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1

Maxwell’s equations: Numerical simulation perspective

In an ideal world equiped with arbitrarily powerful computing machines, most of the computer-
based modeling in optical sciences would be done directly with Maxwell‘s equations because
they represent the first-principle definition of the system we aim to model and understand.
Computer simulations of Maxwell equations have been indeed very successful in many research
and application fields, and the development of the underlying algorithms continues to attract
a lot of interest. However, there are also many situations in which such simulations become
utterly impractical, and will remain so for the foreseeable future. That is one of the reasons
the Beam Propagation Methods (BPM) have been developed to describe propagation of light
without implementation of Maxwell‘s equations in their full detail. In the BPM spirit the first
principle equations are reduced to some other, more manageable form. Naturally, a price must be
paid for this simplification in the form of various approximations which in turn will determine in
what situations one can apply one particular method or the other... It is the aim of this course
to look at these issues in detail.

1.1 Maxwell‘s equations and the Beam Propagation Method

In this Section we take a look at the well-known Maxwell system of equations. We aim to
identify its different parts, and how they are realized in a practical computational model. The
mathematical form of these equation alone suggests to view this system as consisting of three
distinct parts, namely, (a) initial conditions, (b) propagation equations, and (c) material, or
medium models which describe the interaction between light and matter.

The divergence equations, or magnetic and electric Gauss laws, can be viewed as initial
conditions that must be satisfied by all physically admissible electromagnetic field configurations:

∇ ·B = 0
∇ ·D = ρ . (1.1)

Ampere‘s and Faraday‘s laws

∇×H = +∂tD + J
∇×E = −∂tB , (1.2)

or curl equations as they are sometimes referred to, underline the properties of electromagnetic
waves. For this reason we call this pair and/or various equations that follows from it the propa-
gation equations.
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2 1 Maxwell’s equations: Numerical simulation perspective

The macroscopic Maxwell system is closed with the constitutive relations that relate field
intensities with the induced magnetic and electric polarizations and the current density:

D = ε0εE + P
B = µ0H + M

∂tρ+∇ · J = 0 . (1.3)

The continuity equation is added here because the charge conservation is necessary to keep the
divergence and curl equations mutually compatible.

A) initial conditions
The divergence equations

∇ ·B = 0
∇ ·D = ρ , (1.4)

can be considered as initial conditions, or rather constraints, because once they are satisfied
initially, they will remain fulfilled forever. While this is a well known fact, it is important to
remember that it is the electric charge conservation that is responsible for these divergence
constraints. For the sake of completeness, let us review the argument. Take the divergence of the
electric curl equation

∇ · ∇ ×E = −∇ · ∂tB (1.5)

to get (because any divergence of a curl is identically zero)

∂t(∇ ·B) = 0 (1.6)

which in effect states that the divergence of the magnetic field does not change with time. So if
it vanished at the initial time t = 0, then it remains equal to zero later.

Similarly, taking the divergence of the magnetic curl equation, one gets

∇ · ∇ ×H = ∇ · (∂tD + J) , (1.7)

hence
∂t∇ ·D +∇ · J = 0 , (1.8)

and using the charge continuity equation to eliminate the divergence of the current density we
have

∂t(∇ ·D− ρ) = 0 . (1.9)

So as long as the electric displacement field divergence was initially equal to the local charge
density it will remain so at all times.

Because the divergence equations can be obtained from the curl equations (with the help of
charge conservation), one sometimes refers to the former and latter as “auxiliary” and “funda-
mental,” respectively. For our purposes, we note that numerical methods, too, should reflect the
nature of the divergence equations as initially imposed and preserved constraints. In other words,
one must first specify an acceptable initial condition for the electromagnetic fields which satisfy
the divergence constrain, but then a properly designed numerical algorithm should automatically
preserve this constraint. We will see later how this is achieved both in direct Maxwell simulator
programs, and in the Beam Propagation Methods.

B) propagation equations
The first-order differential system
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1.1 Maxwell‘s equations and the Beam Propagation Method 3

∇×H = +∂tD + J
∇×E = −∂tB (1.10)

leads to wave equations, which we intuitively associate with light propagation, hence the desig-
nation as propagation equations. Simulators that calculate the evolution of electromagnetic field
directly as an initial value problem are based on these equations. Such direct Maxwell solvers,
as they are often called, in fact tend to implement these equation very much in the form shown
here. On the other hand, many versions of the Beam and Pulse Propagation Equations take the
wave equation for their starting derivation point, effectively replacing a first-order initial value
problem by a second-order equation, only to reduce it subsequently into a first-order initial value
problem again (albeit with the time and propagation coordinates exchanging their respective
roles). This sometimes brings mathematical difficulties, and results in rather curious situations.
For example, one can obtain certain exact propagation equation by following a series of steps
involving nontrivial approximations. So the question arises about what the approximations mean
and if they are really necessary. In situations like that it is advantageous to go back to the above
curl equations... In other words, even if many BPM methods do not work with Ampere‘s and
Faraday‘s laws directly, these laws must be sometimes invoked to ensure the consistent treatment.

Above, we have intentionally kept both kinds of the electric fields, the electric induction D,
and the electric intensity E. This is to emphasize that these equations can not be solved in
isolation: We need to specify the connection between the electric intensity and electric induction
in order to proceed. And that is where we have to decide about how the material medium is
going to be modeled.

C) material, or medium models
In this course, we restrict our attention to nonmagnetic materials. This means that B = µ0H

and the medium magnetization vanishes M = 0. Such a treatment is appropriate for a great
many optically important media. In such a case the remaining material-related equations are

D = ε0εE + P({E(t)})
J = J({E(t)}) (1.11)

The constitutive relations, as the above equations are often called, provide the needed link
between field inductions and field intensities. While the later can be understood as the “driving”
field, the former represent the corresponding response of the medium.

One particular aspect of the medium response equations is that they in general depend on
time, at least through their dependence on the history of the electric field. In the BPM context
this means that we can not simulate an arbitrary medium. Rather, the BPM is strongly restricted
to those materials and special regimes for which this temporal dependence becomes trivial, i.e.
simply following the time evolution of the electric field. We will discuss possible options and
some examples in the next section.

When designing a simulator, the structure of the Maxwell system as described above should
inform how the simulation engine is organized. A robust design will separate the propagation
equations and light-matter interaction models as much as possible. In particular, the propagation
part of the simulation engine need not and should not “know” about any details pertaining to
the medium model implementation. Rather, a suitable interface may hide the later from the
propagator in a form of a “canned” subroutine. Such a subroutine provides evaluation of the
medium polarization or induced current, and “does not care” how its output is used in the
propagator. It is fair to say that some performance penalty may occurs because of the lost
optimization opportunity, but in practice the robustness of the code, and easier maintenance is
far more important.
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4 1 Maxwell’s equations: Numerical simulation perspective

In the following Section, wee briefly discuss the spirit of BPM approach with respect to the
propagation equations, and touch upon different material models compatible with the method.

1.1.1 Propagation equations in the BPM context

The basic idea behind the beam propagation method is a transformation and/or reduction of
the propagation equations. When possible, it significantly reduces the necessary computational
effort. The following are the characteristic features of the method:

• In the Beam Propagation Method, the physical fields, namely the electric and magnetic
intensity, are not the native variables. They are replaced by complex-valued amplitudes, also
called envelopes. For example, an electric field can be represented in the form of a product

E = E(z, x, y, t)eik0z−iω0t , (1.12)

where the exponential stands for the carrier wave, and E is the envelope. The main purpose
of the envelope is that it varies slowly in space, and thus allows discretization on a relatively
coarse grid. This is possible because the variation in space and in time of the carrier wave is
factored out when the reference wavenumber k0 and the reference angular frequency ω0 are
chosen properly. The remaining dependence on z and t in E is then “slow,” which means that
the function changes little on the scale of a wavelength (z) or of the optical cycle time (t).

• Beam propagation approach completely disregards the temporal dimension of a problem. In
other words, it is only applicable in situations in which the light continuously propagates, in
the form of a beam, from its source, through the device of interest, and away to infinity. The
only time-dependence implicitly taken into account is the periodic oscillation of the carrier
optical wave. So, BPM constitutes a family of methods restricted to optical fields with single
frequency or wavelength. However, note that the BPM techniques we will learn are useful
in a much much broader context. In particular, they can also be utilized in time-dependent
problems involving light pulses.

• Beam propagation takes advantage of the single predominant direction of wave propagation. It
eliminates “other possibilities,” and this results in a first-order differential evolution equation.
One could say that “half” of the full set of solutions to Maxwell‘s equations is removed from
the solution space considered by the BPM. In practice, the reduction is much more significant
than that; only a very small subspace of all possible solutions can be captured by a beam
propagation algorithm.

• Propagation is formulated as an Initial Value Problem (IVP). The initial condition is given
in terms of a beam profile specified at the “source,” the later being, for example, an output
of a laser, or an input facet of an integrated optical device. Unlike the initial value problem
formulated for the full electromagnetic field, the evolution variable is not time but a spatial
coordinate (usually z) along the axis of a beam.

Example:
The simplest possible beam evolution equation has the following generic form:

∂zE(z, x, y) =
i

2k0
(∂xx + ∂yy)E(z, x, y) . (1.13)

It describes the complex envelope amplitude E in two transverse dimensions, spanned by variables
x, y. The initial value problem consists in specifying the beam profile at an “initial” z-location
which is customary taken z = 0, so that E(z = 0, x, y) is given, and the task is to calculate the
beam profile for all z > 0. It is always implicitly assumed that the initial configuration of the
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1.1 Maxwell‘s equations and the Beam Propagation Method 5

magnetic field is coordinated with the electric field such that the propagation occurs only in the
forward direction.

The only term on the right hand side of the above equation originates in the wave equation,
and physically corresponds to light diffraction in a homogeneous, loss-less medium. The wave-
length λ, together with the refractive index n determine the only parameter that appears in this
equation, k0 = 2πn/λ.

Readers should recognize the differential operator acting on the field envelope on the right
hand side as the two-dimensional Laplacian operator. We will derive several types of beam
propagation equation in this course, and will see that the Laplacian is a characteristic feature in
almost all of them.

BPM vs Maxwell — What we gain:
It is the capability to solve, numerically, problems which are out of reach for other methods,

such as direct Maxwell solvers. By specializing the algorithm to a less general situation, one
gains a chance to tailor the method and make it much more efficient. If a single property has to
be identified which gives the BPM advantage over Maxwell simulators, it is the elimination of
the underlying optical carrier wave - only wave amplitudes enter the BPM evolution equations.
These can be accurately represented on coarse grids, which in turn allow to take much longer
integration steps...

BPM vs Maxwell — What we loose:
In scientific computation, it is equally important to realize what a method is not, or what it

can‘t do as to know what it is, or what it can do well. We tend to perceive as a drawback, or a
limitation only those issues which are in some sense ’close’ to what the method is designed for.
These are usually problems at the boundary of applicability of a given method. For a practitioner,
it is vitally important to know these boundaries, and it is very useful for a student to actively
explore those boundaries (and that is an important part of what we do in this course!). In this
respect, the following issues deserve attention when learning the BPM techniques:

• BPM is not applicable to situations without a well-defined propagation direction. Even a
bi-directional propagation poses a difficult scenario, which requires significant generalization
of the approach.

• Wide-angle propagation regimes are difficult to model. This is not only a consequence of the
fact that resolving rays propagating at large angles requires a denser grid to represent the
wave-field. It is more fundamentally related to the way propagation equations are derived.
Consequently, Wide-Angle BPM (WA-BPM) represent an active area of current research.

• Not all BPM variants work for structures with high refractive index contrasts. Again, this
limitation is encoded into BPM algorithms at the derivation stage, and can not be overcome
by a more refined way to solve the equations. Methods suitable for structures with strong
spatial index changes and material interfaces are related to the wide-angle methods.

