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A new and simple algorithm for computing a discrete Hankel transform, which does not rely on the fast Fourier transform 
is described. In the solution of certain types of differential equations this algorithm can provide a major improvement in speed 
and accuracy over previously described methods. An application to a particular form of the transport equation relevant to a 
class of problems in electron scattering is given. 

1. In trodu c t ion  

The Hankel transform has proven to be extremely useful in problems associated with optics, geophysics, 
electron scattering and many other areas. Recently, many methods have been proposed for computing a 
discrete form of this transform [1-8]. Most of these methods have been described in the literature as 
"quasi-fast" since they take advantage of the speed of the fast Fourier transform algorithm. In this paper 
we report on a new algorithm which is finite, and which does not rely on the fast Fourier transform. 

The algorithm which we describe provides a number of advantages over previously described methods. 
First, the algorithm is simple and easy to implement. Secondly, this algorithm has the same reciprocity 
properties of the continuous transform, and it is hoped that further study of the unique symmetry 
properties of this discrete transform will lead to a truly fast algorithm in which a fast Fourier transform is 
not utilized. Lastly, this algorithm can provide a moderate improvement in speed and accuracy over most 
other algorithms for the straight-forward computation of a Hankel transform, and provide a major 
improvement in speed and accuracy in problems in which a "back"  transform of related nature is needed, 
such as in a convolution, or the solution of various types of differential equations. An application to a 
problem of such a nature, namely the solution of a particular form of the transport equation relevant to a 
class of problems in electron scattering, will be given. 

2. H a n k e l  t r a n s f o r m  - a de f in i t i on  and r e v i e w  

We can write Hankel's generalization of the Fourier-Bessel transform of f(x) as 

F~(R) =fo=f(x)J~(xR)x dx,  v>_- - 1 / 2 ,  

where the reverse transform is given by 

/0 /(x) = F, , (R)JAxR)R dR, - 1 / 2 ,  

where 

fo ~f(x)x t/2 dx 
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must exist and be absolutely convergent, and where f ( x )  satisfies Dirichlet's conditions (of limited total 
fluctuation) in the interval [0, oo]. 

For the purpose of determining a discrete transform we will assume that f ( x )  = 0 for all x > T, and 
define r = RT/ j  u (Ju = Nth  zero of J,(x)) so that the forward transform can be written as 

2 1 
F,(rjN/T ) = r fof(XT)J,(XUN)X dx (4) 

and the reverse transform is written as 

"2 ¢~ 

f ( xT)  = /-ff7 £ F.(~jN/T)L(x~jN)," d,'. (5) 

We can now expand f ( x T )  over [0, 11 using Lommel's  generalized version of the Fourier-Bessel series [9], 
namely, 

f ( xT)  = ,,,=x J~+l(J,,,) L(j,,,x), 0 _< x _< 1, (6) 

k0,  l < x < o o ,  

where j,,, are the zeros of J~(x) arranged in ascending order, and where the coefficients C,,, are given by 

C,,, = folXf(xT)S~(j,,,x) dx.  (7) 

We now make the additional assumption that C,,, = 0 for all m >/N. Since we can choose N and T 
arbitrarily large, we suffer no loss of generality by having imposed this additional assumption on the 
properties of f (xT) .  Taking the transform of eq. (6) utilizing eq. (4), we obtain the well established result 
that 

and 

F. (~ , /T )  = T2C,,, when r =Jm/JN (8) 

N-I 2F,,(j,,,/T)j~(tjN).~, 
F , (r j~/r )  = Y'. J. . .2 ,2.2 ' 

, , ,=1  v+l(Jm)(J, , , - -  "JN) 

Applying eq. (8) to eq. (6) we also see that 

I f ( x T )  = ] ,,=1 J,L,(J, , ,)  T2 "" 

k0,  

O < r <  oo. (9) 

0 ~ x ~ l ,  

l < x ~ .  

