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Effective Index Method

Because the computational complexity of a beam-propagation problem increases sharply from
one to two transverse dimensions it would be good to have at least an approximate method
applicable in quasi-one dimensional geometries. Propagation in planar waveguides and also in
some integrated optical devices are examples of situations in which such a simplification could be
possible. In a planar waveguide, the optical field is localized in the dimension normal to the plane
of the structure. It propagates confined to one or more guided modes in this direction, while the
beam is free to diffract in the dimension parallel to the waveguide plane. The effective index
method has been designed for these situations. It makes it possible to eliminate one transverse
dimension based on the assumptions that independently of the dynamics experienced by the
propagating beam, the “vertical” profile of the field is always given by the fundamental mode of
the waveguide.

12.1 Propagation in a planar waveguide

We will first consider beam propagation within a planar waveguide. To fix our frame of reference,
assume that the refractive index n(x) of the whole structure only depends on coordinate x, and
that the beam propagation direction is z. Let us further assume that the geometry and material
properties are such that guided modes confined to the vicinity of x = 0 exist. We will denote
by Em(x) the electric field modal function that corresponds to the fundamental guided mode.
Also let βm(ω) = k2n2

eff be the (frequency dependent) propagation of this mode. Obviously, Em
can be obtained as a solution of a one-dimensional Helmholtz-type problem with appropriate
boundary conditions along material interfaces (see the Exercises below). As a consequence of the
symmetry, guided modes come in two polarizations, namely TE (in which it is the electric field
amplitude that is parallel to the waveguide plane) and TM (in which case the magnetic field
amplitude is parallel to the waveguide). It is not important for our proposes in this section which
is the polarization of the beam under consideration, but we suppose that the polarization does
not mix TE and TM modes.

Since “all” beam propagation equations can be derived from the Helmholtz equation, it will be
our point of departure. Our goal is to eliminate the”vertical” dimension x from the consideration.
For simplicity, let us consider the TE or TM polarization and use scalar notation with appropriate
boundary conditions at material interfaces:

[
∂xx + ∂yy + ∂zz + k2n(x)2

]
E(x, y, z) = 0 . (12.1)

Next, assume that the field can be written as
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194 12 Effective Index Method

E(x, y, z) = Em(x)E(y, z) , (12.2)

and recall that the modal field alone obeys the following eigenvalue equation

[
∂xx + k2n(x)2 − β2

m

]
Em(x) = 0 . (12.3)

Inserting this, together with the ansatz in the Helmholtz, we obtain

[
∂yy + ∂zz + k2n2

eff

]
E(y, z) = 0 . (12.4)

This is nothing but a two-dimensional equation in a “medium” characterized by the effective
refractive index. This simple procedure can be repeated even if the properties of the planar
waveguide depend slowly on the remaining spatial coordinates. The problem is thus reduced by
one spatial dimension, and the resulting reduced Helmholtz equation can serve as a starting point
to derive desired beam propagation equations along the same lines as for three spatial dimensions.
The waveguide properties only enter the resulting BPM equations through the effective index.

Naturally, this method can be straightforwardly generalized for superpositions of several
guided modes. It then results in a system of BPM equations that may be mutually coupled if, for
example, nonlinear interaction mediate the interaction. Such coupling must be weak, otherwise
the underlying assumption of the effective index method would not hold, since the interaction
would “destroy” the very modes on which it is based. This approach is is in fact often utilized
for slab-geometry waveguides filled with gasses.

In brief, the effective index method provides a simple approximation to simulate near-planar
geometries, when the whole machinery of BPM can be applied as if in a two-dimensional world
with an index of refraction replaced by its effective value. An example of an application is simula-
tion of edge-emitting semiconductor lasers, especially the broad-area types. There, effective-index
BPM versions can be utilized for static modal calculations and/or as part of time-resolving sim-
ulators.

Exercise: Derive equations for the fundamental mode of a symmetric slab waveguide.

Solution: Note that this solution presents a simplified treatment aiming solely for the funda-
mental mode, and as such “leaves out” many other solutions.

Let the waveguide core has the width of 2ρ, and the refractive indices are nco and ncl in the
core and cladding, respectively. As usual, let k stands for the vacuum wavenumber corresponding
the given wavelength λ.