• It is not possible to recognize that the temporal dimension may be important in a given
situation solely from the behavior of a BPM simulation. For example, a long-duration optical
pulse may be well described by BPM means initially, but fast temporal modulations can
develop due to interactions. BPM can not capture such a regime. The important consequence
is that validity of all BPM results is merely conditional. In principle, they can not be verified
within BPM.

1.1.2 Divergence equations in the BPM context

In most formulations, the numerical evolution of beam amplitude along the propagation di-
rection is done for either electric or magnetic field, and most of the time for transverse field
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6 1 Maxwell’s equations: Numerical simulation perspective

components only. This is intimately related to the divergence equations being incorporated dur-
ing the derivation of the beam evolution equations. Roughly speaking, the divergence equation
is used to eliminate an “unwanted” field component.

In general, the divergence equations, namely

∇ ·B = 0
∇ ·D = 0 (1.14)

represent a constraint on:

A) Construction of the initial condition,
B) Wave propagation properties as represented by numerics,

but in the BPM setting, one may not immediately realize the impact of these constraints in ei-
ther. If, say, the z component of the electric field is eliminated in the derivation, the propagation
equations can be restricted to transverse field components. True, sometimes we write a comple-
mentary propagation equation also for the z (or longitudinal) component, and it happens to be
coupled to the other two equations for x, y polarizations through a source term, but in many
cases there is no need to solve it. However, this does not mean that BPM approach can eliminate
the divergence constraints for free. In fact, the price is paid in the implementation of the propa-
gation equations. We will see in the discussion of the wide-angle beam propagation methods that
the inclusion of the divergence significantly complicates the otherwise simple structure of beam
propagation equations. Not only it complicates the evaluation of the “propagation operator”
and its discrete representation, but it introduces coupling between different polarizations. As a
consequence, the size of the problem becomes twice as large, roughly speaking.

1.1.3 Medium models in the BPM context

Linear medium properties

In a simulation restricted to a monochromatic optical field with a “single” frequency, the medium
is characterized solely by its refractive index given for that frequency. It is the phase refractive
index which enters in the simulation, of course. Because other frequencies “do not exist,” variation
of the refractive index with the wavelength is inconsequential. However, it is important to keep
in mind that what is assumed to justify applicability of the BPM approach is in reality argued
the other way around, namely that the spectral content (i.e. the width of the spectrum) of
the simulated optical waveform must be much narrower than the scale on which the index of
refraction changes with the variation of the frequency. In other words, the chromatic dispersion
of the medium must be completely negligible over the narrow spectral with of the field.

An important aspect of the methods studied in this course is their applicability beyond the
strict BPM regime of single-color field. It will be useful to view any beam propagation method
as a possible building block for a time-dependent problem. For example, one can visualize an
optical pulse, even one with an ultra-short duration, as consisting of a dense series of time-slices.
If we neglect all interactions which make these time-slices to communicate, then each can be
simulated as in the BPM. In fact, many implementation of optical pulse simulators are build
as a family of coupled BPM solvers. Better yet, a time-dependent problem of pulse propagation
can be viewed in the spectral representation, i.e. after taking the Fourier transform in the time
dimension (independently for each transverse point x, y, of course) — this gives us the spectrum
E(ω, x, y) in which each angular frequency ω represents and independent BPM problem.

It is therefore useful to keep in mind even in the BPM context that materials exhibit chro-
matic dispersion, and that the losses suffered by the propagating light in general depend on the
wavelength or, equivalently, on frequency.
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1.1 Maxwell‘s equations and the Beam Propagation Method 7

An example of a physical effect that causes an exchange of information between the slices is
ionization: If the intensity is sufficiently high, the central portion of the pulse will generate free
electrons, for example through the multiphoton or tunneling ionization mechanisms. These free
electrons in turn will act as a de-focusing medium and affect all temporal slices that follow. In
this way, the propagation of the slices that arrive at a given observation point later is affected
by the behavior of the slices in the leading edge of the pulse. BPM alone can not handle such
situations.

Another example which invalidates application of BPM is the chromatic dispersion which
manifests itself, at least in the crudest possible approximation, as a s second derivative along the
temporal dimension of the pulse. Mathematically it means that evolution of a given time-slice
depends on that of its “neighbors,” and BPM can not be directly applied.

Nonlinear medium properties

Sometimes, an application calls for a nonlinear propagation regime to be simulated. The question
then is what kind of a nonlinear medium is compatible with the underlying assumptions in the
beam propagation method? What constitutes an “admissible” type of medium?

Let us start with the case that most often appears in the BPM literature, and that is the
instantaneous optical Kerr effect for which the local modification of the refractive index follows
the light intensity

∆n(r) = n2I(r) (1.15)

with n2 representing the so-called nonlinear index. The important term here is instantaneous.
This means that the medium is able to respond to the changing light intensity on a fast time-
scale, in fact on a time-scale faster than the optical cycle period. The electronic response usually
has this property. However, it is only the tightly bound electrons that are capable to produce
optical response this fast. It is not true for the free electrons in dilute plasma that very often
accompany high intensity easily reachable by many modern lasers.

However, the optical Kerr effect may not necessarily be of the electronic origin. A classic
example is the nonlinearity of polar molecules. A polar molecule exhibits a higher polarizibility
along its “long” axis. Therefore, if we could order the normally chaotically oriented molecules,
they, as an ensemble, would exhibit an increased index of refraction of the light polarized along
the prevailing orientation of the molecular axis. But this ordering can be actually achieved
automatically because the molecules themselves tend to align with the direction of the electric
field if it is sufficiently strong. The degree of the order that arises is normally small, and can
be taken as proportional to the intensity, so the refractive index change is proportional to the
intensity as for the instantaneous Kerr effect. However, it takes time for a molecule to rotate,
and the response therefore can not be extremely fast. Instead of ∆n(r) = n2I(r) the local index
will depend on the history of I(t) at a given point:

∆n(t) ≈
∫ ∞

0

R(τ)I(t− τ)dτ (1.16)

It is to be emphasized that there is no notion of history in the BPM context. This implies that any
medium that exhibits memory, or equivalently dispersion, is not admissible. Plasma generation
by multiphoton ioization, or the delayed Kerr effect as described above serve as examples.

However, the view adopted in this course is that the BPM techniques are developed as
potential building blocks for situations that are more general than a strictly continuous-wave
regime. In particular, it will be shown how a general, time-dependent and nonlinear problem
can be cast exactly in a form that can utilize an “arbitrary” BPM technique to solve a beam
propagation sub-problem coupled to the nonlinear interactions with nonlinear dispersive media.
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8 1 Maxwell’s equations: Numerical simulation perspective

1.2 Maxwell detour: Illustration of numerical issues

In many situations the Beam Propagation Method is an inevitable replacement for the full
Maxwell‘s equations. The purpose of this Section is to support this claim with facts, and look
closer at the roots of practical limitations in numerical modeling of optical-frequency electro-
magnetic waves and their propagation. We also take a brief guided tour through a typical imple-
mentation of a Maxwell simulator. While Maxwell simulators are not our main objective in this
course, their conceptual simplicity offers a very intuitive “play-field” to illustrate important ele-
ments of the theory that underlines the Beam Propagation Method. This section is also meant
to provide an opportunity to make the first contact with important numerical issues such as
accuracy, stability and dispersion. These are notions of fundamental importance for numerical
solution of partial differential equations in general.

1.2.1 Three sources of difficulties in large-scale Maxwell simulations

It is certainly true that Maxwell’s equations can be efficiently solved by numerical solvers and
applied to many areas of computational electromagnetics. However, they are rather ill suited for
computer simulations of nonlinear phenomena in optical pulses which propagate for significant
distances. This Section explains the origins of this limited utility in the general field of nonlinear
optics (thus, not all arguments will apply to contexts in which the BPM is typically used).
Roughly speaking there are three areas where problems show up when one attempts to apply a
numerical Maxwell solver to a large problem:

1. Grid resolutions imply memory and computational time requirements that are only ac-
ceptable for sufficiently small problems.

2. Numerical dispersion is very strong. For example, even the “discretized computational
vacuum” is more dispersive than real water!

3. Realistic medium response models require lots of additional memory and computational
time. They also suffer from numerical dispersion problems.

In what follows we briefly review the general properties of direct Maxwell solvers. We will
restrict our attention to the so-called Finite Difference Time-Domain (FDTD) solvers as the
most common representatives of direct Maxwell solution methods. However, the discussed issues
are relevant for Maxwell’s equations simulators in general.

Grid resolutions and memory requirements

First, let us consider the memory requirements. A direct solver works over a fixed spatial domain,
and evolves the grid-based representation of the electric and magnetic fields in discrete time
steps. As a rule of thumb, for accurate simulations one typically needs about 30 grid points per
wavelength in space. About the same number of steps is needed in time per single wave-cycle.
Such a resolution may be practically achievable for radio- or micro-waves and small simulated
volumes (measured in units of cubic wavelengths). But in the optics context, the resolution
requirements translate into sub-micrometer spatial, and sub-femtosecond temporal resolutions.
If an optical pulse beam is only one centimeter wide, and propagates over a laboratory-scale
distance of only a few meters, a single snapshot of the field will require of the order of 1020

field-variables to store in the memory. Moreover, for a mere meter of propagation, each of these
variables must be updated through tens of millions of integration steps! Taken that a typical
computer memory and performance increased about three orders of magnitude over a decade, it
becomes clear that a brute-force approach in the optics context is not going to be feasible in any
foreseeable future.
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1.2 Maxwell detour: Illustration of numerical issues 9

Numerical dispersion

The second property which practically disqualifies direct solvers for the simulation of long-
distance nonlinear wave propagation is the numerical dispersion. Similar to the natural light
waves, the phase and group velocigties of the “numerical waves” depend on their frequency -
they exhibit the so-called numerical dispersion. It is a general property of each and every nu-
merical method which mimics wave propagation, that the true wave properties are “warped,” or
modified through the discrete nature of the simulation. More precisely, the real relation between
the wave’s propagation velocity and its frequency, which is usually called the dispersion relation,
is replaced by an artificial one which is often drastically different. As a rule, a discrete numerical
method can mimic the correct dispersion properties of waves only for small frequencies. Conse-
quently, a very small fraction of the bandwidth which is available to the numerics can actually
be utilized. In case of the typical discretization scheme for the Maxwell’s equations, this artificial
deformation of the natural relation between the wave velocity and its frequency is very restrict-
ing. This is because the numerical dispersion depends on the grid resolution, and is in general
extremely strong from the point of view of nonlinear optics: For example, a “numerical vacuum”
simulated by a direct solver will typically exhibit the chromatic dispersion orders of magnitude
larger than water or other transparent condensed media. Surely, these unwanted effects decrease
in magnitude as we increase the grid resolution, but to get them fully under control would require
enormous grid resolution. Because in the computational nonlinear optics it is absolutely crucial
to capture the chromatic dispersion very accurately this problem is extremely serious.

Realistic medium models

Last but not least, it turns out that in direct solvers it is quite difficult to implement models of
nonlinear and dispersive media. The origin of the problem is that dispersion and often also the
nonlinearity is connected to some kind of memory in the medium. This does not mesh well with
the fact that a direct solver scheme is usually designed to store only a single temporal snapshot
of the field configuration. If the reaction of the medium at any given point depends on the
history of the local field, we must keep sufficient information about this history available to the
numerical solver. This can easily multiply the memory needs. The problem gets even worse once
we consider that the frequency-dependent properties of the model media are also plagued by the
numerical dispersion. The artificial deformation of the actual numerical medium response can be
significantly different from the targeted frequency-dependent properties for the same reason we
pointed out for the linear wave propagation.

