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The field configurations and propagation constants of the normal modes
are determined for a hollow circular waveguide made of dielectric material
or metal for application as an oplical waveguide. The increase of attenua-
tion due to curvature of the axis is also determined.

The altenuation of each mode is found to be proportional to the square
of the free-space wavelength \ and inversely proportional to the cube of the
eylinder radius a. For a hollow dielectric waveguide made of glass with
v = 1.50,\ = Iy, and a = 1 mm, an allenvation of 1.85 db/km is predicted
Jor the minimum-loss mode, EH, . This loss is doubled for a radius of
curvature of the guide axis R = 10 km. Hence, dielectric materials do not
seem suitable for use in hollow circular waveguides for long distance optical
transmission because of the high loss introduced by even mild curvature
of the guide axis. Nevertheless, dielectric materials are shown to be very
attractive as guiding media for gaseous amplifiers and oscillators, not only
because of the low attenuation but also because the gain per unit length of
a dielectric tube containing He-Ne “masing” mizture at the right pressure
can be considerably enhanced by reducing the tube diameler. In this applica-
tion, a small guide radius is desirable, thereby making the curvature of
the guide axis not critical. For N = 0.6328u and optimum radiusa = 0.058
mm, a maximum theoretical gain of 7.6 db/m is predicted.

It 4s shown that the hollow metallic circular waveguide is far less sensitive
to curvature of the guide axis. This is due to the comparatively large complex
dielectric constant exhibited by metals at optical frequencies. For a wave-
length A = Iy and a radius a = 0.25 mm, the attenuation for the minimum
loss TEy mode in an aluminum waveguide is only 1.8 db/km. This loss
s doubled for a radius of curvature as short as R =~ 48 meters. For A = 3u
and a = 0.6 mm, the attenuation of the TEy mode is also 1.8 db/km. The
radius of curvature which doubles this loss is approximately 75 meters. The
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straight guide loss for the EHy mode for X = 1p and a = 0.25 mm s 57
db/km and 1is increased to 320 db/km for X = 3u and a = 0.6 mm.

In view of the low-loss characteristic of the TEy mode in metallic wave-
guides, the high-loss discrimination of noncircular electric modes, and the
relative insensitivity to axis curvature, the hollow metallic circular wave-
guide appears to be very allractive as a lransmission medium for long
distance optical communication.

I. INTRODUCTION

During recent years the potentially large frequency range made avail-
able to communications by the development of the optical maser has
stimulated much interest in efficient methods for long distance trans-
mission of light. The most promising contenders for long distance optical
transmission media consist of sequences of lenses or mirrors, highly
reflective hollow metallic pipes, and dielectric waveguides.!-1°

In this paper we present an analysis of the field configurations and
propagation constants of the normal modes in a hollow circular wave-
guide which, because of its simplicity and low loss, may become an
important competitor. The guiding structure considered here may con-
sist of an ordinary metallic pipe of precision bore whose inner surface
is highly reflective, or of a hollow dielectric pipe —i.e., one in which
the metal is replaced with dielectric. Although the transmission charac-
teristics of metallic waveguides are well known for microwave fre-
quencies, this theory is invalidated for operation at optical wavelengths,
because the metal no longer acts as a good conductor but rather as a
dielectric having a large dielectric constant. In the subsequent analysis,
therefore, both the dielectric and metallic guide are considered as special
cases of a general hollow circular waveguide having an external medium
made of arbitrary isotropic material whose optical properties are charac-
terized by a finite complex refractive index. If the free-space wavelength
is much smaller than the internal radius of the tube, the energy propa-
gates not in the external medium but essentially within the tube, bounc-
ing at grazing angles against the wall. Consequently, there is little energy
loss due to refraction. The refracted field is partially reflected by the
external surface of the tube and may, in general, interfere constructively
or destructively with the field inside the tube, decreasing or increasing
the attenuation. Because of the difficulty of controlling the interference
paths, it seems more convenient to eliminate the effect completely by
introducing sufficient loss in the dielectric or, in the case of a glass di-
electric, by frosting the external surface. The field in the hole of the
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tube is then unaffected by wall thickness. We shall therefore simplify
the analysis of the hollow circular waveguide by assuming infinite wall
thickness, as depicted in Fig. 1.

This structure will be shown to be attractive as a low-loss transmission
medium for long distance optical communication as well as for optical
gaseous amplifiers and oscillators. It is known, for example, that in a
tube containing a He-Ne mixture such that the product of radius and
pressure is roughly a constant, the gain per unit length is inversely
proportional to the radius of the tube.!! On the other hand, we find in
this paper that the attenuation of the normal modes is inversely propor-
tional to the cube of the radius. Hence there is an optimum tube radius
for which the net gain per unit length is a maximum. Furthermore,
because the guidance is continuous, there is no need for periodic focusing.
Consequently, no restriction need he imposed on the length of the
amplifying or oscillating tube.