It is convenient to choose a frame of reference such that the waveguide is parallel to plane
y, z, and its center is positioned at x = 0. It will be further assumed that propagation is in
direction of z. Then, we are looking for a solution to the Helmholtz equation in the form

E = eiβzE(x).

Due to the symmetry of the problem, and properties of the fundamental mode, we only need
even solutions, such that E(x) = E(−x). This means that considerations can be restricted to
positive values of x.

Inserting the ansatz in into Helmholtz, gives the following equations to be satisfied by the
modal amplitude E(x):

ρ2 d
2E(x)

dx2
+ U2E(x) = 0 , 0 ≤ |x| < ρ
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12.1 Propagation in a planar waveguide 195

ρ2 d
2E(x)

dx2
−W 2E(x) = 0 , ρ ≤ |x| <∞

where the core modal parameter is

U = ρ
√
k2n2

co − β2

and the cladding parameter reads

W = ρ
√
β2 − k2n2

cl

Obviously,

U2 +W 2 = V 2 , V = kρ
√
n2
co − n2

cl

In these expressions, it is β that is our unknown to be determined.
Utilizing the symmetry of the problem further, we can split tho solution into independent TE

and TM polarizations. In the TE polarization, the only nonzero electric field components is Ey.
In the TM polarization, both Ex and Ez are nonzero. This follows from the Maxwell equations
when written explicitly in the component form, but is is also easy to see when one considers the
divergence constraint our modal field must obey. Clearly, if Ey(x) is the only component, and
because it does not depend on y, divergence of such field is zero as it must be. In case of TM
mode, zero divergence implies

∂xEx(x) + iβEz(x) = 0 ,

which can be used to calculate the longitudinal component once Ex(x) is known.
In both of the sub-problems, we use boundary conditions for the electric field at a material

interface to fully determine the thought after solutions. Let us start with the TM solution. The
in-core portion can be written as

Ex =
cos(Ux/ρ)

cos(U)
,

which is normalized such that its value at the interface is one. This clearly satisfied the in-core
equation. The solution in cladding must then look like this

Ex =
n2
co

n2
cl

exp(Wx/ρ)

exp(W )
.

This satisfies the in-cladding equation, and also fulfills the boundary condition that requires that
the normal component of electric induction is continuous, Dx(ρ−) = Dx(ρ+). Now all that is
needed is an additional equation to relate waveguide parameters U and W , and thus “select”
the propagation constant β. This condition is obtained from the divergence constraint. Since Ez
is continuous because it is parallel to the interface, so must be the normal derivative of Ex,

∂xE(ρ−) = ∂xE(ρ+) .

Inserting the above ansatz, this gives the eigenvalue equation

U tanU =
n2
co

n2
cl

W

which restricts allowed values of β.
The procedure is similar for the TE mode. Now

Ey =
cos(Ux/ρ)

cos(U)
, x < ρ
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196 12 Effective Index Method

and

Ex =
exp(Wx/ρ)

exp(W )
x > ρ .

Continuity is satisfied as it should for a field parallel to the material boundary. The remaining
piece is the eigenvalue equation for β. As in the TM case, boundary condition for the normal
derivative must be taken into account. Even without looking at explicit Maxwell equations, one
can tell that also in this case the normal derivative of Ey must be continuous. Indeed, ∂xEy(x)
is coupled to magnetic fields through the Maxwell equations. Since the magnetic components are
continuous across the waveguide interface, so must be ∂xEy(x). Writing this continuity condition
explicitly results in the eigenvalue equation for the propagation constant:

U tanU = W

The eigenvalue equations must be solved numerically. Since they in general have multiple solu-
tions, care must be exercised to identify the one that corresponds to the fundamental mode. The
propagation constant of the fundamental mode is the largest allowed, and results in modal field
that changes slowest w.r.t. transverse coordinate x. In other words it has a small cladding pa-
rameter U . So to look for the numerical solution, one can start from small U and search upward
— the fundamental mode solution will be the first found.

Exercise: Generalize the results of the previous exercise for the case of a planar waveguide with
different refractive indices of substrate and cladding media.