To summarize, it is clear that the direct numerical solution of Maxwell’s equations is not
feasible for many nonlinear and long-distance propagation optical phenomena. The Beam Prop-
agation Method, which is in fact a whole family of approaches, has been developed mainly to
overcome the difficulty of propagation over long (in comparison with the light wavelength) dis-
tances.
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10 1 Maxwell’s equations: Numerical simulation perspective

1.2.2 Direct Maxwell solver example - FDTD Yee scheme

The following subsection is devoted to one of the most useful and frequently applied algorithms
for direct numerical solution of Maxwell equations. We say ”direct” to emphasize that nothing
is done to the equations themselves such as their transformation into a system that would be
perhaps easier to solve. Thus, the equations we analyze in this section are not those of a typical
BPM method. Nevertheless, it will be a useful warm-up exercise, with take-away lessons to
be applied later in the course. Our detour from the BPM territory into the Maxwell realm is
motivated and informed by the following:

• when studying a given method, it is important to understand “competitor techniques;”
• working with a Maxwell solver allows to appreciate frequently occuring numerical issues in a

relatively simple setting;
• in particular, we will get a first taste of how Finite-Difference (FD) techniques work, and . . .
• we work out an example of numerical dispersion and stability calculations, which are crucial

ingredients in all BPM methods we study in this course

Finite-Difference Time-Domain (FTDT) Maxwell solvers represent electromagnetic fields on
discrete computational grids. There are many choices for how the grids can be organized, or how
the discrete sampling points for different fields and their vectorial components are distributed in
space.

One big family of solvers utilizes the so-called dual grids for electric and magnetic fields.
What are dual grids or lattices? Roughly speaking they have the following property: Assume one
lattice is given and let us visualize a square lattice for simplicity. Its dual grid is also a square
lattice but it is shifted diagonally such that where the original (or primal) grid has an edge (i.e.
a connector of two vertices), the dual has a facet (which is a side of a cell).

Square lattice (dark vertices), and its dual (gray ver-
tices). Note that gray vertices surround each of the
dark ones and vice-versa. In a 2D Maxwell solver,
vertical and horizontal components of electric fields
could be located at the corresponding edges of the
dark grid, while the magnetic fields could be placed
on the gray nodes of the dual grid.

Between the duals, any given vertex of the original grid is surrounded by neighbors that belong
to the dual grid, which is a desirable property: If one places the electric field sampling points at
vertices or, alternatively, along the edges of one grid, the magnetic fields will occupy the dual
lattice. This reflects the very property of Maxwell equations in which the time-derivatives of the
electric field components are expressed as function of the magnetic fields and vice versa. The
reason we may want to do this is because of the way we approximate partial derivatives. This
will become clearer soon.

Exercise: Research a proper definition of dual lattices. What is the dual grid for a triangular
lattice? What is it for a cubic lattice?
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1.2 Maxwell detour: Illustration of numerical issues 11

The placement of the electric and magnetic fields on mutually dual lattices is a characteristic
feature of the Yee scheme. In three dimensions it is illustrated in the following figure:

Elementary cell of a cubic lattice support-
ing the computational domain for a direct
Maxwell solver using the Yee scheme. Each
cell carries the electric field vector compo-
nents placed along its edges. The magnetic
vector components are located in the cen-
ters of the cell’s facets.

The figure shows six vector components per single cell of the computational “box”. Each of the
components are thus sampled in space in the same way but at mutually shifted locations. Indeed,
the locations of each vector component constitute six interwoven cubic grids (considering equal
lattice constants ∆x,∆y,∆z). As a result, each component of the electric field is surrounded by
four samples of the magnetic field and the directions of the latter are perpendicular to the electric
field. The situation is completely “symmetric” from the point of view of the magnetic field. You
can see this in the above figure by extending the magnetic arrows into lines — you should see
how the lines you get form facets of a dual grid and that the electric field samples are placed
in the centers of these facets. This facilitates an efficient, symmetric in space, finite-difference
approximation of the curl operations needed in the Maxwell equations.

One facet of the cubic grid used in Yee
method. The magnetic field component
placed in its center is surrounded by the
perpendicular components of the electric
field. It turns out that these are exactly the
quantities that are coupled in the Ampere‘s
law: a temporal derivative of the magnetic
field in the facet center is connected to the
curl of the electric field.

The figure above illustrates how the grid arangement facilitates discrete approximation of the
curl operations that appear in the Maxwell‘s equations. The x-component of ∇ × E can be
approximated in terms of the electric field quantities around the perimeter of the facet shown in
the figure as

(∇×E)x ≈
1

∆y
(Ez(i, j + 1, k)− Ez(i, j, k))− 1

∆z
(Ey(i, j, k + 1)− Ey(i, j, k)) (1.17)

This estimate is used in the equation for the temporal derivative of the field variable in the
center, namely Hx(i, j, k). The situation is completely analogous for other components and also
for the electric field.

The arrangement of computational grids described here is called staggered. What we have
just illustrated is staggering in space. But the Yee method staggers the electric and magnetic
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12 1 Maxwell’s equations: Numerical simulation perspective

grids also in time. Of course, time can be viewed as just another dimension, very much like the
spatial dimensions. We will look at this closer first in the simple, one-dimensional case.

In a space with a single spatial dimension (i.e. a line) there are only two electromagnetic
field components, one electric and one magnetic, both perpendicular to the spatial direction and
to each other. An alternative and more physical way to visualize a 1-D Maxwell system is to
consider a 3-D configuration of the electromagnetic field, which all quantities depend on only
one spatial variable which we choose to be x.

Exercise: Starting from the Maxwell equations, reduce the system to one spatial dimension,
e.g. by removing all spatial derivatives with respect to y and z. Consider only radiation fields
with no free charges or currents. Also show that E and cB could be natural “units” to represent
the electric and magnetic components. Note that in an electromagnetic plane wave proagating
in free space the electric and magnetic field amplitudes are related by cB = E. So the choice is
not only convenient but also quite physical.

If one chooses suitable units then the one-dimensional Maxwell equations reduce to

∂tE(x, t) = +∂xH(x, t) , ∂tH(x, t) = −∂xE(x, t) (1.18)

Next we decide on how these equations are approximated through finite difference derivative
expressions. Recall that in general the first-order derivative of a function f(x) at a point x = x0

can be approximated as

f ′(x0) ≈ f(x0 + dx/2)− f(x0 − dx/2)

dx
. (1.19)

This expression is second-order accurate. It simply means that the error decreases as, or is
proportional to (dx)2. Note that the similar expression

f ′(x0) ≈ f(x0 + dx)− f(x0)

dx
. (1.20)

is only first-order accurate. The crucial difference between the two is that the first one is sym-
metric with respect to the point at which the derivative is sought.

Exercise: Write a Matlab or Mathematica program to demonstrate the order of accuracy for
both of the above finite-difference formulas. Choose a function for which the exact answer can be
computed and plot the discretization error of the derivative as a function of dx. Plot the results
on log scale, compare the resulting slopes, then relate them to the order of accuracy.

The lesson here is that if we could ensure that our finite difference approximations for all
partial derivatives in the problem can be obtained from symmetric differences, we gain an order
of accuracy for free (i.e. we get the second order instead of just first). The grids staggered in space
take care of this for the spatial derivatives. However, we also need temporal derivatives and that
is why we will stagger our grids in time, too. Of course, the numerical algorithm does not keep in
the computer memory samples of electromagnetic field for all discrete times simulated. Instead,
it is sufficient to store one time slice of each the magnetic and the electric fields, provided that
they are ’spaced’ in time by one half of the temporal integration step. This is the main idea
behind the success of the Yee method. The one-dimensional version of the Yee grid including
four temporal slices is shown in the following diagram:
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1.2 Maxwell detour: Illustration of numerical issues 13

One-dimensional Maxwell
system discretization on
staggered grids. Note that
white and black symbols
and their corresponding field
samples live on mutually
dual lattices in space-time
(x, t).

Now we can return to equations (1.18) and design their discrete approximation. First we need to
choose a point with respect to which derivatives will be calculated. Since we aim to end up with
symmetric differences, this point should be located in between the field samples. Assume that all
field samples in the above picture are known with the exception of the last one (top row) which
stores the electric field at time t+ dt. What we can use at this point in time is the previous two
rows with the magnetic field at time t+ dt/2 and the “old” electric field at time t. The temporal
derivative of the electric field can be approximated as

∂tE(x, t+ dt/2) ≈ E(x, t+ dt)− E(x, t)

dt
(1.21)

which is second-order accurate in dt, and could be applied to all x where the grid points are
populated by the electric fields. It is importnant to keep in mind that the second-order accuracy
in this formula is only reached for the point in between the two discrete values. This point is
therefore at time t+dt/2 and this is good since it is exactly the time for which we have previously
calculated the magnetic field. The spatial derivative of the magnetic field can be evaluated for
the same point as:

+∂xH(x, t+ dt/2) ≈ H(x+ dx/2, t+ dt/2)−H(x− dx/2, t+ dt/2)

dx
(1.22)

These finite-difference derivative approximations can be used to replace the partial derivatives
in the first of the two equations in (1.18), to obtain:

E(x, t+ dt)− E(x, t)

dt
=
H(x+ dx/2, t+ dt/2)−H(x− dx/2, t+ dt/2)

dx
, (1.23)

and from this follows the update scheme for the electric field:

E(x, t+ dt) = E(x, t) +
dt

dx
[H(x+ dx/2, t+ dt/2)−H(x− dx/2, t+ dt/2)] . (1.24)

Note that the the values of x and t run only over the discrete points in space and time where
the sampled fields exist.

The discretization of the second Maxwell equation (1.18) proceeds along similar lines. This
time we think of an update that takes the magnetic field from the time, say, t − dt/2 to the
time t+dt/2. In the process, electric fields at t are utilized to express the spatial derivative. The
counterpart of (1.23) becomes

H(x− dx/2, t+ dt/2)−H(x− dx/2, t− dt/2)

dt
=
E(x− dx, t)− E(x, t)

dx
(1.25)

and the update scheme for the magnetic field reads
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H(x− dx/2, t+ dt/2) = H(x− dx/2, t− dt/2) +
dt

dx
[E(x− dx, t)− E(x, t)] (1.26)

Several points are worthwhile to note in the equations for the Yee method update (1.24),(1.26).
First, the method is kind of a leap-frog scheme when calculations of new magnetic field samples
take alternate turns with the evaluations of electric fields. At all times, the algorithm must keep
in the memory one time slice for the magnetic and one time-slice for the electric field. They each
correspond to integration times spaced apart by ∆t/2. Thus, different types of field samples never
share the same location in space and in time. This is something to keep in mind when calculating
physical observables, for example energy, or when preparing initial condition for simulations.

Exercise: Consider a one-dimensional Maxwell system and an initial condition given by E(x, t =
0) = E0(x) and H(x,−∆t/2) = 0, with E0(x) being an arbitrary smooth function.

a) Explain why the subsequent numerical propagation will generate two wave-packets with the
spatial shape of E0(x)/2 propagating in opposite directions.

b) Explain how would you create an initial condition that represents a pulsed waveform that
propagates in the positive x-direction, with no waves propagating in the negative x-direction.

Another very important point about the numerical representation of the Maxwell system is
the appearance of the ratio ∆t/∆x between the integration step in time and the spacing of the
computation grid. Here we have used dimensionless units, but it should be obvious that if we
were just a little more careful keeping track of all constants and units, the relevant dimensionless
ratio would end up to be c∆t/∆x.

Imagine that this number is large because of how we have chosen our numerical grid resolution
and the integration time step. It would mean that at each update the change in either magnetic
or electric field would be large. Hence it is natural to expect that such a numerical algorithm
would not be very accurate. Worse, it would not even survive for very long, because of what we
call numerical instability. This is the topic we will investigate next.

1.2.3 Dispersion relation as a solvability condition

In preparation for the following analysis of numerical dispersion, let us briefly recall the deriva-
tion of plane-wave solution properties to Maxwell equations in a homogeneous non-magnetic
medium. The point to be emphasized is that the physical dispersion relation, a characteristics
of the medium, can be viewed as a solvability condition for a homogeneous linear system of
equations. The unknowns in this system are the wave-amplitudes of electric and magnetic fields.
The determinant of the system must vanish in order for the non-trivial solution to exist and the
dispersion relation ensures just that. The same will become evident for discrete numerical wave
solutions in the section that follows.