We begin by analyzing an idealized guide having a straight axis and
a cylindrical wall. The results are then extended to include the effects
of mild curvature of the guide axis by finding a perturbation correction
for field configurations and propagation constants of the idealized
straight guide.

IT. MODAL ANALYSIS OF THE GENERAL STRAIGHT CIRCULAR WAVEGUIDE

Consider a waveguide consisting of a circular eylinder of radius a and
free-space dielectric constant & embedded in another medium of dielec-
tric or metal having a complex dielectric constant e. The magnetic
permeability p, is assumed to be that of free space for both media. We
are interested in finding the field components of the normal modes of
the waveguide and in determining the complex propagation constants
of these modes.

The problem is substantially simplified if it is assumed that

ka = 2ma/N > | v | wum (1)

€1 flg———————= 2.

Fig. 1 — Hollow dielectrie waveguide.
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and
| (v/k) —1[ K1 (1)

where &k = w\/ e = 2w/ is the free-space propagation constant; .m
is the mth root of the equation J, 1(u.») = 0, and n and m are integers
that characterize the propagating mode; v = +/¢/¢ is the complex
refractive index of the external medium; and v is the axial propagation
constant of the mode under consideration. The first inequality states
that the radius a is much larger than the free-space wavelength \. In
the case of metalization of the external medium, | v | may be quite large
but is finite at optical frequencies. The second inequality restricts our
analysis to low-loss modes, which are those whose propagation constants
+ are nearly equal to that of free space.

The field components of the natural modes of the most general circular
cylindrical structure with arbitrary isotropic internal and external media
have been determined by Stratton.” This structure supports three types
of modes: first, transverse circular electric modes whose only field com-
ponents are Ky, H, and H. ; second, transverse circular magnetic modes
whose components are Hy , £, and E.; and third, hybrid modes with all
the electric and magnetic components present. The approximate field
components of these modes are written below. They have been derived
using the inequalities (1) and neglecting terms with powers of A/a larger
than one. The superseripts 7 and e refer to the internal and external
media, respectively.
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Fig. 2 — Electric field lines of modes in hollow dielectric waveguides: (a) eircu-
lar electric modes, (b) circular magnetic modes, (¢) hybrid modes.
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where the complex propagation constant v satisfies the relationships

a2

=1 —4
B = V1 — 72 )
and u,,, is the mth root of the equation
Jui () = 0. (6)

As usual, | n | is the number of periods of each field component in the 6
direction, and m is both the order of the root of (6) and the number of
maxima and minima of each component counted in the radial direction
within the internal medium. The constant #, appearing in (4) will be-
come of interest later on when we study the waveguide with curved
axis, because it will admit any orientation of the transverse electric
field relative to the plane of curvature of the guide axis.

Tor n = 0, the modes are either transverse electric TEy, (2), or
transverse magnetic TMy,, (3). The lines of electric field of the TE,,,
modes are transverse concentric cireles centered on the z axis. The lines
of magnetic field are in planes containing the z axis. Similarly, the lines
of magnetic field of the TM, modes are transverse concentric cireles
centered on the z axis with the electrie field contained in radial planes.
The eleetric field lines of the modes TEy , Ty, TMg and TM,y. are
shown in Figs. 2(a) and 2(b); each vector represents qualitatively the
intensity and direction of the local field.

TFor n # 0, the modes are hybrid, EH,,, (4); therefore, the magnetic
and electric field are three-dimensional with relatively small axial field
components in the internal medium. Thus the hybrid modes are almost
transverse.

Let us examine the projection of these three-dimensional field lines
on planes perpendicular to the axis z of the waveguide. The differential
equations for the projected lines of electrie field in both media are

Ldr B
r (IG Eﬂnmi

1dr Ernm'
7 df Eﬁnm’ ’

(7)

E,.n' as well ag Ep,,,' contain two terms as given in (4). Both are neces-
sary to satisfy the boundary conditions. If we neglect the second term,
however, no substantial error is introduced except very close (a few
wavelengths) to the boundary, where the second term dominates as
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the first tends to zero. With this simplification, the differential equations
(7) in both media become identical

(1/7)(dr/df) = tan né.

Upon integrating, one obtains an equation for the locus of the projected
electric field lines

(r/ro)" cosnf =1 (8)

where 7 is a constant of integration that individualizes the member
of the family of lines. The electric field of an EH,. mode is different
from that of EH_,, mode.

The projection of the magnetic field lines is determined in a similar
way. These equations are

(r/re)" sinng = 1 (9)
for the internal medium and
(:»'/"r'u)"'2 sin nf = 1

for the external medium.

