beam propa-
gation along positive z is described by the second factor, so we drop the other. This is where we
transition form the original bi-directional propagation system to a uni-directional one. With the
electric field represented in the envelope picture, the second factor yields

0 = (∂z − i
√
P + k2

r)eikrzA→ ∂zA = ikr(
√

1 + P/k2
r − 1)]A , (14.21)

which is the equation we sought.
Since in general there is no direct way to evaluate square root of an operator, we will replace

it by its Padè approximant(s). For example, type (2,2) Padè approximant of
√

1 +X − 1 is

X/2 +X2/4

1 + 3X/4 +X2/16
.

With X = P/k2
r , and (14.33) this results in equation (14.15). In a similar way, all results obtained

from the above recursion can be justified as Padè approximants to the factorized Helmholtz
equation in the envelope representation.
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208 14 Wide-Angle Beam Propagation Methods

What has been achieved so far is the formal separation of the waves that propagate in forward
and backward directions. Is is interesting that this eliminates paraxiality from the propagation
equations. The calculations of this section tell us that the paraxial approximation appeared in
the previous treatment as a consequence of ignoring the possibility of wave propagation in the
direction opposite to that of the beam.

As a matter of practical importance, we have replaced the quite unyielding operator square
root with a Padè approximant resulting in a rational function of the Helmholtz-related operator
P . Next we address the question of numerical solution of the wide-angle propagation equations.

14.2 Numerical solution of wide-angle beam propagation equations

Depending on the type of Padè approximation chosen, the corresponding beam evolution equa-
tions will differ in details, but their solution is in essence the same. In general the right-hand-side
operator acting on the previously calculated beam amplitude is a ratio of two polynomials in
P/(2k):

∂zA = ik

∑
k nk(P/2kr)

k

∑
k dk(P/2kr)k

A ≡ ikN(P )

D(P )
A . (14.22)

To obtain a discrete-grid update scheme, take (as usual, upper index labels mark integration
steps)

∂zA ≈
A(n+1) −A(n)

∆z
, (14.23)

and

ik
N(P )

D(P )
A ≈ ikN(P )

D(P )

(A(n+1) +A(n))

2
. (14.24)

This is the classic Crank-Nicolson finite-difference scheme. Let us see if all quantities involved
can be efficiently calculated. Multiplying by the operator in the denominator yields

D(P )(A(n+1) −A(n)) =
ik∆z

2
N(P )(A(n+1) +A(n)) . (14.25)

Grouping equal-z quantities on one side of the equation, one gets

[D(P )− ik∆z

2
N(P )]A(n+1) = [D(P ) +

ik∆z

2
N(P )]A(n) . (14.26)

The expressions on both sides of this equations are polynomials of P . This is the type of operator
function that does not present conceptual difficulties, at least in the finite-dimensional space of
discrete solutions that arise in BPM. An important point is that this representation preserves
the sparse-matrix nature of operator P .

When it is discretized on the spatial grid, for example the way described in the previous
chapter, this update scheme represents a large linear system of equations. The most straightfor-
ward approach to its solution is to use a linear solver library. There are, roughly speaking, only
two options. The first is to use a direct, sparse-matrix solver the way we have done it in the
exercise on the two-dimensional Crank-Nicolson BPM. The task is more difficult in more than
one way in this case. First, the resulting matrix of the linear system is more complex, because
it contains powers of operator P . The latter is represented by a truly sparse matrix in which
only nearest-neighbor grid points are coupled. As higher and higher powers of P arise, further
and further neighbors become coupled, and this results in more non-zero elements of the matrix.
Moreover, during the process of solution this matrix fills up even more. All this results in higher
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14.3 Dispersion relations 209

usage of computer memory. Yet another difficulty is due to a more complicated way to set up the
system matrix. If a routine for sparse-matrix multiplication is available, then the total matrix
can be conveniently built gradually by adding higher-order terms. If the integration step is fixed,
the result can be retained and the computational cost of the initial setup is irrelevant. At any
rate, using a direct sparse-matrix solver always requires significant computer memory and this
may limit, in practice, the maximal size of the system that can still be simulated.

An alternative approach, which also treats the propagation equation as a linear system of
algebraic equations, is to use an iterative solver. Unlike the direct solver, it does not guarantee
that a solution will be obtained in certain number of steps, or that a usable solution will be
obtained at all. An iterative solver starts from an ansatz solution, an improves on that in a series
of iterations. The result is an approximate but usually quite accurate solution. Iterative methods
come in several versions, but they all share several features that make them attractive specifically
for BPM applications. Most importantly, rather large systems can be solved, because the matrix
is never stored explicitly in the computer memory. In fact, there is no need to construct the
matrix. Instead, iterative solvers only require that the user provides an algorithm to evaluate
the action of the matrix on a given vector, which is supplied by the solver. This is especially
convenient in this case; When the solver asks to calculate action of the system matrix on some
vector X that was generated during the iterative process, the user must evaluate

[D(P )− ik∆z

2
N(P )]X .

Because this is a polynomial in P , the result can be obtained by at most max(nD, nN ) of
multiplications by the matrix representing P . Consequently, the BPM program based on iterative
solver is conceptually relatively simple as it only requires to specify an algorithm for the matrix-
vector multiplication PX. Very similar is the calculation of the right-hand-side of the linear
system that represent one BPM step. It is also evident that the algorithm complexity goes up
linearly with the order of the Padè rational function. These issues are illustrated in exercise-
package EP-19.