To derive these conditions, consider an infinite, homogeneous, and isotropic medium, charac-
terized by a frequency-dependent permittivity ε(ω), and a magnetic permeability equal to that
of vacuum. In such a medium, plane waves are Maxwell solutions that comprise representation of
translation symmetry in space and time. Mathematics tells us that this fact alone ensures that
such solutions must take the following special form

E = Ea exp[ik · r − iωt]
H = Ha exp[ik · r − iωt]
. . . (1.27)
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1.2 Maxwell detour: Illustration of numerical issues 15

At this point, the parameters ω and k are to be specified such that the above can satisfy the
Maxwell equations. In other words, these equations are our ansatz. The next question is what
are admissible values for k and ω such that we can find nontrivial solution for Ea,Ha? Inserting
the ansatz into

∇×H = +ε0ε∂tE
∇×E = −µ0∂tH , (1.28)

one obtains a homogeneous linear system for the wave amplitudes

k ×Ha = −ε0εωEa

k ×Ea = +µ0ωHa (1.29)

This is a system with zero right-hand-side (keep in mind that both Ea and Ha are vector
“unknowns”). As such, it must have a zero determinant to have a non-trivial solution. It is
straightforward to set up the corresponding 6×6 matrix, and evaluate its determinant. However,
an easier way to calculate the solvability condition is by elimination of one of the unknown
amplitudes, for example Ea. One can do this by applying k× from left onto the first row and
then combinig the two resulting equations to remove Ea:

kk ·Ha +

[
ω2ε

c2
− k2

]
Ha = 0 . (1.30)

The first term must vanish as a consequence of the magnetic divergence equation. The second
gives the dispersion relation

ω2ε(ω)

c2
− k2 = 0 (1.31)

as a solvability condition for amplitudes of the field solutions. Of course, should one eliminate
the magnetic amplitude first, the corresponding solvability condition turns out to be the same.
The reason for this is because the elimination approach is equivalent to the one based on the
determinant of the system.

In what follows, the above will be referred to as the physical, or continuum dispersion rela-
tion for plane wave solutions of Maxwell equations. All numerical solutions will have their own
dispersion relations. Although they will not only reflect the physical model (i.e. Maxwell) but
also the properties of the concrete numerical scheme to produce the wave solutions. It will be
important to obtain the numerical dispersion relation and compare it to that above as a means
to judge the accuracy and other important numerical properties.

1.2.4 Numerical dispersion relation as a solvability condition

Next we demonstrate a procedure that we will repeat, at least in broad strokes, time and again
when we develop various beam-propagation schemes. What we aim to do next is to understand
two issues related to the given numerical algorithm. Namely, accuracy and stability.

The notion of accuracy is quite intuitive. In more quantitative terms it means how the error
(i.e. the gap between exact and numerical solutions) depends on the numerical parameters ∆t and
∆x. What we usually look for is the determination of the so-called accuracy order; For example
the Yee scheme described above is second order accurate both in space and in time. This simply
means that errors “suffered” by the method during a single-step update are proportional to, or
scale as ∆x2 (or ∆t2).

As for the numerical stability, it may seem a little artificial notion at first. However, suffice
a few encounters with it in real numerical work, and even beginners will become painfully aware
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of its importance. It is said that a numerical scheme is stable if local errors do not accumulate
and rather remain bounded as the algorithm continues to evolve the solution. If the scheme
happens to be unstable then sooner or later (indeed very soon in practice!) errors start to grow
exponentially. This error amplification is so fast that all one may have a chance to notice is that
the solution suddenly turns into numerical junk and often exhibiting arbitrarily large values.

Notion that is closely related to accuracy and stability is numerical dispersion. Dispersion
in real waves is behavior dependent on their wavelength or frequency, and this is similar in
numerically calculated waves. However, in numerical waves it comes in two flavors. First, it
originates in the physical model and is in that sense real. The second source is purely numerical.
It depends on the grid resolution, integration step and the type of the numerical method.

Numerical dispersion can have quite serious consequences. It can even determine whether a
given method is applicable under certain conditions. For example, numerical dispersion in direct
Maxwell solvers is so strong that their applications in nonlinear optics that require accurate
capture of phase-matching relations is utterly impractical.

One effective method to investigate accuracy, stability and numerical dispersion is the so-
called plane-wave approach. This is applicable to wave-propagation problems in homogeneous
media. We will first collect our Yee-scheme update equations in the following form

E(x, t)− E(x, t− dt)
dt

=
+H(x+ dx/2, t− dt/2)−H(x− dx/2, t− dt/2)

dx

H(x− dx/2, t/2)−H(x− dx/2, t− dt/2)

dt
=
−E(x, t) + E(x− dx, t)

dx
, (1.32)

and will seek their solution in the form of plane waves. Plane waves are basis for representation
of the translational symmetry in space and time, which means that if a solution is a plane-wave
initially, it will remain to be a plane-wave for all subsequent times. This is true for real-life waves
as well as for the numerical ones.

An important issue to keep in mind is the linearity of the above equations; A particular
solution may be considered to be a part of the total solution. So the solutions investigated next
can be viewed as a perturbations on the background of the complete physical solution. In other
words, they can represent an “error”. Our task is then to understand how this error will propagate
and if it will stay bounded or will grow.

The above equations are translationally invariant, as one should expect, since they were de-
rived for a homogeneous one-dimensional medium. To verify this symmetry note that the update
for a given spatial and temporal grid-point only depends on the values in the neighborhood. The
dependence is characterized by constant coefficients. This is why one can postulate a plane-wave
solution as an initial condition for a numerical wave, and parametrize it by two parameters,
namely wavenumber and angular frequency. The wavenumber k controls the wavelength in space
regardless of how it is chosen. The translational invariance of the algorithm guarantees that the
wavelength remains preserved upon numerical propagation. Similarly, if the solution was har-
monic with an angular frequency ω up to a certain point in time, it must remain as such also
later. This is the manifestation of the invariance with respect to the shift in time (which in turn
is related to the energy conservation ).

Thus, we seek solutions in a form that reflects the translation symmetry in space and time.
These are plane waves for the electric and magnetic fields with amplitudes E0 and H0, respec-
tively:

E = E0 exp [−iωt+ ikx] H = H0 exp [−iωt+ ikx] . (1.33)
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The amplitudes are unknown constants for now, and we need to find their values. Inserting this
ansatz in the above numerical update equations, one obtains

E0 − E0e
+iωdt

dt
=

+H0e
+iωdt/2+ikdx/2 −H0e

+iωdt/2−ikdx/2

dx

H0e
−iωdt/2−ikdx/2 −H0e

+iωdt/2−ikdx/2

dt
=
−E0 + E0e

−ikdx

dx
. (1.34)

This is nothing but a homogeneous system of linear equations for the amplitudes E0, H0. For
this linear homogeneous system to have a non-zero solution the determinant of the corresponding
matrix must be equal to zero, and the latter evaluates to:

sin

(
ωdt

2

)2

=

(
dt

dx

)2

sin

(
kdx

2

)2

. (1.35)

This is a condition which selects compatible pairs of ω, k. It is a numerical dispersion relation
for plane-wave solutions on the grid. It carries information about the accuracy and stability of
the Yee scheme, which will be analyzed next.

Stability
Suppose there is a perturbation of the solution in a form of a plane-wave with some given

wavenumber. The question is whether this perturbation will diminish, or if it will grow. The
dispersion relation determines the angular frequency that the numerical evolution algorithm will
generate spontaneously. It is obtained from the above equation as

ω(k) = ± 2

∆t
arcsin

[
c∆t

∆x
sin(

k∆x

2
)

]
. (1.36)

This will give a real value for ω(k) only if the coefficient c∆t/∆x is less or equal to one. Indeed,
if it was not, ω would acquire imaginary part for a sufficiently short wavelength λ = 2π/k. The
shortest wavelength representable on a discrete grid is equal to 2∆x — at least for wavelengths
in its vicinity the above solutions would be imaginary. An angular frequency with a negative
imaginary part would generate a numerical wave with an exponentially increasing amplitude.
Numerical noise alone would be sufficient to “seed” or start this to develop and soon this pertur-
bation would take over the whole solution. This is the essence of numerical instability. Therefore
in order to have a stable numerical scheme the ratio c∆t/∆x, also called the Courant ratio, must
be smaller than one. It is to be emphasized that this threshold for stability depends on the di-
mension of the space in which waves propagate. Also, stability alone does not guarantee accuracy,
it is rather a necessary condition for having a solution at all. An important point that beginning
practitioners must appreciate is that manifestations of instability can not be avoided even if the
initial solution does not contain the offending waves that tend to grow without bounds. If the
numerical scheme is unstable it will degrade the solution sooner or later.

Accuracy
One useful way to assess the accuracy of the numerical scheme is to compare the numerical dis-

persion to that of the continuum physical model. In the case discussed here, i.e. a one-dimensional
electromagnetic wave propagation in vacuum, the continuum dispersion relation reads

ω(k) = ±ck . (1.37)
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This has to be compared with Eq.(1.36) which is a discrete version that reflects the fact that
the wave propagates through a discrete grid in discrete time-steps. At a first sight the two
counterparts may look rather different. However, taking the continuum limit means that the
wavelength 2π/k must be large in comparison with the grid spacing ∆x. Then, the right hand
side of the dispersion relation becomes

ω(k) = ck +
k3

24
(c3∆t2 − c∆x2) + . . . , (1.38)

so the continuum limit is properly reproduced by the Yee scheme, as the first term is the vacuum
dispersion and the rest vanishes when the wavelength is large. The correction term gives a simple
way to estimate how big the deviation between the behavior of the real and numerical waves is.
It also shows how these deviations depend on the choice of the grid resolution and the integration
step.

Yet another way to measure accuracy of numerical wave propagation algorithm is to evaluate
the phase and group velocities and compare them to those of the continuum system. Recall
that the phase and group velocities are related to the dispersion relation expressed through the
wave-number as a function of angular frequency as follows:

(vp)
−1 =

k(ω)

ω
, (vg)

−1 =
∂k(ω)

∂ω
. (1.39)

Exercise: Express the dispersion relation of the one-dimensional Maxwell system as k(ω) = . . .
a) Derive analytic expressions for the phase and group velocities.
b) Evaluate and compare these with the continuum limit(s) as functions of the grid spacing for
several choices of Courant ratios.

It is left to the reader as an exercise to explore how these quantities compare to their contin-
uum limit counterparts in the simple one-dimensional case. The rest of this section will concen-
trate on the three-dimensional Maxwell solver algorithm based on the Yee scheme and will also
briefly review results for stability and accuracy. An additional notion we need to look into is the
numerical anisotropy.