The projections of the internal electric (8) and magnetic (9) field lines
are identical for any given mode except for a rotation of x/(2n) radians
around the z axis. In Fig. 2(c¢) the lines of the electric field in the internal
medium are depicted for the first few hybrid modes. Again the vectors
represent qualitatively the field intensities and directions.

What happens at the boundary? Consider, for example, the projected
electric lines of mode EHy, , as shown in Fig. 3(a). These field lines
satisfy (8), an equation which is valid everywhere except near the
boundary. The boundary conditions are violated in Iig. 3(a) because
there is continuity not only of the tangential electric component but
also of the normal component. The internal normal component must be
»* times larger than the external one. Consequently, the electric field
line must be discontinuous. This result is shown qualitatively in Iig.
3(h).

A three-dimensional representation of the field lines is far more com-
plicated than the two-dimensional one depicted in Fig. 2. As a typical
example, the electric field lines of the EHz; mode are shown in Fig. 4 in
a three-dimensional perspective.

The propagation constants of the TEq, , TMon and EH,m (n # 0)
modes are determined below (21). It is found that the hybrid mode
EH_,,, .. is degenerate (same propagation constant) with the
EH |, | t2.m ; 1.., for every hybrid mode with negative azimuthal index
there is a degenerate hybrid mode with positive aximuthal index. The



LONG DISTANCE OPTICAL COMMUNICATION 1791

(a) (b)

Fig. 3 — (a) Llectric field lines of EH,; mode violating boundary conditions;
(b) same EH,; mode with electric field lines qualitatively corrected.

transverse modes TEo, and TN, and the hybrid modes EH,,, and
EH.,, have no degenerate counterpart.

If the field components of the degenerate EH_ |, | ,and EH |, | ..,
modes (4) are added, we obtain new composite modes whose clectric
and magnetie field lines project as straight lines on a plane perpendicular
to the z axis. Some of those composite modes are shown in Fig. 5.

It should be noted that if the refractive index of the external medium,

Fia. 4 — Cutaway view of electric field lines of EHs. mode. The axial period
is grossly exaggerated.
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Fig. 5 — Electric field lines of eomposite modes EH_»j,m + EHpura,m -

v, is very close to unity, then for each value of m, the TEom , TMom and
EH,,, modes also become degenerate (17), (21) and the sum of the
components of TE,, (2) and EH.,, (4) yields a new composite mode,
as shown in Fig. 6. This mode, together with those in Fig. 5 and the
EH,,, of Fig. 2(¢), form a complete set that closely resembles the set
found for interferometers with plane circular mirrors or for sequences
of circular irises.'

Let us now consider the field intensity distribution outside and inside
the hollow dielectric waveguide. The external field (2), (3) and (4)
has the radial dependence

exp [th.(r — a)]

Vi
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Fig. 6 — Llectric field lines of composite modes TE,, + EHa,,, .

From (5) and (20) we obtain, neglecting terms of order (A/a)® and
higher, k. = k+/%»* — 1. The radial dependence is then

exp [ik v/»* — 1(r — a)]
Vr '

If the dielectric is lossy, the refractive index » has a positive imaginary
part. The external electric and magnetic fields then oscillate with period
of the order of A/ | v/»* — 1| and decay exponentially in the radial
direction. The maximum field intensities in the external medium oceur
at the boundary » = a. Being proportional to A/a, these maxima are
small,

The field intensity inside the hollow waveguide is more interesting.
Again if we substitute v (20) into (2), (3) and (4) and neglect terms
of the order \/a, only the internal transverse components remain.

For TEs,, modes

Eﬂﬂmi = - / I.ﬂ Hrﬂm’. = I-"1 (uﬂm 5) . (10)

€n

For TMy,, modes,

Erl]mi = V’J E'l') Hﬂ()mi = Jl (uﬂm 5) * (11)

€
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For EH,,,, modes,
. r
bﬂum' = - /V .U-U Hrnm = n—-l (unm E) cos nf
i #n i r .
Ernm = 1/ - I{HnimI = Ju—l (umn ") Sin nf.
€) a

The field components of each mode have approximately the same radial
dependence, varying as Bessel functions of the first kind, and tending
to negligibly small values at the boundary (6). This approximate radial
dependence (10), (11) and (12) is reproduced under each mode pattern
in Figs. 2(a), 2(b) and 2(c).

(12)

III. PROPAGATION CONSTANTS FOR THE GENERAL CIRCULAR CYLINDRICAL
GUIDE

In this section we shall determine the propagation constants v, of
the TEq,, , TMy,, and EH,,, modes in the straight hollow guide at optical
wavelengths. The propagation constants are the roots of the following
characteristic equation for the general circular cylindrical structure.™
They are related to k; and k. by expressions (5).