(lo) 

3. A new discrete Hankel transform algorithm 

This last equation gives an exact relationship between f ( x T )  and the values of its transform at 
particular values of r. We now need a similar relationship, relating F, OjN/T) to values of f ( x T )  at 
particular values of x. In order to derive this relationship we make use of the following orthogonality 
relation (the derivation of which is in appendix A). 

.I.. 2 4. .2 N-t~ j,,(j,,,jp/jjv)j~(j~jjjN ) = ~,,, ~, m, i < N .  (11) 
~+,(J,,,)JN ,-1 s,?+l(j,) 
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Setting x =Jp/JN in eq. (10), multiplying both sides by J.(JpJi/J,,), and summing, one obtains 

T 2 N~_] 2J,(jpj/jN ) 
F,,(j/T)= ~ p-1 J?+l(Jp) f ( jpT/jN ). (12) 

Therefore, we can write an exact pair of discrete transform equations as 

N - I  T 2 N - l  

1 - -  Z Y~(m, i) f( i) ,  (13) f ( i )  =-~-~ E Y~(m, i)F,,(m), F . ( m ) =  j~¢ ,=, 
m = 1 

where 

F.(m) = g( j . , /g) ,  f(i) =f(j,r/jN), Y.(i, m) = 2L(jiL,/ju)/J.2+,(j.,). 

This now can be taken a step further. If we insert eq. (12) into eq. (9) we obtain a relationship between 
f (p)  and F,,OjN/T) at continuous values of i". 

T= 
F " ( t j N / T ) = V p - 1  JJ?+l(Jp) m=l Jv+l(Jm)(Jm-" .2 rZ'.IN)'2 

This can be further simplified by recognizing that the inner sum on the right-hand side of the above 
equation is the first N - 1 terms in the Fourier-Bessel series for J,(jpr). We can therefore writ6 for r < 1 

T 2 %1 2f( j / jNT ) 
F"(rjN/T) = 7 p=l J,,Z+l(Jp) S.(jpr) +e, (14) 

where 

T 2 %  1 2f(4T/JN) ~ 2J~(J"'J'/Ju)J~(tJN)J"' (15) 

£=7  p=l J}+l(J.) ,,,=N S.+l(S;,,)(S;,2,-r2S~) 

For most functions f(xT),  the error in approximation (14) rapidly becomes small for increasing values of 
N. In fact, for values of N greater than 10 this error can be less than 1%. An example will be given in the 
next section. 

By further utilizing the methods used in appendix A, additional orthogonality relations can be derived. 
Some of these relations include the following (see appendices B and C for proofs and additional relations), 

2 • .v  -v N-12J,,(X.,jr/jN)J.(t.,g/jN ) S.+,(Jp) 2(v + 1)arJp 
E s?(x,,,)S~ = ~"'" 2 s~o+, + q ( u ) ,  (16) 

n l = l  

)%, = ruth zero of J.+l(x), 
N 2 Jv+ l ( jm)kk/)k N ) Jv+ l (.~,,)~p/)k N ) 28. k s"a(hp) + % ( N ) ,  (17) 

Z j2+ 1 ( j,,, ) ~k % , 

N-1 =Sp. s}+l(j') S'+l(Jr)S'+l(JP) +%(N) (18) 
E s g ( x , ) x ~  , 2 2N ' 

t;! ~ 1 

. -1  Z+,(a~j,, , /J.)4(J,, ,J/J.) 
E 2jN: 2 . .2 = fo 4(xJP)4+'(XXk) dx + %(N), (19) 

,,,-1 S"' J.+I(J,,,)JN 
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where numerical analysis indicates that for v -- 0 

c1( N ) < O.014jkjp/j ~, 

, 2 (N)  < O.O12jkL/j  ~, 

%(N)  < 0.024j~ "S, 

c 4 ( N )  - . ~  5 . 3 < 0.015(jkL ) • / j~ ,  

k,  p < N ,  N > 3 ,  

k,  p < N ,  N > 3 ,  

k,  p < N ,  N > 3 ,  

k,  p < N ,  N > 3 .  