Solution: Only solution for the TE mode is sketched next. This mode has only one non-zero
electric field component. With the waveguide and frame of reference oriented as in the previous
Exercise, it is the Ey polarization component. Since the symmetry with respect to x is lost if the
substrate and cladding refractive indices are different, let us shift the frame of reference such that
the material interface between substrate and core is located at x = 0. The core total thickness
will be denoted by 2a.

The corresponding Helmholtz equation is

d2Ey
dx2

+ k2(ε(x)− n2
eff)Ey = 0 , β = neffk0 .

Let us denote the respective refractive indices of the substrate, core, and cladding by n1, n2 and
n3. Also let

γ1 = k0

√
n2

eff − n2
1 , γ2 = k0

√
n2

2 − n2
eff , γ3 = k0

√
n2

eff − n2
3

be the transverse wavenumbers of the solution in the substrate, core, and cladding, respectively.
The effective index neff will attain a value for which that all three are real-valued. With these
wavenumbers, the ansatz for the solution can be taken in the form

Ey(x) = C1 exp[γ1x] , x < 0 ,

Ey(x) = C2 cos[γ2x+ α] , 0 < x < 2a ,

Ey(x) = C3 exp[−γ3(x− 2a)] , x > 2a .

This ensures that the Helmholtz equation is satisfied, and that for large values of x, positive and
negative, the field decays exponentially as it should for a guided mode.
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There are four so far undetermined constants, which will be fixed by requirement of continuous
field and its derivative w.r.t. x. The corresponding continuity equations imply

C1 = C2 cosα
−γ1C1 = γ2C2 sinα

C2 cos[2γ2a+ α] = C3

−γ2C2 sin[2γ2a+ α] = −γ3C3

Solubility condition determines the value of the effective index neff . To obtain the corresponding
eigenvalue equation, divide the first two equations to get α:

α = − arctan

[
γ1

γ2

]
+m1π ,m1 = 0, 1, 2, . . .

Dividing the remaining two equation leads to

2γ2a = arctan

[
γ3

γ2

]
− α+m2π ,m2 = 0, 1, 2, . . .

Elimination of α gives the thought eigenvalue equation

2γ2a = arctan

[
γ3

γ2

]
+ arctan

[
γ1

γ2

]
+mπ ,m = 0, 1, 2, . . .

As it should, this equation reduces to that derived for the symmetric waveguide when n1 = n3.
For the TM mode, normal derivatives remain continuous, but there is a discontinuity of the

field itself. This only results in a minor modification of the above method and gives

2γ2a = arctan

[
n2

2γ3

n2
3γ2

]
+ arctan

[
n2

2γ1

n2
1γ2

]
+mπ ,m = 0, 1, 2, . . .

as the eigenvalue equation for the TM mode.
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Using BPM techniques to calculate waveguide and
resonator modes

While the main usage of beam propagation techniques is in finding spatial profiles of the optical
field, say throughout volume of an integrated optics device, the method can also be used to
determine modes of waveguides and optical resonators.

One favorable property of the approach described next is that only minimal modifications
or additions above the standard implementation are needed. This is very useful in situations
that call for initial conditions of a BPM problem that are expressed in term of guided modes.
For example, we may require that the initial beam is the fundamental mode of a waveguide that
serves as an input port into a device to be simulated. Such an initial condition can be conveniently
calculated by the same program, but running along imaginary propagation distance. It is also
convenient that this initial solution is obtained on the same grid that is used for subsequent
BPM simulation.

The simple approach described in the following sections has the same mathematical justifica-
tion for both waveguides and resonators. It draws on the simplest possible method to determine
first leading eigenvalue(s) of a matrix of moderate sizes, sometimes called “power method.” The
name reflects that the calculation is essentially equivalent to evaluating the action of a high
power An of the matrix A in question to an “arbitrary” initial vector.

It should be noted that there exist dedicated numerical algorithms to calculate eigenvalues
of large matrices, and they would work even in cases when the methods outlined in what follows
fail to converge.