7 (ha) b L (,i,,@}[,f,,’(k:sa) kL, (ka)
Jo(ka)y ke H, O (ka) JLJ.(ka) ko H,(ka)

SES(INE

This equation is simplified substantially when the approximations in
(1) are introduced. Since k.a >> 1, the asymptotic value of the Hankel
functions may he used

Y (ha)

(13)

H, O (k,a ) i+ 0(1/ka), ke >> 1. (14)
Since
VE y2 A
ka~ (* ——1),( )<< I (15)

powers of »*/k,a larger than one shall be neglected. The characteristic
equation then simplifies to

,,_I(L,a} = w,,(i\,/f. ]nﬂf) (16)
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where
! for TE des ( 0)
— or » modes (n =
Vi — !
v, = * \Tz;:-——l for TM,, modes (n = 0) (17)
1P +1
\?/%i_—i for KH,,, modes (n # 0).

To solve the characteristic equation for k. we notice that because
of (1) and (5), the right-hand side of (16) is close to zero. Using a
perturbation technique and keeping only the first term of the perturba-
tion,

’i:lﬂ, ~ ”nm(l - iv,,/fn‘(l,) (18)
where u,., as before is the mth root of the equation

Jnfl(“'nm) = 0. (1!})

The validity of (18) is assured provided that the order of the mode is
low enough so that | », | #,m << ka. The propagation constants v can
then be obtained from (5)

1 {tamh : N
~k| - 1= 2
! [ z(zm) ( m)] (20)

The phase constant and attenuation constant of each mode are the real
and imaginary parts of v, respectively,

_ _2r ) 1| wamh : 9% 1
Bum = Re (v) = = {1 5[27”1] l:] + Im (;E):lf

Xpm — Im ('Y) = (Hﬂm)_ 2\:; Re (Vr:) .
m a

IV. PROPAGATION CONSTANTS FOR STRAIGHT DIELECTRIC GUIDES

For guides made of dielectric material, v, is usually real and inde-
pendent of A, so that the phase and attenuation constants are
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2r 1 (A \
Pom = T{l 2 (2_1ra )}
1

VZE—1’ for TEy, modes (n

u 2 ?\2 yE
Qnm = ( ) — Vvti , for TMon modes (n=0)

2x ) a?

It

0)
r.o(22)

1(,2 1
i(/p‘;z___“_—:——%, for EH,, modes (n = 0)

/

The phase constant of modes in hollow dielectric waveguides have the
same frequency dependence as modes in perfectly conducting metallic
waveguides when operating far from cutoff; both transmission media
are then similarly dispersive.

The attenuation constants are proportional to A\*/a’. Consequently,
the losses can be made arbitrarily small by choosing the radius of the
tube a sufficiently large relative to the wavelength \.

The refractive index » affects the attenuation of each of the three
types of modes (22) in different ways. This fact is reasonable on physical
grounds. TEy,, modes can be considered to be composed of plane wave-
lets, each impinging at grazing angle on the interface between the two
media with polarization perpendicular to the plane of incidence. It is
known from the laws of refraction that the larger the value of », the
smaller the refracted power.

TMy. modes may also be thought of as consisting of plane wavelets,
but with the electric field of each now contained in the plane of incidence.
For » very close to unity, there is little reflection and the refracted loss
is high; as the value of » is allowed to become large, each wavelet gets
close to the Brewster angle of incidence and again the refracted loss is
high. The minimum oceurs for » = V2.

EH,,,. modes are composed of both types of plane wavelets. Therefore,
as is reasonable from the above argument, the attenuation constant
a,m has a v dependence which is an average of those of TEq. and TM,,
modes. The value of » that minimizes aum is ¥ = /3 = 1.73.

The attenuation constants (22) are proportional to Upm . Some values
of Unm (19) are presented in Table I. For a fixed value of n the attenua-
tion constant increases with m. This statement is not true for m fixed
and n variable.

Comparing the attenuation constants (22) of the different modes,
we find that the mode with lowest attenuation is TEy, if » > 2.02 and
EH,, if » < 2.02. Most glasses have a refractive index » = 1.5, and



LONG DISTANCE OPTICAL COMMUNICATION 1797

TABLE I— SoME VALUES OF Unn

n/m 1 2 3 4
1 2,405 5.52 8.654 11.796
2o0r0 3.832 7.016 10.173 13.324
Jor —1 5.136 8.417 11.62 14.796
4or -2 G.380 | 9.761 13.015 16.223

consequently for hollow glass tube EH, should be preferred. The attenu-
ation of this mode (8686a;; in db/km) has been plotted in Fig. 7 as a
funetion of A/a for » = 1.50 using A\ as a parameter. Typically, for a
wavelength A = 1y and radius @ = 1 mm, the attenuation of the EH,,
mode is 1.85 db/km (=3 db/mile). If the radius of the guide is doubled,
the attenuation is reduced to 0.231 db/km.