These additional relations combined with the original orthogonality relation in eq. (11) may prove to be 
useful in numerically computing the solutions to various types of differential equations which require 
Hankel transforms. 

4. Examples - speed and accuracy 

It is first illustrative to make a direct comparison of a typical FFT method for computing a Hankel 
transform to the method described above. The method chosen for comparison, is that of Candel [2] which 
calculates the HT by mean~' of a single one dimensional FFT followed by repeated summations of 
pre-selected Fourier components. This method involves M log2M multiplications and M 2 +  M log2M 
additions whereas our method requires N 2 multiplications and additions. As shall be seen, we can choose 
N to be considerably smaller than M not only because of the faster convergence rate of our method, but 
also because there is no need to double the size of the array by extending it from [0, col to the interval 
[ -  co, co] for purposes of computing the FFT. 

The first two examples we choose are those presented by Candel [2], the discontinuous function 

1, ~ < a ,  
f l ( ~ ) =  0, ~ > a  

Which has the analytic transform 

F(r) -- a J , ( a r ) / r  

and the reciprocal of the above, namely 

= 

which has the transform 

1, r < a ,  
F ( r ) =  O, r > a .  

For. the purpose of separating fl(~) and f2(~) into discrete points we choose 

1, I n l < h ,  
A(n)= O, In l>h ,  

where 

and 

n = 1 , . . . ,  N,  T- - ' t rN/2  for our transform, 

n -- - 3 4 / 2 ,  - M / 2 + 1  . . . .  , M / 2 - 1 ,  M / 2 ,  T '  = "nM forCandel'stransform 

f 2 ( n ) = J I ( j , , T / j N ) / ( j . T / j N ) ,  n = 1 . . . .  , N,  T =  ~rN/4 
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for our transform, and 

f JI(2nT'/M)/(2nT'/M), 
=  1/2, 

- 1 ) t  iJ,s)i(2(,,- 1 ) T ' / M ) ,  

n = 1 . . . . .  M / 2 ,  

n = O,  

n = - 1 . . . . .  - M / 2  

for Candel's transform. 
As a last example we choose f3(~) = (~2 + 1)-2 which has applications in problems dealing with the 

elastic scattering of electrons. In this case, the analytic transform is F ( r )  = rKl(r)/2, where Kl(r ) is the 
first order modified Hankel function. 
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Fig. 1. Transform of the step function f i tS )  using our method. The solid line is the exact transform, the dots are the numerical 
transform. (a) N =  5, h = 5; (b) N = 20, h =10;  (c) N = 64, h = 20. 
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Fig. 2. Transform of the step function f l (~ )  using Candel 's  method. The solid line is the exact transform, the dots  are numerical 
transform. (a) M = 40, h = 10; (b) M = 128, h = 20; (c) M = 512, 11 = 40. 

The results for these three examples are given in figs. 1-6. In all cases, the free parameters h, T, T '  
were chosen so that a rough attempt was made to optimize the accuracy of the transform for the given 
value of N or M. 

As can be seen from these figures, our method represents a considerable improvement in accuracy for 
similar values of the total number of discrete points utilized in the transform. We also notice from the 
error between the discrete transform and the actual transform that Candel's method of computing the HT 
introduces an additional quantity of "noise" into the final result, a consequence of the approximate 
integration rules utilized in summing pre-selected Fourier components in this method of the HT. 

We can now make a closer examination of the approximation in eq. (14). Fig. 7 and 8 show a 
comparison of eqs. (14) and (9) for the first two examples. In all cases, it can be seen that eq. (9) converges 
rapidly to eq. (14) and that for N > 10 there exists very little difference in these plots. 
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Fig. 3. Trans fo rm of f2(~)  = aJl(a~)/~ using our  method.  The sol id  l ine is the exact  t ransform,  the dots  are the numer ica l  t ransform. 
(a) N = 25, T = 20; (b) N = 50, T = 40; (c) N = 200, T = 160. 