14.3 Dispersion relations

Because the scheme introduced in the previous section are all based on the same discretization
approach as the classical Crank-Nicolson method, it is natural to expect that they also share the
favorable numerical dispersion properties. Namely, they should be unconditionally stable and
second-order in the in the integration step length.

To show that this is indeed the case, note that the polynomial functions of operator P that
occur in the right- and left-hand-side of the update scheme are closely related. In fact, when
written expanded in the polynomial form, they exhibit coefficients that are mutually complex-
conjugate. In other word, single update step can be written as

A(n+1) =

∑n
i=0 ξiP

i

∑n
i=0 ξ

∗
i P

i
A(n) . (14.27)

Now, spectrum of P is real, and its eigenvectors constitute a possible basis in the discrete space
of beam solutions. One can show the same way as for the paraxial C-N method that propagation
constants of these eigenfunctions are all real. That in turn means that the method preserves the
norm of the solution and is therefore unconditionally stable, and has no damping.

As for this method‘s accuracy, it is instructive to look closer at concrete dispersion relations.
This is only possible when all eigenfunctions of P are known explicitly. For practical purposes,
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this means a homogeneous medium, which is a very special case, but it does illustrate how
increasing Padè order improves wave propagation at wide angles.

Consider a uniform medium with single transverse dimension x, and choose the reference
index equal to that of this medium. Plane waves characterized by their transverse wavenumber
k are then eigenfunctions of P with eigenvalues −k2. The corresponding propagation constant
of the electric field (as opposed to envelope) wave is.

β(k) = k0(
√

1− k2/k2
0)

To appreciate the difference between the exact and WA-BPM wave propagation in the continuum
limit (small ∆x) it is enough to compare β(k) to the chosen Padè approximation. This is shown
in the figure in units of the on-axis propagation constant k0:

Normalized propagation constant for a plane
wave with a given transverse wavenumber cal-
culated for several Padé approximants. This pic-
ture corresponds to the continuum limit ∆x→ 0
and shows the best result achievable with a given
approximation.

The picture indicates that the gap between approximated and exact propagation constants
shrinks rapidly with the increasing order of Padè approximation. In fact, in the continuum limit
at least, (2, 2) Padè method propagates correctly waves at angles exceeding forty five degrees.

To appreciate effects of the discrete grid, one has to look at the discrete eigenvalue of P which
depends on the grid spacing ∆x:

2

k2
0∆x

2
[cos(k∆x)− 1] .

For the following illustration, let us choose ∆x = λ/(2π) which represents a decent grid resolution
for the propagation in a homogeneous medium.

Normalized propagation constant of the
Padè(2,2) approximation compared to the
continuum-limit exact case for ∆x = λ/(2π).
The transverse wavenumbers at which the two
curves start to separate decrease even further
on a coarser spatial grid.
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This picture illustrates that the numerical dispersion increases the deviation from the desired
exact propagation constant. One can see that, in comparison with the continuum limit shown in
the previous figure, the two curves start to separate at significantly smaller angles of propagation
already when ∆x = λ/(2π).

14.4 Multi-step method

Wide-angle BPM, even when it is applied in a single transverse dimension, leads to systems of
linear algebraic equations that are not tri-diagonal. Consequently, less efficient solvers must be
applied, because each subsequent power of operator P adds a new pair of off-diagonal elements.
However, the case of one transverse dimension is practically interesting, as it includes modeling
of integrated devices in the effective index approximation. Wide angle approach may be often
required when waves, while confined to a single ’vertical’ guided mode, propagate at large angles
within the plane of the device. This motivates the question if it is possible to re-formulate
the theory outlined in the previous section in way that would allow utilization of tri-diagonal
solvers. The approach that does this is called multi-step, and was first proposed by Hadley. We
will initially follow his line of reasoning, and later proceed to generalization.

The basic expression for one propagation step contains related polynomials in P .