50 T T T T T

A=10"%M 107°M 1075M 10°"M

TR
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: \\ \
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ATTENUATION OF EH,, MODE [DB/KM ]

( 1"ig1. 57)— Attenuation of EH,, modes (1.85 A2/a®) versus wavelength/radius
v = o .
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V. HOLLOW DIELECTRIC WAVEGUIDE FOR OPTICAL MASER AMPLIFIERS
AND OSCILLATORS

A mode traveling in a hollow dielectric waveguide filled with “masing”
material experiences a net gain which is given by the difference between
the amplification due to the active medium and the loss due to leakage
through the walls. It has been shown' that in a tube filled with the
right mixture of He and Ne at the proper pressure, the gain ¢ is in-
versely proportional to the radius a of the tube. Then

G = (A/a) db/m (23)
where the radius @ is measured in meters and the constant 4 is
A4 = 0.00066 db.

On the other hand, we have found that the transmission loss of the
EH,, mode in the hollow waveguide with a refractive index » = 1.50

is I, = 8.686ay; . I'rom (22)

L = B(\/a") db/m (24)
where the constant B is

B = 1.85 db.
The net gain per unit length is then

G — L = (A/a) — B(\'/a") (25)

passing through a maximum at the value of the radius for which

(G — L)/da = 0.

The optimum radius and the maximum net gain are respectively

Qopt, = /‘/3 % A= 91.7\
(26)
2 At1 107°
(G L)mnx = 3—%3% i - 4-81 T db/m.
For the He-Ne mixture, A = 0.6328 10~" m. Consequently
topt = 0.058 mm
(27)

(G — L)max = 7.6 db/m.

Although the diameter of the tube is quite small, the gain per unit length
is sufficiently large as to make hollow dielectric amplifiers and oscillators
attractive for experimentation.
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Present-day confocal He-Ne masers employ tubes whose approximate
length and radius are 1 m and 3 mm respectively. The gain per passage
(23) is 0.22 db (&5 per cent). If a hollow dielectric waveguide with an
optimum radius 0.058 mm were used, the same gain would be achieved
with a length of only 0.22/7.6 = 29 mm. This presents an excellent
possibility for a very compact maser.

Even for radii larger than the optimum, the hollow dielectric wave-
guide is still attractive. For example with @ = 0.25 mm, the gain is 2.6
db/m, a value far larger than the gain 0.22 db/m obtained for the 3-mm
radius tube commonly used for masers.

Nevertheless, for long-wavelength masers the optimum values (26)
are not practical. Consider for example a tube containing an active
material which amplifies at A = 107" m. Let us assume that the constant
4 is still 0.00066. Then from (26), the optimum radius and maximum
gain are

9.14 mm
0.0481 db/m.

aupt

(28
((; - L.)mnx )

The gain is very small. It could be enhanced by reducing the radius and
by increasing the refractive index » of the walls to a value much larger
than 1.5. This can be accomplished if metal is used instead of dielectric,
as is shown in the next section.

VI. ATTENUATION CONSTANTS FOR THE STRAIGHT METALLIC GUIDE

In order to discuss the attenuation characteristics of metallic wave-
guides, we shall need to have some quantitative information about the
behavior of metals at optical frequencies. We examine as a typieal
example the optical properties of aluminum, even though this may not
be the most suitable metal. The dispersion characteristics of the con-
ductivity and relative dielectric constants of aluminum have been
studied extensively by Hodgson,” Beattie and Conn," and Schulz.™
The data used below have been taken from a compilation of the results
of these studies,” and is presented graphically in Fig. 8. It is evident
from these dispersion eurves that the dielectrie constant for aluminum
is much larger than for ordinary dielectrics and increases monotonically
with wavelength in the range 0.3x < N < 4.0

The ecircular electric modes have the lowest loss in metallic wave-
guides, while the circular magnetic and hybrid modes are rapidly
attenuated even for a wavelength as short as 0.3x. The attenuation con-
stant an for the lowest-loss TEy mode is plotted in Fig. 9 for wave-



1800 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1964

0.05 AV
0.1 K

0.2 \
0.5

2o NN
-Re VZ)\\ &m(wi’)

-Re (v3), Im(v2)
rd

50 ~
™
100 \\\ \
200 \\
500 AN
1000 | | | 1 |

0.1 0.2 04 08 081 2 4
WAVELENGTH, A, IN MICRONS

Tig. 8 — Dispersion curve for aluminum »? = ¢/es = Re(¥?) + ¢ Im(»*) versus
wavelength A(u).