It is now necessary to consider the speed of our transform. As previously noted, Candel's algorithm 
requires approximately M log2M multiplications and M 2 additions, whereas our algorithm requires N 2 
multiplications and additions. As evidenced in figs. 1-8, N can be chosen to be considerably smaller than 
M in order to achieve the same degree of accuracy. An earlier paper by Brunol and Chavel [1], which 
compares an algorithm similar to ours to a typical F F T  method of computing the H T  indicates that the 
Brunol and Chavel method of computing the HT  is marginally quicker than a typical F F T  algorithm for 
computing a HT  to the same degree of accuracy. Both the Brunol and Chavel method and our method rely 
on the convergence of a Fourier-Bessel expansion in the computation of the HT. One would expect 
therefore, that our algorithm would be similar in speed and accuracy. 

The real advantage in speed for our algorithm does not, however, manifest itself directly in examples 
where a straight-forward HT  is performed on a representative function. Rather, the speed advantage of our 
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Fig. 4. Transform of f2(~) = aJl(a~)/~ using Candel 's  method.  The solid line is the exact transform, the dots are the numerical 
transform. (a) M = 50, t =16;  (b) M = 200, T =  64; (c) M = 512, T--128.  

algorithm is seen most clearly in applications to the solution of various differential equations where it is 
necessary to follow a forward HT with a 'reverse' or related type of transform. In these examples our 
method can represent an order of magnitude or more improvement in speed. An example is given in the 

next section. 

5. Successive forward-backward transforms 

One particular application in electron microscopy in which the advantage of our algorithm is 
demonstrated is that of the case of computing the intensity of collected electrons which have undergone 
plural .scattering in traversing a specimen of thickness t and are then collected through an aperture of 

semi-angle a. 
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Fig. 5. Transform of f 3 ( ~ ) = 1 / ( ~  2 +1)2  using our  method. The solid line is the exact t ransform, the dots  are the numerical 

transform. (a) N = 5, T = 2.0; (b) N = 20, T = 6.0; (c) N = 64, T = 18. 

The angular distribution of an electron beam which has undergone plural scattering can be derived as a 
solution to a particular form of the transport equation [10], namely 

01(t, Iql) 1 1 .+4  . ~  = - ~ I ( / ,  I q l ) + - ~ l  .,_ jo I(t, lal)P(Iq-al)OdO, 
Ot 

(20) 

where 

Iq - 012 = q2 q_ 02 _ 2q0  cos q,, 

q = momentum transfer vector, p( Iq I) is the axially symmetric single scattering probability distribution 
normalized to unit intensity, i.e. f p(  Iq I) dO = 1, l ( t ,  Iq I) = multiply scattered beam intensity, ?, = mean 

free path for single scattering. 
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Fig. 6. Trans form of fa (~)  = 1 / ( ~ 2  + 1) 2 using Cande l ' s  method.  The solid l ine is the exact  t ransform,  the dots  are the numer ica l  

t ransform. (a) M = 20, T = 3.0; (b) M = 64, T = 10.0; (c) M = 512, T = 80. 

This differential equation can be solved by taking the Hankel transform of both sides, slightly 
rearranging terms and integrating. After subtracting the unscattered beam (in order to avoid numerical' 
difficulties) one obtains 

t ( t ,  0) = I0 e 1], 

where ^denotes the transformed variables and function, and 10 denotes the incident beam intensity. The 
"collected" beam intensity can then be written 

f:I(t, q)q d q =  f;q dq fo°°loe-'/X[e '#(O)/x- 1] J0(q~)~ d~. (21) 
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Fig. 7. A comparison of eqs. (9) and (14) for the transform of the function f 3 ( ~ ) = 1 / ( ~  2 +1)  2. The thick solid line is the exact 
transform, the thin solid line is a plot of eq. (14), and the dotted line is a plot of eq. (9). (a) N = 2, T=1 .5 ;  (b) N =  5, T =  2.0; (c) 

N ~ 20, T = 2.0. 