1.2.5 3D FDTD Yee scheme: numerical wave properties

There are many textbooks detailing the derivation of the Yee scheme equations for the three-
dimensional Maxwell solver. The following equations represent one complete integration step:

H
n+1/2
x(i,j,k) = H

n−1/2
x(i,j,k) −

∆t

µ

(
Enz(i,j+1,k) − Enz(i,j,k)

∆y
−
Eny(i,j,k+1) − Eny(i,j,k)

∆z

)

H
n+1/2
y(i,j,k) = H

n−1/2
y(i,j,k) −

∆t

µ

(
Enz(i,j,k+1) − Enz(i,j,k)

∆z
−
Eny(i+1,j,k) − Eny(i,j,k)

∆x

)

H
n+1/2
z(i,j,k) = H

n−1/2
z(i,j,k) −

∆t

µ

(
Enz(i+1,j,k) − Enz(i,j,k)

∆x
−
Eny(i,j+1,k) − Eny(i,j,k)

∆y

)
(1.40)

En+1
x(i,j,k) =

1− σ∆t
2ε

1 + σ∆t
2ε

Enx(i,j,k) +
∆t
ε

1 + σ∆t
2ε


H

n+1/2
z(i,j,k) −H

n+1/2
z(i,j−1,k)

∆y
−
H
n+1/2
y(i,j,k) −H

n+1/2
y(i,j,k+1)

∆z
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En+1
y(i,j,k) =

1− σ∆t
2ε

1 + σ∆t
2ε

Eny(i,j,k) +
∆t
ε

1 + σ∆t
2ε


H

n+1/2
x(i,j,k) −H

n+1/2
x(i,j,k−1)

∆z
−
H
n+1/2
z(i,j,k) −H

n+1/2
z(i−1,j,k)

∆x




En+1
z(i,j,k) =

1− σ∆t
2ε

1 + σ∆t
2ε

Enz(i,j,k) +
∆t
ε

1 + σ∆t
2ε


H

n+1/2
x(i,j,k) −H

n+1/2
x(i−1,j,k)

∆x
−
H
n+1/2
z(i,j,k) −H

n+1/2
z(i,j−1,k)

∆y




This update-scheme is written in a general form that allows for different grid resolutions
∆x,∆y,∆z in the three space dimensions. As shown, the scheme also accounts for a medium
characterized by the dielectric permittivity ε, electric conductivity σ, and magnetic permeability
µ. The triplets in the brackets are array indices that indicate the cell within a cubic computational
box. Whilst the upper index labels the time integration step.

These update-scheme equations are the basis from which one can deduce all properties of
numerical waves. The method is essentially the same as one we have used in the one dimensional
case.

Numerical dispersion
The three-dimensional counterpart of the (vacuum) dispersion formula

sin

(
ω∆t

2

)2

=

(
c∆t

∆x

)2

sin

(
kx∆x

2

)2

+

(
c∆t

∆y

)2

sin

(
ky∆y

2

)2

+

(
c∆t

∆z

)2

sin

(
kz∆z

2

)2

(1.41)

says that each spatial dimension adds the same term (to the dispersion relation) as the one we
have derived for the one-dimensional case.

Exercise: Starting from the three-dimensional Yee scheme equations, derive the dispersion rela-
tion (1.41). Hint: This is a lengthy calculation and you may want to use some computer algebra
system. The procedure is the same as in one dimension, at least in principle. The dispersion
relation can be obtained as a condition for vanishing determinant of the linear system for vector
amplitudes of the electric and magnetic field. To set up this system, start with an ansatz for a
vector plane wave characterized by an angular frequency ω and a wave vector k = (kx, ky, kz).
The unknowns of the linear system will be the six amplitudes Ex, Ey, Ez, Hx, Hy, Hz.

The dispersion relation now implies that the condition for stability reads

∆t <
1

c
√

1
∆x2 + 1

∆y2 + 1
∆z2

. (1.42)

Thus, in three dimensions, the constraint on the temporal integration step is somewhat steeper
that in one dimension. It also depends on different resolutions in the three spatial dimensions
with the finest affecting the stability criterion most.

Exercise: Starting from the three-dimensional dispersion relation for the Yee scheme, derive
the stability condition. Hint: is is sufficient to consider the “most extreme” waves which become
unstable first.

Next, let us look briefly at the accuracy of the Yee scheme in three dimensions. The figure
below shows how the numerical phase and group velocity depends on the grid resolution. The
latter is expressed as number of grid points that span a length equal to the wavelength of a plane
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wave. The two curves are calculated for propagation in numerical vacuum and the continuum
limit values are both equal to c. It is a common rule of thumb that a well-resolved Maxwell
simulation would use some thirty points per wavelength. Note that the picture shows that even
for a much better resolution there remains quite a gap between the continuum limits and what
the numerical solver will produce in terms of wave velocities.

Numerical phase and group velocity of
waves simulated by the Yee scheme. In the
ideal case both of these curves would be
constant, equal to one. The difference be-
tween the group and phase velocity indi-
cates that that the “simulated vacuum” ac-
quires strong chromatic dispersion.

Naturally, it is a matter of context whether or not the accuracy demonstrated in this il-
lustration is sufficient. One particular application in which the artificial numerical dispersion
introduced by the Yee-scheme based direct Maxwell solver is unacceptable is nonlinear optics.
This is especially true in situations in which phase matching plays a role, such as in harmonic
radiation or in four-wave mixing. In such regimes, the outcome of nonlinear interactions depends
sensitively on the mutual phase relations between interacting waves. If the solver modifies them
by “only” a fraction of a percent the simulated result may be far from a reliable model of reality.

Numerical anisotropy Having seen that the numerical wave velocity depends so sensitively
on the grid resolution, it should not come as a big surprise that the computational grid acts
as an anisotropic medium. Indeed, the effective discreetness of the lattice the wave experiences
is different along the grid axis and along the diagonals, for example. This is illustrated in the
following figure:

Finite grid-resolution manifests as an artifi-
cial anisotropic medium. Wave-packet prop-
agation velocity depends on the direction of
propagation and in particular on its orienta-
tion with respect to the axes of the compu-
tational box. The variation in the group ve-
locity depends on both the integration step
(in the case shown ∆t/∆x = 1/2) and on
the wavelength of the wave (here labeled as
N , the number of grid points spanning one
wavelength).

The numerical anisotropy adds to the issue of numerical dispersion. In general, grid resolution
refinement is a straightforward way to control both accuracy and dispersion. However, the above



M
.K
O
LE
SI
K
O
PT
I5
47
/5
83

1.3 Practice track: Numerical properties of FD Maxwell solvers 21

examples should make it clear that the price to pay for a sufficient accuracy in a phase matching
regime may be too high for practical applications. One example of a situation where this is the
case is nonlinear interactions in ultra-short laser pulses. It is left to the Reader as an exercise to
obtain a qualitative estimate of the computational time and memory resources required for such
simulations.

1.3 Practice track: Numerical properties of FD Maxwell solvers

g

1.3.1 Initial conditions, stability, and numerical dispersion

Purpose: This exercise illustrates numerical issues relevant for construction of initial conditions
of Maxwell equations. Utilizing a simple Maxwell solver, dispersion and stability properties of
numerical waves are examined and compared with theoretical predictions.

Take-away message:

• Unlike in BPM, initial conditions in Maxwell solvers require that the magnetic and electric
fields are properly “orchestrated.”

• Proper relation between the initial values of the electric and magnetic fields is determined
by the direction of propagation of the initial waveform, and is influenced by the dispersion
properties of the algorithm.

• The integration step of the numerical algorithm must be sufficiently small in order to avoid
instability.

• Carefully designed numerical experiment is required to verify the theoretical numerical dis-
persion relation.

Tasks:

A) Implement one-dimensional Maxwell solver based on the Yee scheme. Code the discretized
equation derived in the class. To keep the program as concise as possible, assume periodic bound-
ary conditions (PBC). PBC mean that a point at the right-most end of the computational domain
can be identified with the very first point at the left end of the domain:

E[N − 1] = E[0] , H[N − 1] = H[0] .

Here, N stands for the number of points in the one-dimensional computational “box,” and c-like
array indexing is assumed (i.e. the very first array index is zero). Choose the unit of length equal
to the grid spacing, and the speed of light equal to one. With such a choice of units, the only
free parameter characterizing the method is the Courant ratio ∆t/∆x. For your initial runs, set
the Courant ratio less or equal to 0.5.

To further simplify the programming, you can take advantage of the fact that the update of
both, H and E field can be done in-place, utilizing the same array holders for the current and
new field snapshots. However, keep in mind that this is not possible in higher dimensions and
when simulated waves interact with the propagation medium.

B) Construct the initial condition in a form of a pulse characterized by a given wavelength.
Give the pulse a Gaussian-shaped envelope. To ensure that the spectrum of the waveform is
narrow, the envelope must encompass at least several wavelengths. Assume that the electric field
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component is given by the formula which you will implement. The question is how one needs to
choose the magnetic field in order to initialize the solution such that the pulse propagates to the
right?

C) Execute a short simulation and inspect the outcome carefully to see if the solution indeed
propagates in the desired direction. Zoom in so that small features are not missed. Most likely,
you will find that while the bulk of the pulse does propagate in one direction, there is a low-
intensity “ghost” propagating in the opposite direction.
a) Explain the origin of the ghost
b) Discuss various options to achieve truly clean, one-way propagating initial conditions.

D) Verify that the simulation method becomes unstable for the Courant ratio larger or equal
to one.

E) Design a method, and collect simulation data to verify the theoretic numerical dispersion
relation derived in the class. Briefly describe the method of your choice, and discuss specifi-
cally what potential numerical artifacts could affect the results. Make sure that your measured
numerical dispersion data span the whole region of wavelengths admissible for the discrete grid.

The following figure illustrates two cases of dispersion, and the accuracy you should achieve:

Figure 1. When an initial condition has a sharply-
defined spatial wavenumber, the numerical integra-
tion algorithm produces a solution with a specific
temporal angular frequency. This figure illustrates
the dispersion relation which ties the spatial and tem-
poral frequencies. Curves show the expected relation
derived from the update scheme, and symbols are
results of numerical simulations. Data for different
Courant ratios indicate that the dispersion relation
depends on ∆t/∆x. The continuum limit corresponds
to a straight line with unit slope.

Solution

Task A)

The implementation of the one-dimensional Maxwell integration step is straightforward. Here
we use C-language to illustrate that the core of the procedure is nothing but a direct realization of
the scheme derived in the class. A complete instructor’s solution can be viewed in OneDMaxwell.c

Listing 1.1. 1D-Maxwell integration step implementation

1 void OneStep ( double ∗E, double ∗H, double dtoverdx , i n t n) {
2 i n t i ;
3
4 f o r ( i =0; i<n−1; i++) E[ i ] = E[ i ] + dtoverdx ∗(H[ i +1] − H[ i ] ) ;
5 E[ n−1] = E [ 0 ] ;
6
7 f o r ( i =1; i<n ; i++) H[ i ] = H[ i ] + dtoverdx ∗(E[ i ] − E[ i −1 ] ) ;
8 H[ 0 ] = H[ n−1] ;
9 }

Periodic boundary conditions are realized in lines 5 and 8 for electric and magnetic fields,
respectively. The way they are implemented here requires one additional grid point where the
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field sample is a copy “slaved” to the value on the other side of the grid. An alternative method
would utilize indexing which wraps the indices that “reach” beyond the array end like this:

H[i+ 1]→ H[(i+ 1)%N ]

This is computationally more expensive than the addition of an additional boundary grid point.
Note that there seems to be a slight asymmetry in the way electric and magnetic field arrays

are indexed. This depends on the chosen correspondence between the index and the location in
space it represents. In the present case H[i] is located on the left from E[i].

Task B)

In the beam propagation method, the initial condition is simply a specification of the electric
(vector) field for z = 0. It is assumed tacitly that the corresponding values of the magnetic field
are orchestrated such that the beam solution propagates in the forward direction. In most BPM
versions, magnetic fields are never calculated.

In the case of direct Maxwell solver, the issue of the initial condition is slightly more subtle. It
is up to the programmer to ensure that the whole (initial) electromagnetic field has desired prop-
erties. Often it is the requirement that the initial field represents a pulsed waveform propagating
in the direction of positive z-axis.

The principle that guides the construction of the initial condition is that the relation between
the vector amplitudes of the electric and magnetic fields in the numerical solution should mimic
that in real electromagnetic plane waves. Because only one-dimensional propagation is considered
in this section, the relation simplifies. If one chooses the computational units such that the
numerical field samples represent E → Ey and H → cBz for propagation along x, then H = ±E
corresponds to the amplitude relation in a left- and right propagating harmonic wave. The choice
of the sign selects the propagation direction along the positive or negative x-axis direction.