lengths in the range 0.3¢ < X < 4.0u for @ = 0.25 mm, 0.50 mm and
1 mm. These data show a considerable improvement over that cor-
responding to the lowest-loss mode EHy for the dielectric guide. We
saw that for a hollow glass dielectric waveguide, the EI; mode has a
loss of 1.8 db/km for a radius @ = 1 mm and wavelength A = 1u. The
attenuation for the TEy mode for the aluminum guide with the same
radius and wavelength is only 0.028 db/km. For a wavelength A = 1u
and a radius ¢ = 0.25 mm, the minimum-loss TEq mode for the alumi-
num waveguide has an attenuation constant an = 1.8 db/km. The
same attenuation is achieved for A = 3x and @ = 0.6 mm. The attenua-
tion constant for the TEy: mode under the last two conditions is ap =
6.05 db/km. For a wavelength A = 1 and a = 0.25 mm, the straight
guide losses for the TMjy, and EH;; modes are approximately 145 db/km
and 57 db/km, respectively.

VII. FIELD CONFIGURATION AND ATTENUATION OF MODES IN THE CURVED
GUIDE

In order to achieve a more realistic evaluation of the hollow circular
waveguide for long distance optical transmission, it is necessary to
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Fig. 9 — Attenuation of TEy mode, an versus wavelength A(u), for aluminum
guide.

evaluate the effects of mild curvature of the guide axis. This is most
easily accomplished by determining a perturbation correction for both
the field configuration and the attenuation constants for the idealized
straight guide whose eharacteristics have been described above.
VIII. FORMULATION OF THE PROBLEM
Consider the toroidal system (r, 8, z) with metric coefficients
e, =1
g =7 (29)
e. =14+ r/Rsiné@

as depicted in Tig. 10. In this system of coordinates, a differential
length is given by

ds = (e°dr’ + es'd6® + ¢ dz")’ (30)

where R is the radius of curvature of the toroidal system and is chosen
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Fig. 10 — The curved hollow dielectric waveguide and the associated toroidal
coordinate system (r, 8, Z).

equal to the radius of curvature of the guide axis, so that the guide wall
is located at r = a, and the axis of the guide coincides with the curved
z-axis. In this toroidal coordinate system, Maxwell’s equations are

6% {(1 4+ r/R sin 0)3¢.} — iy + dwer(1 + /R sin )& =0

iy, — (% (1 4 1/R sin 0)3¢,) + iwe(1 + /R sin )& = 0

d d .
< (i) — = e, ré. =
Fe (r3Cs) % + iwerd 0
(31)

E% ((1 + /R sin 0)&] — ives — iwnr(1 + /R sin 0)3¢, = 0
. d . . .
Y8 — o {(1 + r/R sin 0)&.} — iwp(l + r/R sin 8)3¢ = 0
d d .
I (r&s) %Gr — twurdC, = 0
where we have omitted the common factor

exp 1(y.2 — wt)

in which v, is the propagation constant along the curved z-axis.

The toroidal system (r, 8, z) and the curved waveguide degenerate
into a cylindrical system and a straight guide, respectively, as K ap-
proaches infinity. Maxwell’s equations for the straight guide are there-
fore obtained from (31) by letting & — <.
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a . .
7 H, — iyrHy + iwerE. = 0

i, — 5"; H. + iwell, = 0

I
=]

a 0 .
— (rH - —H, I,
o (rHg) 2% H, + iwerkl
(32)
d . .
(ﬁTBE; — iyl — dwerH, = 0

ivE, — O B — dwully = 0
or

il d
— (rEy) — = E, — twwrH. =0
™ (rEs) 631 Lwu

where v is the propagation constant for the straight guide, and the
superseript 7 and subseripts nm are suppressed.

IX. SOLUTION FOR THE CURVED GUIDE

We proceed to solve (31) for the field vectors :C':, 3¢ and obtain the
propagation constant v. for the curved guide as functions of the field
vectors £, H and the propagation constant v of the straight guide. The
latter quantities are known [(2), (3), (4) and (20)]. We introduce a
parameter

k a 2ra \* a
= s 2| ) 5. 33
Ty kR (u,,,,.)\) R (33)
The range of interest is that for which the radius of curvature £ is so

large that o << 1.
Using a first-order perturbation technique, the solution of (31) is

& = (1 + or/asin §)ly
&
& = (1 + or/asin )E. + (io/ka) (I, sin § + Ky cos )

(1 + or/asin 6)F,

(34)
e = (1 4 or/asin 6)H,

3¢, = (1 4+ or/asin 6)H,
3. = (1 4+ or/asin 6)H. 4+ (io/ka)(H, sin § + H; cos 8).

The effect of curvature of the guide axis is to make unsymmetrical the
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transverse field configuration of the straight guide. Each transverse
component is enhanced in the half cross section farthest from the center

of curvature.