After reversing the order of integration we obtain 

["I (  t, q )q  dq = etI o e - ' / x  [~¢[e '~(O)/x - 1] J1 (0 a)  dO. (22) 
J 0  "0 

\ 

Ordinarily one may numerically compute this result in any one of a number of ways. Once the transform 
of p(q )  is computed, one can either take the back transform of I 0 e-t/X[e t~(o)/x-  1] and numerically 
integrate such as in eq. (21), or one can numerically integrate eq. (22) directly. Both of these procedures are 
extraordinarily inefficient. In the first case, one needs to compute two full N × N transforms in addition to 
a numerical integration in order to obtain the result for a single value of ct. In the second case, the 
numerical integration of eq. (21) directly, requires a large number of steps, particularly for larger values of 
a, because of the degree of fluctuation of the function Jl(qa)  [4]. Most importantly, it should be noted 
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Fig. 8. A comparison of eqs. (9) and (14) for the transform of the function f2(~) = aJ t (a~) /~-  The thick solid line is the exact 
transform, the thin solid line is a plot of eq. (14), and the dotted line is a plot of eq. (9). (a) N = 4, T = 7; (b) N = 10, T = 12; (c) 

N = 50, T = 40. 

that one cannot simply evaluate eq. (22) by attempting a back HT of order 1 because the transforming 
function does not satisfy the convergence criteria of eq. (3). 

All these inefficiencies can be overcome by utifizing eqs. (13) and a variation of eq. (19), results which 
take advantage of the basic underlying properties of Bessel functions. To do this, we first compute values 
of j ( j J T )  using algorithm (13). We then can compute the value of the function 

G(Ji lZ)  = I o e-tlX(e 'l~U'lr)lx - 1). (23) 

This first step is a procedure which is similar to any other method for solving this problem, except that the 
algorithm in eq. (23) generates the coefficient G(j i /T )  free of the "noise" that results from approximate 
integration rules used in typical FFT algorithms. 
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In order to take the "back" transform as indicated by eq. (22), we first notice that eq. (9) can be 
analytically integrated using a variation on Hankel's integral [11] (see appendix C) to obtain the exact 
result 

oo N 2Fo(jJT)Jx(jkx) fo F°(rJ~c/T)St(rxjz¢) dr= Y'~ (24) 
k-1 JNjkSl2(Jk) 

This relationship can then be combined with eq. (22) to obtain the solution 
N 2G ( jk/T ) JI ( jkc~/T ) 

fo I(t, q)q dq = a )--', (25) 
k-1 j s (j )r 
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Fig. 9. A demonstrat ion of the rate of convergence of eq. (25) in calculating the intensity of collected electrons which have undergone 
plural scattering in traversing a specimen of tlfickness t ~ 2h.  The elastic scattering differential cross section utilized is that given by 
eq. (26) [or 0 o =1 ,  I 0 =1 .  The solid fine represents the exact value of f~I(t, q)q dq  and the dotted line represents the computed 

numerical value. (a) N = 5, T = 15; (b) N = 10, T = 15; (e) N = 30, T =15.  
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Thus the final step of this calculation for a particular value of a, has been reduced to a simple N step 

summation, which is noise free. 
To illustrate this we can take a simple model 

through a solid state medium such as [12] 

1 1 p(O) = 4¢' 

for the probability of elastic scattering of electrons 

(26) 
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Fig. 10. A demonstration of the rate of convergence of the application of Candel's method of the HT in computing the intensity of 
collected electrons which have undergone plural scattering in traversing a specimen of thickness t = 2X. The elastic scattering 
differential cross section utilized is that given by eq. (26) for 00 = 1, I0 = 1. The solid line represents the exact value o f / ~  I( t ,  q)q  d q 

and the dotted line represents the computed numerical value. (a) M = 50, T=15;  (b) M = 200, T=15 ;  (c) M = 1000, T=15 .  
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where 00 is some characteristic scattering angle and p (0 )  is the normalized differential cross section for 
the elastic scattering of an electron through an angle a. 