A(z+1) =
D(P ) + ik∆z

2 N(P )

D(P )− ik∆z
2 N(P )

A(z) =

∑n
i=0 ξiP

i

∑n
i=0 ξ

∗
i P

i
A(z) . (14.28)

Polynomials N(P ) and D(P ) are obtained from the Padè approximant of
√

1 + P/k2
r − 1, and

they in turn determine expanded expression on the right. For example, for type (2, 2) method
we have

ξ0 = 1 , ξ1 =
2 + ikr∆z

4k2
r

, ξ2 =
i∆z

16k3
r

. (14.29)

These polynomials can be factorized, and since it is a general property that ξ0 = 1, the factor-
ization can be put in the form

n∑

i=0

ξiP
i = (1 + anP ) . . . (1 + a2P )(1 + a1P ) . (14.30)

Also, because the two polynomials are mutually complex conjugated, the stepping scheme can
be written with factorized terms “paired” as in

A(z+1) =
(1 + anP ) . . . (1 + a2P )(1 + a1P )

(1 + a∗nP ) . . . (1 + a∗2P )(1 + a∗1P )
A(z) (14.31)

This can be implemented as a series of sub-steps

A(z+i/n) =
(1 + aiP )

(1 + a∗iP )
A(z+(i−1)/n) i = 1, 2, . . . , n. (14.32)

The advantage of this equivalent formulation is that for one transverse dimension each of the
intermediate steps is linear in P , and its linear system matrix is tri-diagonal. Consequently, the
efficient Thomas algorithm can be used.

One inconvenience of the multi-step method is that coefficients ai must be obtained from
roots of a polynomial in which coefficients depend on the concrete choice of the integration step.
There is no general explicit formula to tabulate the general WA-BPM algorithm, and numerical
root-finding must be executed every time integration step size changes.
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14.5 Padè approximation of evolution operators

What the multi-step method does is in fact an approximation of the beam evolution operator
over a distance corresponding to a single step. Coefficient in this rational function are determined
in two approximate steps. First, square root of the Helmholtz operator is replaced, and the
symmetric discretization scheme of second-order accuracy is applied. One can naturally ask if it
is possible to create a numerical evolution operator in a “single step.” One possible approach to
this problem is what we discuss next.

We start from the uni-directional beam propagation equation

∂A

∂z
= ikr

(√
1 + P/k2

r − 1
)
A , P = ∆⊥ + k2

0n
2 − k2

r , (14.33)

and write its solution in the form of an operator exponential

A(z +∆z) = exp
[
ikr∆z(

√
1 + P/k2

r − 1)
]
A(z) . (14.34)

This exponential can be approximated by a rational function of P :

exp
[
ikr∆z(

√
1 + P/k2

r − 1)
]
≈ (1 + cnP ) . . . (1 + c2P )(1 + c1P )

(1 + c∗nP ) . . . (1 + c∗2P )(1 + c∗1P )
. (14.35)

Choosing coefficients in the denominator as complex conjugate of those in the numerator ensures
that this operator is unitary, i.e. it preserves the energy (or power) in the propagating beam.

To obtain equations, or constraints, for ci, one can require that the right hand side is certain
Padè approximant of the exact evolution operator. In general, we expand both sides into Taylor
expansion and then adjust ci such that lower-order terms in P are canceled. It is not possible to
solve the resulting equations analytically. However, it is possible to obtain useful approximation
by looking for some simplified solutions. Solution obtained in this way may not be optimally
accurate given the number of degrees of freedom encompassed by the set of coefficients ci, but
have the advantage that adaptive step control is easier because ci can be expressed as analytic
functions of ∆z. This approach is illustrated in exercise EP20-WA-BPM.

For example, one may parametrize the solution in the following form

exp
[
ikr∆z(

√
1 + P/k2

r − 1)
]
≈ (1 + (a1 + ib1)P )(1 + (a2 + ib2)P )

(1 + (a1 − ib1)P )(1 + (a2 − ib2)P )
, (14.36)

and require that values ai, bi are real. If we further constrain the solution such that all bi are
equal, their common value turns out to be fixed by the first-order term in the expansion. In this
case, b1 = b2 = 1/8, and from the second-order term we find that the a1 +a2 = 1/2. It also turns
out that satisfying the imaginary part of the constraint in lower orders results in satisfying real
part of the constrain in the given order. Order three, in this case, then will fix both a1,2:

a1 =
1

4
+

√
12 + k2

r∆z
2

8
√

3
, a2 =

1

4
−
√

12 + k2
r∆z

2

8
√

3
, b1 = b2 =

1

8
. (14.37)

For this solution the achieved accuracy is such that

exp
[
ikr∆z(

√
1 + P/k2

r − 1)
]

=
(1 + (a1 + ib1)P )(1 + (a2 + ib2)P )

(1 + (a1 − ib1)P )(1 + (a2 − ib2)P )

+
i

128
(kr∆z)(P/k

2
r)4
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+
i[270(kr∆z)− 90i(kr∆z)

2 + 15(kr∆z)
3 + (kr∆z)

5]

23040
(P/k2

r)5

+ O(P 6) . (14.38)

Thus, with only three degrees of freedom, and two sub-steps of C-N type one can construct an
update scheme that goes two orders beyond the paraxial approximation. This schemes models
accurately waves that propagate at 35 degree angle with respect to the axis.

Exercise: Consider approximate evolution operator with b1 = b2 = b3 and free a1, a2, and a3.
By comparing Taylor expansion of the approximant and of the exact expression, obtain system
of equations to determine these coefficients.

‘¡

Exercise: Consider approximate evolution operator with a1 = a2 = a3. Show that such a
solution does not exist.