13.1 Finding maximal eigenvalues of a matrix

In many physical problems, symmetric or self-adjoined matrices describe the system under inves-
tigation. Hamiltonias in quantum mechanics and operators that arise in the beam propagation
framework are good examples. Such matrices have a system of eigenvectors that can serve as
a basis to span the whole physical space of possible solutions, and their eigenvalues are real.
Suppose all eigenvalues and eigenvectors of a given matrix A are known. For simplicity we will
assume that at least a few largest eigenvalues are non-degenerate. The matrix then can be writ-
ten as a weighted sum of projection operators that project on the subspaces corresponding to
this matrix eigenvalues:

A =
∑

l

βl|v(l)〉〈v(l)| , (13.1)

where |v(l)〉 is the eigenvector corresponding to the l-th eigenvalue. In the vector component form
this reads
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Aij =
∑

l

βlv
(l)
i v̄

(l)
j . (13.2)

Because the eigenvectors corresponding to different eigenvalues are orthogonal,

A2
ik =

∑

j

∑

l

βlv
(l)
i v̄

(l)
j

∑

u

βuv
(u)
j v̄

(u)
k =

∑

l,u

βlβuv
(l)
i δluv̄

(u)
k =

∑

l

β2
l v

(l)
i v̄

(l)
k , (13.3)

and higher powers of this matrix can be expressed simply as

Anij =
∑

l

βnl v
(l)
i v̄

(l)
j . (13.4)

Now imagine that the matrix acts n times on an “arbitrary” vector xi. The resulting vector yi,

yi = Anij =
∑

l

βnl v
(l)
i

∑

j

v̄
(l)
j xj , (13.5)

is then a superposition of contributions (here they are distinguished by index l) that is dominated
by that of the maximal eigenvalue. If one normalizes y, and repeats application of An on the
normalized vector,

y ← y/|y| , y ← Any , (13.6)

the relative contribution of the maximal eigenvalue becomes even more dominant. The power
method consists in repeating the above multiply/normalize operations until the result converges
to what is the eigenvector of A corresponding to its maximal eigenvalue, y → vmax.

This procedure not only identifies the eigenvector vmax, but also its corresponding eigenvalue.
This is because the normalization factor that must be applied to obtain new normalized vector
y in the later stages of the iteration procedure converges to this eigenvalue.

Moreover, knowing the leading eigenvalue and its eigenvector, it is in principle possible to
obtain the next-to-leading pair as well. This is achieved by the same “power procedure,” but at
each step one subtracts from the current vector its projection onto the (normalized) maximal
eigenvector vmax:

y ← y − vmax(vmax.y) , y ← y/|y| , y ← Ay , (13.7)

Because the contribution of the vector corresponding to the maximal eigenvalue is eliminated
at each step, the second leading eigenvalue dominates, and this procedure thus leads to its
eigenvector. Having determined the first two eigenvectors, one can determine the third in a
similar way, by ensuring at each step that the running vector is perpendicular to both known
eigenvectors. In principle this method can be extended to find all eigenvalues. In practice, first
few can be obtained for moderately sized matrices.

An important question is how fast the power method converges. From the above formulas it
should be evident that it is the ratio of the maximal to next-to-maximal eigenvalue that controls
the convergence rate in the “final” approach to the solution. In the BPM context, the method
is usually applied to determine the fundamental mode of a waveguide or of a resonator cavity,
so it is important how close to the fundamental is the next mode. In case of a waveguide, it
is often the eigenvalue difference βTE − βTM between TE and TM polarizations that gives an
inverse length-scale over which an initial guess-vector must be propagated. The convergence can
be substantially accelerated by a good choice of the initial condition — by starting from a field
polarized along the dominant direction, one can promote convergence to the desired polarization
mode.
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13.2 Propagation in imaginary distance

13.2.1 Propagation constants as matrix eigenvalues

On the abstract level, beam-propagation method evaluates an action of an operator exponential
applied to an initial beam profile. In the numerical representation, the operator in question must
be discretized and represented with a finite number of degrees of freedom, so it is in the end no
more than a matrix. Thus we can write, without much loss of generality, that what a BPM does
boils down to

E(z) = exp[izA] E(z = 0) , (13.8)

where A is a matrix that represent the right-hand-size of the BPM propagation equation, and
E stands for the vector array that represents the solution (which may include more than one
vector components of the electric field). In this notation, the imaginary unit is pulled out of the
propagator operators in order to separate the real matrix, and make it evident that when the
propagation distance z is made imaginary, what we are left with is a “real” exponential.