So it seems that if one chooses H(x, t = 0) = ±E(x, t = 0) to define the magnetic field in
the initial condition the resulting wavepacket should propagate either forward or backward as
a whole. However, one must keep in mind that the numerical grid points for the two fields are
staggered. This is reflected in the following example:
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Listing 1.2. Initial condition, take one

1 f o r ( i =0; i<N; i++) {
2 /∗
3 We aim to o r c h e s t r a t e the magnetic f i e l d with the e l e c t r i c
4 such that the i n i t i a l waveform w i l l propagate to the r i g h t
5 Plane−wave p r o p e r t i e s d i c t a t e the oppos i t e s i g n s between
6 the e l e c t r i c f i e l d and magnetic f i e l d ampl itudes
7 ∗/
8
9 double x0 = 0 . 5∗ ( ( double ) N) ;

10 double xe = ( double ) i ;
11
12 // same−index magnetic l o c a t i o n s h i f t e d by h a l f o f l a t t i c e spac ing :
13 double xh = xe − 0 . 5 ;
14
15 EF[ i ] = +I n i t i a l E l e c t r i c F i e l d ( xe , x0 ) ;
16 HF[ i ] = − I n i t i a l E l e c t r i c F i e l d (xh , x0 ) ;
17
18 // . . . which i s almost working . . . but not a c cu r a t e l y enough . . .
19 }

Here, x0 only marks the location where we want to place the center of the wavepacket. xe is
a holder for the coordinate (derived from the array index i) corresponding to the spatial location
of an electric field sample. xh plays the same role for the magnetic field sample. In line 10, it is
shifted left by one half of the spatial grid spacing, and subsequently the same function is used
to generate both electric and magnetic field values. The result is that the spatial profile of the
electric and magnetic field is the same, as is expected for a one-way propagating electromagnetic
pulse (in vacuum).

Inaccurate implementation of the one-way propagat-
ing initial condition in a one-dimensional Maxwell
solver. The scale of the figure cuts the peaks of the
waveform in the initial (black) and propagated (red)
pulses, in order to emphasize the weak pulse in the
left portion of this figure. This is a wavepacket that
propagates in the opposite direction than the bulk
of the pulse. It is an unwanted artifact that can not
be removed by refining either grid resolution or the
integration step.

Task C)

The figure above illustrates that this implementation of the initial does not work very well.
It appears that the initial pulse splits into two identically shaped waveforms that propagate in
the opposite directions. An undesired weak pulse is “ejected” from the initial condition. It is
left to the reader to verify that it can not be eliminated by better grid resolution or by refining
the integration step, because its amplitude decreases with smaller ∆x and/or ∆t but remains
significant for all practically usable parameters.
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What is wrong with the above-described realization of the initial condition? The implemen-
tation did take into account that the electric and magnetic field grids are staggered in space, but
did not account for the fact that they are also staggered in time. The temporal stagger means
that the waveform of the magnetic field, which represents time earlier by ∆t/2, must be shifted
by the distance that the radiation travels during that time. This shift is accounted for in the
following modified code:

Listing 1.3. Initial condition, take two

1 f o r ( i =0; i<N; i++) {
2 // here we aim to o r c h e s t r a t e the magnetic f i e l d with the e l e c t r i c
3 // such that the i n i t i a l waveform w i l l propagate to the r i g h t
4 // t h i s part i s the same as be f o r e . . .
5
6 double x0 = 0 . 5∗ ( ( double ) N) ;
7 double xe = ( double ) i ;
8 double xh = xe − 0 . 5 ;
9

10 // . . . but one has to account f o r d i f f e r e n t time :
11 xh −= 0.5∗ dtoverdx ;
12
13 EF[ i ] = +I n i t i a l E l e c t r i c F i e l d ( xe , x0 ) ;
14 HF[ i ] = − I n i t i a l E l e c t r i c F i e l d (xh , x0 ) ;
15 }

The addition is in line 11 where the the coordinate where the magnetic field is evaluated from
the function that specifies the electric field initial condition is shifted by 1/2c∆t (with c = 1).

Better implementation of the one-way propagating
initial condition in a one-dimensional Maxwell solver.
The scale of the figure is the same as in the previous
one. In this case the backward propagating pulse is
not visible.

So it seems that the initial condition is properly constructed and does not produce any pulse
propagation in the unwanted direction. However, as soon as one zooms into the figure (shown
below) the artifact can be readily identified. We thus see that while the initial condition is
much better, and the artifact is about three orders of magnitude weaker, it is still not perfect.
At this point the origin of this undesirable feature may seem mysterious, but we shall soon
understand that it originates in the numerical dispersion; Numerical dispersion is the reason
why the propagation speed of the initial pulse is not exactly equal to c = 1. Because we have
assumed just that in our correction of the initial condition, the latter is not completely one-way
propagating.
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The same data shown at a finer vertical resolution
reveals that a very weak pulse propagating in the
wrong direction still exists...

It should be emphasized that the initial condition as constructed in this exercise is sufficiently
accurate for practical purposes. After all, in terms of pulse energy, only about one part in 1010

propagates in the wrong direction. Nevertheless, the appearance of the artifact, however minute,
illustrates that the numerical dispersion, discussed in what follows, affects all aspects of the
numerical algorithm.

Task D)
For this part of the exercise, we set the Courant ratio equal to, say, 1.01. It is most instructive

to keep it quite close to unity, so that one has a chance to observe that instability develops
gradually, albeit extremely fast. This is illustrated in the following figures.

Instability onset in Maxwell simulation.
One hundred and twenty integration steps
were executed with the Courant ratio cho-
sen equal to 1.01, starting from the initial
condition shown in solid black. This simu-
lation was interrupted at a time chosen to
reveal the very onset of numerical artifacts.
As it is often the case, even-odd “oscilla-
tions” suddenly appear in the solution (red
line) and continue to grow.

Only thirty additional integration steps are
sufficient to amplify numerical artifacts by
several orders of magnitude. Exponential
growth of numerical noise is usually fast
enough to make the solution to deteriorate
so quickly that no gradual transition from
a well-behaved, smooth solution can be no-
ticed.

In practice, numerical instability is manifested through solutions that appear noisy and ex-
hibit very large positive and negative values. It may also happen that an unstable solution
appears smooth, but growths exponentially.

Task E)

There are many valid ways to solve this problem. We will illustrate two approaches, and
invite the reader to explore their variations.

The first issue one has to deal with is the setup of a solution with a well-defined wavenumber.
The initial condition must ensure that the wavenumber is preserved during the simulation and
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the evolution will exhibit a single angular frequency — this will only happen if the wavenumber
is chosen from the discrete set of values implied by the grid resolution and the computational
domain size. Of course this relies on the periodic boundary conditions.

The second issue is how to deal with the fact that waves propagate in both directions. One
must either create truly one-way propagating initial condition (as we did in the first part of
this exercise) or, alternatively, one can take advantage of a symmetric situation in which the
intensity of waves in opposite direction is strictly equal. The second option is simpler, as it only
requires that the initial magnetic field is set to zero. Left-right symmetry of the update scheme
then ensures that forward and backward component of the waveform is exactly the same. We will
therefore initialize the simulation run with a standing wave with a chosen spatial wavenumber,
and follow its evolution to see what angular frequency it will “produce.”

The third problem is a method to extract the numerical value of the angular frequency that
the algorithm produces. This can be done in many ways. For example, a direct though not very
elegant method is to let the simulation running, and simply count zero-crossings at an arbitrary
but fixed location in space. Together with the elapsed time this gives the information needed to
calculate the value of ω. Another method is to compare solutions after a single step — for this
approach one has to derive a formula that relates the solution at two times, and isolate ω from
it.

Two versions of instructor’s solutions are hidden out of sight in the sub-directory named
Solution. We describe their main features next. It is strongly recommended that the reader tries
to come up with his/her own approach before reading further.

Initialization

Listing 1.4. Initialization for dispersion measurement

1
2 // s e t the Courant ra t i o , d i s p e r s i o n w i l l depend on t h i s va lue
3 double dtoverdx = 0 . 1 ;
4
5 i n t e l ; // s c a l e d s p a t i a l wavenumber
6 double k0 ; // s p a t i a l wavenumber − we measure omega f o r each
7
8 // t h i s s t a r t s the main measurement loop
9 f o r ( e l=N/2−1; e l >0; e l −=100) {

10
11 // s p a t i a l wavenumber must have one o f the gr id−supported va lue s
12 k0 = e l ∗2 .0∗M PI /( ( double ) N − 1 . 0 ) ;
13
14 // the i n i t i a l c ond i t i on has zero magnetic f i e l d
15 f o r ( i n t i =0; i<N; i++) {
16 double xe = ( double ) i ;
17
18 EF[ i ] = +cos ( xe∗k0 ) ;
19 HF[ i ] = 0 . 0 ;
20 }

There are a couple of points to note in the above code snippet. First, ∆t/∆x is fixed such
that the integration scheme is stable. The dispersion curve depends on this value, of course.
Then the main loop, controlled by el, scans values of spatial wavenumbers for which the angular
frequencies are to be measured. The wavenumber value k0 is carefully chosen in line 12 such
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that the corresponding plane wave smoothly wraps around the periodic boundary condition of
the computational domain. The initial electric field is specified as a harmonic wave, and because
the initial magnetic field vanishes, this simulation will evolve a standing wave with the spatial
wavenumber k0.

Counting zero crossings
The next code section runs the simulation for a chosen value of k0, and counts zero crossing

of the electric field at the grid point i = 0:

Listing 1.5. Counting zero-crossings

1
2 // t h i s i s the s p a t i a l point , i =0, where we f o l l o w temporal evo lu t i on
3 double EFold = EF [ 0 ] ;
4
5 i n t s t a r t = 0 ; // t h i s v a r i a b l e to i n d i c a t e the f i r s t zero−c r o s s i n g was detec ted
6 i n t i s t a r t = 0 ; // step at which the f i r s t c r o s s i n g was detec ted
7 i n t count = 0 ; // zero−c r o s s i n g counter
8
9 f o r ( i =0; count<50; i++) { // go u n t i l f i f t y c r o s s i n g s

10 OneStep (EF,HF, dtoverdx ,N) ; // i n t e g r a t i o n step
11
12 // t h i s i s where we t e s t f o r zero−c r o s s i n g
13 i f ( EF[ 0 ] ∗ EFold <= 0.0 ) {
14 i f ( s t a r t == 0) { s t a r t = 1 ; i s t a r t = i ; count =0;}
15 e l s e count++;
16 }
17
18 // keep the prev ious f i e l d va lue to compare with the new one
19 EFold = EF [ 0 ] ;
20 }
21
22 // here , the angular f requency i s approximated based on the number o f detec ted
23 // zero c r o s s i n g s
24 i−−;
25 double T = 2.0∗ dtoverdx ∗( i − i s t a r t ) / ( ( double ) count ) ; // est imated per iod
26 double omega = 2.0∗M PI/T; // est imated omega
27
28 // t h e o r e t i c a l va lue to show in the output
29 double YeeValue = 2.0/ dtoverdx ∗ as in ( dtoverdx ∗ s i n ( k0 / 2 . 0 ) ) ;
30
31 p r i n t f (”%E %E %E\n” , k0 , omega , YeeValue ) ;
32 } // end o f wave−number−scan loop

This program can measure the numerical relation between the spatial wavenumber and an-
gular frequency with a good accuracy. There are a few obvious drawbacks. The accuracy of the
temporal period estimate, T , is limited by the (hard-coded in line 9) number of periods to simu-
late. Thus, to increase the accuracy, length of the simulation run must be increased accordingly.
Moreover, the duration of the measurement at low wavenumbers (and low frequencies) increases
as 1/ω. Nevertheless, these are simulation parameters that can be easily controlled and chosen
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to reflect the accuracy one aims for. Because the one-dimensional Maxwell simulation does not
require significant numerical effort, increase in simulation time is not a really serious issue.