To a first-order perturbation of ¢, the propagation constants of the
curved and straight guide are identical; i.e., y. = v. Nevertheless, know-
ing the field components of the mildly curved structure, it is possible
to calculate its attenuation constants a,m(R) = Re 7. .

X. ATTENUATION CONSTANTS cun(R)

The mean radial power flowing into the dielectric per unit length
at the surface of the guide is

_l 27

P, =3 Re [803C.% — &.3C*] [1 + a/R sin 6la d8. (35)

Z Y0 r=a

The power flow in the axial z direction within the internal medium
r < ais

po=1 f f " Re[6,30* — &3¢, *]r 6 dr (36)
- v [H]

and decreases along z at a rate equal to the radial flow per unit length
P, ;ie.,
)
dL = _za')mr(R)],z = —P, (37)
dz

where a,.(R) is the attenuation constant of the mode under considera-
tion for the curved hollow dielectric waveguide. Consequently

awm(R) = 5(P./P:). (38)

To ecompute P, we substitute the known field quantities into (35).
This yields

a Unm‘_,l]nz(”nm) i

_ € N 2 .

P, = Re e Wan v — 1 1y |1+ osing [ (1 + a/R sin 6)
f 1 for TEy, modes  (39)

v d for TM,,, modes

¥ sin? n(8 + 6) + cos? n(8 + 6,) for EH,,, modes.

Terms with powers of A/(2ra) larger than two have been neglected.
Upon integrating,

_ ’e; 'H-nmz']nz(unm)
P, = = Re 1/,1" e
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(1+ i) for TEy,, modes
F(1 4+ 6% for TMs,, modes
(40)
1 # 1 -1
3(+1)[|+3 ( (i)"_+1
- - =Y for EH,,,. modes
<08 263)]
where
b1 = “ no= o+l (41)

_0, n # +1.

The power P, flowing radially in the guide is obtained by substituting
(34) into (36) and integrating

)Z = T()l 1/ E" J" (u”"') 11 + []- + I)n( n — ))/uum ]} (42)

Hence

2ra a :
am(R) = (%) 41+ 3 (ux) (T?)

o (43)
|:I _ 'fva.('n - 2) +§5..(:|:I) Re \/qvi’ —1 cos 26
. T 4 v+ 1
Re /a1
where aum( =) = a,n 1s the attenuation constant for modes in the

straight guide (R = =) given by (21). The attenuation constant
a,m () can also be written in the following form

anm(R) = lenm( Es ] + (013‘4;)\21?'3] Relvnm(i’) (44)
where
1
Vit — 1
, _4)_ v [ (2Y
1 ,.m(V) = ; \/y——‘l — 1 (ll-"m)

EESY (45)

f n( —-2) 3 (u2 - ])
“Ll - 3 + -1-6“(:':[) yﬂi—l Cos 260}.

Uam
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The values of ReV,.(») are always positive. Some of them have been
calculated in Table II for a refractive index » = 1.50.

The attenuation constant of any mode consists of two terms (44).
The f‘llbﬁ coiucides with that of the straight guide and is proportional
t0 tym \ /a the second term represents an increase in attenuatlon due
to eurvature of the guide axis and is proportional to @ VN R The1 e-
fore the lower the straight guide attenuation constant (small w4, 2a )
the larger the loss due to bends and vice versa. From (43) or (45) we
find that only for the EH,, ,, modes, the orientation of the field with
respect to the plane of curvature influences the attenuation. If 6, = 0,
the electric field in the center of the guide is in the plane of curvature
and the attenuation is a maximum. For 8, = =4=/2, the electric field
is normal to the plane of curvature and the attenuation is a minimum.
The ratio of maximum to minimum is mild, however. For the lowest
attenuation mode EHy, and » = 1.50, it is

‘fnm(eﬂ = 0)
‘frim(BD = 77/2)

If | » | 3> 1, that ratio is

= 1.65. (46)

}' nm(gﬂ = 0) = 4.6.

Vam(@ = 7m/2)

From equation (43) we find that the radius of curvature which doubles
the straight guide attenuation is

P 2m\*a
";\/_5 Umn .

-2 :
_nn=2) 3, )
WUnm™ 4 VE + 1
V-1
This value of R is only approximate since (43) was derived by assum-
ing ¢ < 1.