Suppose that the the initial condition was selected such that it was a superposition of eigen-
modes of the waveguide under consideration:

E(z = 0) =
∑

l

alv
(l) . (13.9)

Vectors v(l) are also eigenvectors of A, and the propagation therefore results in

E(z) = exp[izA]E(z = 0) =
∑

l

al exp[izA]v(l) =
∑

l

al exp[izβ(l)]v(l) . (13.10)

Now we change the propagation distance and “rotate” it into a purely imaginary direction

z̃ ← −iz . (13.11)

This will give us real-valued exponentials

E(z) = exp[z̃A]E(z = 0) =
∑

l

al exp[z̃A]v(l) =
∑

l

al exp[z̃β(l)]v(l) . (13.12)

This is the same situation as we discussed in the previous section. With the increasing imaginary
distance z̃, the exponential factor separate more and more while the one corresponding to the
maximal propagation constant dominates. This leads us to the “power method” based procedure

E ← E/|E| , E ← exp[zA]E , (13.13)

which will converge to the fundamental mode, since that is the one with the maximal propagation
constant.

It is worthwhile to note that by restricting the propagation to purely imaginary direction,
beam propagation equations often simplify in the sense that real and imaginary parts of the
beam amplitudes do not mix anymore (this would not be true if the material exhibited gain or
loss, of course). Thus if one starts with a real valued transverse polarization components of the
electric field, the imaginary part does not require to be propagated at all. It may be tempting
to take advantage of this, but it is hardly worth of the effort needed to modify the code, the
danger of introducing errors in the program, and the loss of generality in the implementation.
Our aim in this section is to design an “inexpensive” method that only requires next-to-trivial
modification of a given BPM program.
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13.2.2 Boundary conditions

A couple of notes on boundary conditions is on order. Because the fundamental mode is going
to dominate the numerical evolution along the imaginary distance axis, boundary conditions do
not play a role as essential as in the free beam propagation simulation. Even if PEC boundary
condition apply at the edge of the computational domain that is sufficiently distant from the
waveguide core, the method will converge to an approximate fundamental mode. However, con-
vergence study should be performed on the result to estimate the accuracy of the modal shape
and its propagation constant. This can be done simply by comparing results from a few runs
with different domain sizes, and thus with different distances between the core and artificial PEC
boundary. What one should look for, is enough room in the simulated cladding to accommodate
the exponentially decaying tail(s) of the mode.

The imaginary-distance beam-propagation method with the perfectly matched layer bound-
ary conditions often yields unstable results for the guided-mode analysis of an optical waveguide.
It is therefore useful to include in the simulator a switch that can toggle between PEC and PML.
Since PEC condition is normally applied as part of the PML implementation, this does not rep-
resent a major change in the code.

The issue of perfectly matched layer and stability in modal calculations can be traced back
to the fact that the fundamental mode wave is essentially evanescent in the vicinity of the
domain boundary. Thus, there is no phase variation, only decay in the amplitude. This fact
can be conveniently used to design yet another version of “stretched coordinate” system (J.
Shibayama), this time in real (as opposed to complex-values) space. It boils down to mapping
the real axis on a compressed version of itself and thus easier accommodation the extent of the
evanescent tail. However, this approach requires a significant change in how we have coded the
boundary layer, and we will not discuss this in detail.

Periodic boundary conditions may sometimes be also useful. While their usage goes a little bit
against the spirit of this section, namely using a based BPM program with minimal modifications
to calculate modes, periodic BCs are not too difficult to implement, so we want to comment on
them at least briefly. One example of a situation which calls for application of PBCs is evaluation
of modes in index-guiding photonic crystal fibers. Their core can be considered as placed in an
infinite cladding that itself has a periodic structure. Rather than breaking this periodicity (or
simulating a domain size that can encompass the whole fiber cladding, which usually means
several “rows” of holes), it is more advantageous to apply periodic boundary conditions on the
computational domain. It is however very important to achieve that the domain size and the
period of the cladding “lattice” do agree accurately.