It is an easy fix to increase the accuracy of this measurement without increasing the numerical
effort. With only fifty period long simulation the the accuracy is limited to a few percent. This
can be easily improved by better localization of the first and last zero crossings. For example, one
can use simple linear interpolation to estimate the true location of the zero by linear interpolation
between the old and new field samples EFold and EF [0]. This allows to improve the measurement
of the time between zero crossing of the electric field to an accuracy better than ∆t. As a result,
the the quality of the measurement increases significantly. It is left to the reader to implement
this improvement.

Extracting angular frequency from subsequent field snapshots
The previous method can be characterized as straightforward. It has a big advantage that

the numerical measurement is direct, and does not require additions to the simulation code that
would be based on “further development or considerations.” If designed as a test of the algorithm
implementation, this is exactly what one wants. On the other hand, the method can be hardly
considered elegant. Next we show an alternative measurement of chromatic properties of the
Yee algorithm. It only requires a couple of simulation step to execute, and does not suffer any
accuracy issues. However, it requires to derive a formula to relate the simulated field after one
step to the initial one in order to extract the numerical dispersion relation. Let us derive this
formula.

Consider the electric field value, as evolved by the Yee algorithm, at a fixed location. The
observation spot can be chosen arbitrarily with one condition that the initial field at this point
is not zero. When set up as in the method described before, i.e. with the initial magnetic field
equal to zero, the initial value of the electric field, denoted by E0 corresponds to time t = −∆t/2.
The next value at time t = ∆t/2 is denoted by E1, but it turns out to be equal to E1 since the
magnetic field vanishes during the very first update of the electric field. The subsequent step
creates the field value denoted E2, and it corresponds to time t = 3/2∆t. All three values are
related, because they represent harmonic oscillation with an “unknown” amplitude A:

E0 = A cos

(
−1

2
ω∆t

)
E1 = A cos

(
+

1

2
ω∆t

)
= E0 E2 = A cos

(
+

3

2
ω∆t

)
(1.43)

Thus, it is sufficient to execute two steps to generate E2, and ω can be calculated from these
equations through elimination of A. Probably the simplest way to do this is to use

cos(a+ b) = cos a cos b− sin a sin b and sin(a+ b) = sin a cos b+ cos a sin b

to obtain

E2 = A

[
4 cos3

(
1

2
ω∆t

)
− 3 cos

(
1

2
ω∆t

)]
= E0

[
4 cos2

(
1

2
ω∆t

)
− 3

]
(1.44)

Angular frequency ω can be expressed from the last relation as

ω =
2

∆t
arccos

[
1

2

√
E2 + 3E0

E0

]
(1.45)

Numerical measurement based on this formula can be implemented as shown in the following
program listing
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Listing 1.6. Angular frequency extracted from subsequent simulated field samples

1 // l i s t i n g s t a r t s with in the main wave−number−scan loop
2
3 // save the i n i t i a l f i e l d
4 EFold = EF [ 0 ] ;
5
6 // execute two s t ep s :
7 // t h i s s tep does not change e l e c t r i c f i e l d due to zero H
8 OneStep (EF,HF, dtoverdx ,N) ;
9 // and t h i s s tep does . . .

10 OneStep (EF,HF, dtoverdx ,N) ;
11
12 // formula XX
13 double omega=2.0/ dtoverdx ∗ acos ( s q r t ( (EF[0 ]+3 .0∗EFold )/ EFold ) / 2 . 0 ) ;
14
15 // t h e o r e t i c a l formula value
16 double YeeValue = 2.0/ dtoverdx ∗ as in ( dtoverdx ∗ s i n ( k0 / 2 . 0 ) ) ;
17
18 // show r e s u l t s
19 p r i n t f (”%E %E %E\n” , k0 , omega , YeeValue ) ;
20 } // end o f the wave−number−scan

Application of either of the two methods will produce data similar to that shown in Figure
1. Readers should experiment with different parameters for these simulations. In particular,
it should become obvious that numerical dispersion becomes more and more pronounced for
high-frequency waves. The deviation from the ideal, continuum-limit dispersion decreases with
decreasing integration step, but numerical waves with the spatial frequency in the vicinity of the
Nquist frequency never propagate as their real counterparts.

1.3.2 Absorbing boundary conditions

Boundary conditions for computational domains are an important and difficult numerical and
modeling issue. Throughout this course we will revisit this topic a few times, discussing different
methods with increasing complexity. The purpose of this exercise is to explore a simple version
of the so-called absorbing boundary conditions (ABC) in the one-dimensional Maxwell solver
which we have implemented in the previous exercise. While the method examined here does not
apply directly to the beam propagation, it will help us to identify important issues related to
ABC implementation in the simplest possible setting.

The role of the ABCs is to truncate the computational domain in such a way that waves
which reach the edge of the computational box will disappear as if they propagated freely into
open space. Needless to say this is not an easy problem to solve. It should also be obvious that
there is no ideal implementation of transparent boundary conditions (TBC) as they are also
often called. The quality of any particular boundary condition is often characterized in terms of
its reflection coefficient. Any numerical wave will partly reflect from the domain boundary, and
the reflection coefficient says what is the amplitude of the reflected wave provided the incident
has a unit amplitude. Reflectance, or fraction of the wave energy reflected, is also often used.
Reflection coefficients are in general functions of the wave frequency (temporal or spatial) and
also of the angle of incidence at which the wave approaches the domain boundary.
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The method illustrated here is called Mur ABCs. [Gerrit Mur, IEEE Trans. on Electromag-
netic Compatibility, EMC-23 (1981) 377.] The idea is very simple, at least when applied in one
spatial dimension as we do it here. It is based on a local modification of the propagation equation
in the region of the computational grid adjacent to the boundary.

The one-dimensional wave equation, which is what the 1D-Maxwell solver effectively simu-
lates, can be exactly factored into two one-way propagation equations:

∂ttE(x, t)− ∂xxE(x, t) = (∂t − ∂x)(∂t + ∂x)E(x, t) = 0 . (1.46)

Each of the operator factors represents waves propagating in a distinct direction. For example
(∂t − ∂x)A(x, t) = 0 is an equation satisfied by waves propagating to the right. If we assume
that our boundary condition at the left edge of the computational box is such that it absorbs
outgoing waveforms completely, the wave equation can be replaced by this one-way equation in
the vicinity of the boundary. In fact, this “replacement” is only done at a single point, right at
the end, where we require:

(∂t + ∂x)E(xboundary, t) = 0 , (∂t − ∂x)E(xboundary, t) = 0 (1.47)

for the right-hand side and left-hand side computational domain boundary, respectively. These
boundary conditions in effect say that the wave propagation if forced in the outward direction
at both boundaries.

The above equations must be discretized and realized on the grid. This can be accomplished
in many different ways. The simplest discretization formula is

EB(t+∆t) = EI(t) +
c∆t−∆x
c∆t+∆x

[EI(t+∆t)− EB(t)] , (1.48)

where subscript B denotes a field sample located right at the domain boundary, and subscript
I marks its nearest neighbor inside the computational box. Obviously ∆x and ∆t stand for the
spatial grid spacing and integration time step, respectively. To apply this prescription, the inside
value EI(t + ∆t) must be evaluated first. So the whole update proceeds as before for all grid
points inside the domain. The inner update is then followed by calculating the EB values on
both ends.

Similar boundary conditions could be required for the magnetic field. However, magnetic
boundary conditions can be by-passed altogether. We make sure that the boundary domain
edges are placed exactly at grid positions that carry electric field samples. With such an arrange-
ment, all magnetic fields have both left-hand and right-hand electric-grid neighbors available for
the update step. It is assumed in the following that the computational grid has been chosen
accordingly.

This absorbing, or transparent as they are also called, boundary conditions belong to the
family of algorithms that estimate the wave-form close to the boundary and assume that the
solution is outgoing. This results in a fast, inexpensive algorithm with fairly good properties (low
reflectivity coefficient). However, things become more complicated in higher dimensions which
bring into play different angles of incidence. More accurate ABCs are possible, for example by
using higher-order approximations of the outgoing solution, or by adding so-called perfectly
matched layer to the outside of the computational domain proper. We will examine both types
of ABCs designed specifically for the BPM methods.

Exercise: One-Dimensional Maxwell Solver and Absorbing Boundary Conditions

A) Starting from the one-way continuum conditions (1.47), derive the finite-difference ap-
proximation (1.48).
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B) Use the Maxwell solver implementation from the previous exercise, and modify its periodic
boundary conditions to absorbing boundary conditions.

C) Execute a short simulation to demonstrate that the absorbing boundaries work. Test the
boundary condition function on both sides of the computational domain. One way to do this
simply is to prepare the initial condition such that it will induce two identical pulses propagating
in the opposite directions. After a sufficiently long time these pulses reach domain boundaries,
and will give rise to weak reflected waveforms.

D) There will be small reflection from any numerical absorbing boundary implementation.
Identify the reflected pulses in your simulation and estimate the effective reflection coefficient.

E) Demonstrate that the effectivness of the absorbing boundary depends on the wavelength
of the incident wave.

Solution

Task A)
When developing a finite-difference approximation for an expression which contains deriva-

tives, the first thing to do is to choose a reference point. It is a location (in space and/or time)
at which the finite-difference expression attains its best accuracy. It is important that all terms
that contribute to the approximated quantity share the same reference point.

The second important issue is that symmetric approximations to derivatives are superior to
one-sided ones. In other words, the symmetric scheme

∂xf(x) ≈ f(x+∆x)− f(x−∆x)

2∆x
(1.49)

is more accurate than the one-sided

∂xf(x) ≈ f(x+∆x)− f(x)

∆x
. (1.50)

We will re-visit this and similar expressions in the section on finite-difference approximated
propagation equations where we will prove that symmetric approximations are always more
accurate.

Let us assume that the we have calculated all field samples for time t, together with all inner-
domain field samples for time t+∆t, and consider the left-hand side domain boundary. Keeping
in mind the “symmetry issue,” the natural candidate for the reference point to construct our
finite-difference approximation (1.48) for the left-hand domain edge is the point centered between
the nearest field samples:

xREF = xB +
1

2
∆x tREF = t+

1

2
∆t (1.51)
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Derivation of the finite-difference approximation for the
Mur‘s first-order transparent boundary condition. Electric
field samples at nodes of the computational grid marked
by squares are assumed to be known from the previous
step (at integration time t) and from the inner-domain
update of the current step (at time t + ∆t). The bound-
ary condition will determine the new boundary value in-
dicated by the gray circle (upper-left corner). This value
is adjusted such that the boundary condition constraint is
fulfilled with the best accuracy at the reference point in
the center of the grid square.

The boundary condition we aim to enforce is

(∂t − ∂x)E(xREF , tREF ) = 0 . (1.52)

Of course, we have no field samples available for either xREF or tREF . What is often done in
such a situation is averaging the derivatives on both sides of the reference point. For the spatial
derivative we average its values at the two time-levels

∂

∂x
E(xREF , tREF ) ≈ 1

2

∂

∂x
E(xREF , t+∆t) +

1

2

∂

∂x
E(xREF , t) . (1.53)

Now one can insert symmetric two-point estimates for each spatial derivative to obtain

∂

∂x
E(xREF , tREF ) ≈ 1

2∆x
(E(xB +∆x, t+∆t)− E(xB , t+∆t))+

1

2∆x
(E(xB +∆x, t)− E(xB , t))

(1.54)
Similar averaging procedure is applied to the temporal derivative

∂

∂t
E(xREF , tREF ) ≈ 1

2

∂

∂t
E(xB +∆x, tREF ) +

1

2

∂

∂t
E(xB , tREF ) . (1.55)

After inserting two-point estimates of temporal derivatives one has

∂

∂t
E(xREF , tREF ) ≈ 1

2∆t
(E(xB +∆x, t+∆t)− E(xB +∆x, t))+

1

2∆t
(E(xB , t+∆t)− E(xB , t))

(1.56)
With (1.54) and (1.56) we approximate (1.52) and collection of like terms gives us the expression
we sought:

E(xB , t+∆t) = E(xI , t) +
∆t−∆x
∆t+∆x

[E(xI , t+∆t)− E(xB , t)] , (1.57)

One missing detail is that no propagation speed (c) appears in this formula. This is because
we have utilized scaled units in which c = 1. To recover the the expression for normal units is
simple, it suffices to replace ∆t with c∆t.