T %
Re \/u 1 cos 20, (47)

XI. EFFECT OF CURVATURE ON ATTENUATION OF MODES IN THE HOLLOW
DIELECTRIC WAVEGUIDE

For a straight hollow glass waveguide with » = 1.5 and a radius
— 1 mm operating typically at a wavelength A = 1, the attenuation

of the lowest-loss mode EHy; is an; = 1.85 db/km. This loss is doubled
for a radius of ecurvature R, =~ 10 km. For long distance optical trans-
mission a radius of curvature of at least a few hundred meters would
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TasLe 1I — Some VALuEes oF V,.(v)

n/m 1 2 3 4

1| 257 (14 0.326] 1034 (1 + 0301 | 0.553 (1 + 0.295 0347 (1 + 0.203

cos 260,) cos 26,) | cos 26y) cos 28,)

’ TE 3.22 095 | 0.455 0.265

? 7.22 BT 1.022 0.5
1 155 (14 0.246] 2.60 (1 + 0.279| 1.034 (1 + 0.2840.55¢ (1 + 0.286

cos 20,) cos 28,) cos 26y) cos 20,)

5 5.22 L1 0.735 0.432

3 2.57 103 0.5 0.347

1or —2 1.51 0.737 0.430 0.287

be tolerable. Therefore hollow dielectric waveguides do not seem suita-
ble for long distance optical transmission.

On the other hand, the curvature in hollow dielectric waveguides for
application in gaseous amplifiers and oscillators is not eritical. For
example, if ¢ = 0.25 mm and A = 1g, the straight guide attenuation is
0.12 db/meter. The radius of curvature which doubles this quantity
for the lossiest polarization — i.e., with the electric field at the center
of the guide contained in the plane of curvature —is approximately
150 meters, a value well within the limits of laboratory precision. Con-
sequently, the hollow dielectric waveguide does remain very attractive
as a guiding medium for optical amplifiers and oscillators where a small
guide radius is desirable, thereby making the guide less sensitive to
curvature of the axis.

XII. EFFECT OF CURVATURE ON ATTENUATION OF MODES IN THE METALLIC
GUIDE

The attenuation constants ay,(R) for the lowest-loss TEg, modes
in the ecurved metallie guide are given by

cn(R) ~ a (x)f1+f(‘*ﬂ)4(“—)2 (48)

Om ~ Om \( : ; X’H.ﬂ,,, R
where ay,.( =) is the attenuation constant for the TE,, mode in the
straight guide, # = =. For a radius ¢ = 0.25 mm and wavelength

A = g, the straight guide loss for the lowest-loss TEy mode, ayn( =) =
1.8 db/km, is doubled for a radius of curvature of only R, &~ 48 meters.
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For A = 3p and @ = 0.6 mm, the straight TE loss is also 1.8 db/km
and the radius of curvature that doubles that loss is 75 m.

XIII. CONCLUSIONS

The hollow dielectric waveguide at optical wavelengths supports a
complete set of normal modes that are either circular electrie, circular
magnetic or hybrid. They resemble the modes found in a sequence of
cireular irises not only in field configuration but also in loss discrimina-
tion among them. For hollow metallic waveguides the mode discrimina-
tion is far larger.

The field configuration and propagation constants have been de-
termined. The attenuation is practically independent of the loss tangent
of the dielectric but depends essentially on the refraction mechanism
at the wall. Assuming refractive index of the dielectric, 1.5 for hollow
dielectric waveguides, the EH;; mode exhibits the lowest power attenua-
tion, viz., 1.85 (A\*/a') db/m. For a wavelength A = lu and a tube
radius @ = 1 mm, the attenuation is only 1.85 db/km.

The hollow dielectric waveguide does not, however, seem suitable for
long distance optical transmission because of the high loss introduced
by even mild curvature of the guide axis. Nevertheless it remains very
attractive as a guiding medium for optical amplifiers and oscillators,
gince here a small radius of the guide is desirable. Consequently, curva-
ture of the guide axis is not ecritical. Filled with “masing” material, the
hollow dielectric waveguide provides not only guidance but also gain
which is almost inversely proportional to the radius. For the right
He-Ne mixture, the maximum theoretical gain attainable is 7.6 db/m
provided that the radius is 0.058 mm. But even if the radius is 0.25 mm,
the predicted gain is still large, viz. 2.6 db/m.

The metallic waveguide is superior to the hollow dielectric waveguide
for use in long distance optical transmission. Because of the relatively
large dielectric constant exhibited by aluminum at optical frequencies,
the attenuation constant for the lowest-loss mode TEy, is comparatively
small and less sensitive to curvature of the guide axis. For a radius
a = 0.25 mm and a wavelength A = 1, the attenuation constant for
TEo modes in the straight aluminum guide is only 1.8 db/km, which is
doubled for a radius of eurvature of about 48 meters. For a = 0.6 mm
and A = 3g, the TEy, straight guide loss is also 1.8 db/km but is doubled
if the radius of curvature of the waveguide axis is 7Hm.

We have considered some of the theoretical problems of the hollow
dielectric or metallic waveguide. The results are promising. Neverthe-
less, the usefulness of these guides has yet to be proven experimentally,
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and furthermore the attenuation constants discussed here do not include
scattering losses due to surface imperfections.
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