13.2.3 Variations of imaginary distance propagation

Sometimes it is required that a mode and its propagation constant are identified that do not
represent the fundamental mode. The extension of the power iteration described above which
requires elimination of the leading eigenvectors may not be practical if the sought after mode is
”buried” deep in the spectrum of all possible propagation modes.

XXX K. Saitoh XXX

13.3 Fox and Li method for optical resonators

Modes of optical resonators can be often calculated using the same mathematical approach as that
of the previous section. If one simply follows what “nature does” in the beam propagation within
an optical resonator, the solution will naturally tend to the most sustainable configuration of the
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electromagnetic field. This is normally achieved by transforming the beam profile as it exists at
mirrors and at other elements that may be present in the cavity. A series of such transformation
then represents one round-trip through the cavity. In general light can be amplified or partially
lost during such propagation. Continuing in these round-trips will impose different losses or gain
on different configurations of the field and gradually “emphasize” the one with the smallest loss
or largest gain.

Mathematically, the transformation of the beam profile during a single cavity round-trip can
be viewed as an action of a “cavity propagator” operator. For a given discrete representation of
the field, this operator is a finite-dimensional matrix, and multiple round-trips correspond to its
powers. Hence there is a similarity with the power iteration method discussed in the previous
sections, and

The original method of Fox and Li employs the Fresnel-Kirchhoff diffraction integral to “prop-
agate” the profile of the optical beam from one optical element to the next. We are interested in
a modification of this approach such that a BPM technique is employed instead of the diffraction
integral.

It is fair to say that such an “upgrade” does not make the method more robust. On the
contrary, there are practical computational issues that must be reckon with. However, in some
situations one may prefer to use a BPM-based cavity propagator, for example when the cavity
calculation is a part of a more complex propagation problem. This section therefore briefly
discussed a couple of additions that, when added on top of the free-space propagation techniques
developed in the introductory sections, will make BPM technique suitable for calculation of
modes in simple optical resonators.

We will only consider spectral methods as discussed in Section XXX. The first modification
that may be needed has to do with the maximal distance to which a spectral method can
propagate a beam without some of the radiation reaching computational domain boundaries.
This issue can be dealt with by adding artificial “apertures” to the propagation, arguing that if
light reaches an aperture it would surely not return to resonator later. Naturally, in this we face
the problem that spectral methods are not too flexible in dealing with the boundary conditions.
One has to resort to a version of the poor mans boundary, and employ a soft-edge aperture that
absorbs light that gets too close to the domain boundary. The softness of the aperture is meant
to eliminate as much as possible unwanted (and unphysical) reflections. Sufficiently large part of
the domain must be sacrificed for the boundary layer in order to avoid leakage of light through
the periodic boundary conditions inherent to spectral BPM.

Note that artificial apertures may need to be employed also if real apertures are present in the
propagation problem. Any hard edge aperture will introduce waves with spatial wavenumbers
spanning the whole numerically available bandwidth. Some of them may contribute the the
resonator mode, but some may leave the cavity which means that they have to be absorbed in
our artificial apertures.

The next ingredient we discuss here is transition of the beam through ideal thin lenses and/or
its reflection from mirrors. These are modeled as corresponding “phase masks” that are applied
to the propagating beam. Such a phase mask corresponds to the relative phase shift experienced
by different parts of the beam wavefront. It should be emphasized that this view is only valid for
continuous wave situation. Should the BPM be used as a part of time-domain problem solution
one has to be more careful. If a very short duration pulse has to be modeled, and reflected off a
mirror with a not too long focal distance, the phase-front curvature alone is not sufficient. In fact,
a simple phase-screen model of a mirror results in an artificial pulse prolongation in the focus.
For a few-femtosecond pulse, focal distance on the order of one meter and a beam diameter of
few millimeters, the additional duration can easily reach ten femtoseconds. If one needs to deal
with a situation like that, there is simple way around; Instead of application of a phase-screen
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to shape the phase front, one applies a position dependent temporal shift. For a parabolic mirror
this temporal shift is parabolic in radius, and for a long-duration pulse it exactly corresponds to
the simple phase-screen model of the mirror.