One could repeat the whole procedure for the right-hand-side boundary of the computational
domain. It is however not really necessary. Suffice to realize that only two things would change
in the whole calculation. First, ∆x would change its sign and, second, the sign of the spatial
derivative in the boundary condition would also change. These changes would cancel each other
and the result is the same.

Task B)
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The implementation in the code is simple. The following listing shows the update procedure,
only slightly modified in comparison to its counterpart from the previous exercise. The first lines
reflect that the whole update is done “in-place,” i.e. the same arrays holding the current magnetic
and electric fields are used to calculate and store the result of the current integration step. This
makes it necessary to store values close to the domain boundary.

The second step is the electric field update. Note that the loop leaves out the points i = 0
and i = n−1 which are the boundary values, and have not all neighbors needed for their update.

Next lines (14,15) apply the absorbing boundary condition as discretized above. Here we use
the equivalent formulation using the parameter dtoverdx = ∆t/∆x. Previously stored auxiliaries
are used in place of field samples at time t. Electric field array values are used for the just
updated values for t+∆t.

The lines that follow constitute the update for the magnetic field. Note that the first value
stored in the array is not used and is (unnecessarily) set to zero at the end of the procedure.

Listing 1.7. 1D-Maxwell update modification for Mur ABC

1 void OneStep ( double ∗E, double ∗H, double dtoverdx , i n t n) {
2 i n t i ;
3
4 // s i n c e we do the update in−place , save these a u x i l i a r i e s
5 double aux L I = E [ 1 ] ; // t h i s i s E I at l e f t domain end
6 double aux L B = E [ 0 ] ; // t h i s i s E B at l e f t domain end
7 double aux R I = E[ n−2] ; // t h i s i s E I at r i g h t domain end
8 double aux R B = E[ n−1] ; // t h i s i s E B at r i g h t domain end
9

10 // update i n s i d e o f the domain as be f o r e
11 f o r ( i =1; i<n−1; i++) E[ i ] = E[ i ] + dtoverdx ∗(H[ i +1] − H[ i ] ) ;
12
13 // ABCs :
14 E[ 0 ] = aux L I + ( dtoverdx − 1 . 0 ) / ( dtoverdx + 1 . 0 )∗ (E [ 1 ]
− aux L B ) ;

15 E[ n−1] = aux R I + ( dtoverdx − 1 . 0 ) / ( dtoverdx + 1 . 0 )∗ (E[ n−2] − aux R B ) ;
16
17 // update i n s i d e o f the domain as be f o r e
18 f o r ( i =1; i<n ; i++) H[ i ] = H[ i ] + dtoverdx ∗(E[ i ] − E[ i −1 ] ) ;
19
20 // t h i s g r id po int i s not used − i t i s ou t s i d e
21 H[ 0 ] = 0 . 0 ;
22 }

Task C)
In order to test performance of the boundary conditions around both edges of the compu-

tational box, we need to direct an incident waveform onto both. A convenient way to achieve
this is to generate two identical pulses that propagate in opposite directions. The corresponding
initial condition is one that defines electric field in an arbitrary way, coupled with zero magnetic
field.

Instructor’s solution is included in the working directory as OneDMaxwell-WithBoundary.c.
Three runs were executed on a grid of 4096 points, integrating for 3500, 4000, and 5000 steps.
With the Courant ratio ∆t/∆x = 0.5, these time correspond to moments before, during and
after the waveform hits domain edges.
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The following figures show snapshots of the electric field at three different times. The first
panel illustrates how the initial condition gives rise to two identical wavepackets, and shows them
at the moment just before they hit the computational box boundaries.

The second panel demonstrates that the boundary condition indeed approximates a half-
infinite space in which the incident waveform disappears without deformation. Because the in-
tensity is still significant around the boundary, the figure scale does not allow to appreciate weak
reflected radiation.

Task D)

The latter is evident in panel three, which depicts the reflected fields at appropriate scale.
Note that the waveforms preserved their shapes upon their (undesired) reflection from the domain
edge. However, their amplitude is now significantly lower. The reflection coefficient can be roughly
estimated as r ≈ 1.5× 10−4/0.5 (with 0.5 standing for the amplitude of the incident pulse).

Simulated electric waveform. Black line
shows the initial condition, with the mag-
netic field equal to zero. This initial con-
dition creates two pulses, shown in red at
a later time when they propagate toward
the edges of the computational box. This
picture shows the moment just before they
reach the boundary.

Simulated electric waveform. The pulses are
being “absorbed” in the transparent bound-
aries...
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Simulated electric waveform: remnant
pulses reflected off the boundaries. Note
that the vertical scale is much smaller than
the initial one. The reflection coefficient
can be estimated roughly as the amplitude
of the reflected wavepacket divided by
one half, the amplitude of the initial
pulse split-off from the symmetric initial
condition.

In tests like this one it is often useful to take advantage of the symmetry in the solution.
In this case we look for any differences in the behavior of the reflected pulses. The fact that
the pulses appear to be mirror images of each other provides an indication that the absorbing
boundary conditions work as they should at both ends of the computational box.

Task E)

Reflection coefficients of numerical boundary conditions are in general dependent on the
parameters of the incident waves. In this one-dimensional case, the sole relevant parameter is the
wavelength. The following example demonstrates that the differences can be quite pronounced.

Wavepacket reflected from the absorbing
boundaries, simulated for two different
wavelengths. The amplitude of the long-
wavelength (black line) solution is about
an order of magnitude smaller than that of
the short-wavelength pulse (red line). This
is yet another manifestation of numerical
dispersion. This time it shows up in the
discretized version of the boundary condi-
tion which should exhibit no dispersion in
the continuum limit. As the pulse wave-
length increases, the reflection coefficient
improves, because the discreteness of the
lattice is less and less evident on the scale
given by the wavelength of the waveform.

1.3.3 Numerical dispersion curve extracted from noise

We have explored two different ways to measure the resulting numerical dispersion properties
of the one-dimensional Maxwell solver implementation. In both cases, we had to sample the
dispersion curve point by point by setting up an initial condition(s) with a well-defined spatial
frequency. In one case we have to rely on the periodic boundary conditions (in order to ensure that
the numerical solution preserved its wave-number), and in the other we used our knowledge of
the algorithm stepping procedure. Now imagine that we were given a “black-box” simulator, and
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did not know anything about its underlying algorithm and/or about the computational boundary
conditions — we could specify initial conditions and read off the the result of the evolution after
a specified simulated time. Can we still somehow measure the numerical dispersion?

Purpose: This exercise introduces an elegant method to obtain the complete dispersion re-
lation of a numerical solver, pretty much independently of the algorithm it employs. In this
case, we will recover the 1D Maxwell simulator dispersion curve, i.e.

sin

(
ω∆t

2

)2

=

(
∆t

∆x

)2

sin

(
k∆x

2

)2

,

in a single simulation run.

Method: The implementation of this method only calls for a very minor modification of the
1D Maxwell solver implemented in the previous assignment. The idea utilizes the fact that wave
propagation is linear. It means, that one can initialize all possible types of waves and observe
their behavior in a single simulation. Surely, such a simulation must contain information about
the propagation of waves of arbitrary wavelengths. The following is the algorithm that allows to
extract the numerical dispersion relation from such a simulation.

Step 1.
One way to imprint “all” wavelength in the single initial condition supplied to the solver is to
create it as white noise (in both electric and magnetic field). Such a chaotic initial field contains
short as well as long-wavelength waves that will propagate independently through the lattice.

Step 2.
Starting from the white-noise initial condition, the simulator is run for a fixed (large) number of
steps. The following figure shows one snapshot of the evolving electric field:

It is not surprising that field snap-
shots that are result of evolution from
a white noise initial condition all look
the same, namely as white noise. Yet,
as an ensemble they carry full infor-
mation about the numerical dispersion
relation governing all waves that the
simulator can realize.

These electric field snapshots are stored after every integration step. The result is a two-
dimensional array (matrix) of

Mi,j = E(xi, tj) .

(Note that xi and tj here stand for discrete “index” values corresponding to the grid nodes and
discrete time steps.)

Step 3.
The next step is to calculate two-dimensional Fourier transform of this matrix, to obtain the
spectrum
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M̂u,v = FFT(M)u,v = Ê(ku, ωv) ,

where u and v label discrete values of wave-numbers and angular frequency. This picture shows
the logarithmic-scale map of M̂ . The lines reveal the numerical dispersion relation.

Two dimensional Fourier spectrum of
of the field E(x, t) amplitude that was
initiated by white noise. The dark
lines, marking loci where the spectral
energy concentrates, show the disper-
sion relation of the numerical method.

The vertical axis of the above map spans the array of temporal frequencies defined through the
Fourier transform of a temporal evolution of the field at each spatial point. With NT steps
executed by the solver, the duration of the temporal domain becomes NT∆t. Consequently the
discrete frequencies (sampled by the FFT) are

ωv = v
2π

NT∆t
v = −NT

2
, . . . ,+

NT

2

The horizontal axis index labels the allowed wave-vectors

ku = u
2π

NX∆x
u = −NX

2
, . . . ,+

NX

2

In this physical coordinate system, the spectral power map looks like this (note that this coore-
dinate systemt transformation can be achieved easily by the Matlab fftshift function):

Two dimensional Fourier spectrum of
of the field E(x, t) amplitude that was
initiated by white noise. Physical coor-
dinates (with c = 1 and ∆x = 1) are
used in this map. Waves with approxi-
mately realistic propagation properties
are now in the central portion of the
figure.

It is now straightforward to verify that the loci of spectral power concentration indeed cor-
respond to the numerical wave dispersion relation of the 1D Maxwell solver. The four nearly
linear segments emanating from the center represent numerical waves that approximate their
physical counterparts accurately. There are four “branches,” because the simulated field is real-
valued (and both positive and negative frequencies must be present), and because there are two
possible propagation directions. Because the slope of the curve, ∂ω/∂k is the group velocity, we
can see that numerical waves with the shortest wavelengths (close to edges of the figure) do not
propagate at all!
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With the method and expected results described, the exercise has three parts:

Task A
Explain why and how the above-described method works.

Task B
Explain how the choice of the simulation parameters ∆x, ∆t, and their ratio affect where in the
map does the dispersion relation locus appear. Convert the theoretical dispersion relation into
the “coordinate system” of the spectrum-matrix M̂ , and verify the simulation result.

Task C
A zoom into the above picture reveals a texture, consisting of semi-regular lines:

A zoom into the power spectrum shows
a system of “lines.” Their spacing
seems to exhibit definite periodicity,
which indicates that this is no random
noise. This should raise a red flag...

In the numerical simulation practice it is important not to overlook artifacts — every unexpected
feature must be understood: Explain where the lines originate from. Is this effect “mostly harm-
less,” and the dispersion curve obtained is correct, or is it necessary to remove what must be an
artifact?

Hint: When trying to decide if something in numerical simulation results is an artifact, it is
often useful to list all “un-physical” parameters that control the simulation. In this case, we have
∆x, ∆t, their ratio, number of spatial grid points NX, the number of executed steps NT , and
the random number generator seed and algorithm. Having identified what quantities have the
potential to introduce artificial effects, one can study the response of the system to changes of
these parameters. More often than not one can uncover clues that help to explain what is going
on...
Hint: With the above in mind, consider how a given computational domain box affects the
trajectories of a wave-packet with a reasonably well defined wave-number.