It is illustrative to first generate the curve for the intensity of collected electrons, scattered through a 
specimen of thickness t = 2h as a function of collection aperture halfangle a. From fig. 9, it can be seen 
that eq. (25) rapidly converges to the exact result. In this figure the dotted line represents eq. (25) for 
various values of N and the solid lines represents the exact result computed for the limiting case N >> 100 
for eq. (25). It can be seen for values of N = 30 the computed result is indistinguishable from the real 
result. 

On the other hand, if one generates this curve by taking the forward and back H T  utilizing Candel's 
method and then numerically integrating (as in eq. (21)) one obtains the result in fig. 10. As can be seen, 
this method totally fails for large angles a. The reason for this result is that simply summing "pre-selected 
Fourier components", leads to integration errors which are compounded when one back transforms and 
then numerically integrates. This problem can of course be overcome by utilizing more exact integration 
methods in summing Fourier components (as discussed in Candel's paper), but of course this leads to 
much longer computation times. Whereas, the curve in the bottom of fig. 9 is generated via two transforms 
utilizing N '  × N '  operation (N '  = 30), FFT methods require at least two transforms requiring M log2M 
operations followed by an M step numerical integration (where M > 200 and where great care must be 
taken in choosing approximate integration methods). Clearly this is a more complicated procedure. 

In a typical contrast calculation of importance to electron microscopy, such as those made by Crewe 
and Groves [13], one is ultimately interested in computing the intensity of collected electrons as a function 
of specimen thickness. Our method of making this calculation is particularly suited to generating this 
curve. As indicated by eq. (25), after the array ~(ji/T) is generated, one simply needs to compute the 
values of 6~(¢~) followed by an N step summation for each value of a. On the other hand, utilizing eq. (21) 
and a typical F F T  method for computing the HT, one would need to perform a full M log2M transform 
followed by a numerical integration for each value of a. Generating L points in the curve requires in the 
first case, N ×  L "operations" (where N =  30) whereas the second case requires on the order of 
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Fig. 11. A computation of f~ l(t, q)q dq as a function of specimen thickness utilizing eq. (25). 



196 1t. Fisk Johnson / Computing a discrete Hankel transform 

(M log M + M) × L "operations" (where M > 200). Thus in general, these methods differ in computation 
time by a factor of about L. In a typical application L = 100 so computation times may be as much as 100 
times faster. Of course, it may be more efficient to numerically integrate eq. (22) directly, but because of 
the degree of fluctuation on the function Jl(qcO the numerical integration will still require a very large 
number of steps, and thus utilizing eq. (24) remains considerably more efficient. 

Fig. 11, illustrates the use of eq. (24), to generate the required curve. In this example N = 50, 0 = 1.0, 
a = 1.5 and I 0 = 1.0. This curve took less than a few seconds to generate on a Prime 750 computer utilizing 
the Primos 19.4.2 operating system. 

5. Discussion 

We have seen that utilizing the algorithm in eq. (13) for the purpose of computing a numerical HT can 
afford a number of advantages over those algorithms previously discussed in the literature. As evidenced 
by the work of Brunol and Chavel [1], algorithms which rely on the convergence of a standard 
Fourier-Bessel series expansion, such as that of eq. (13), take less computation time to achieve the same 
degree of accuracy as standard FFT  methods for computing a straight-forward Hankel transform. 
Additionally, in some applications, particularly those in which a follow up back transform is needed, the 
use of our algorithm can lead to a considerable reduction in computation time. The reason for this 
dramatic improvement is two fold. First, errors introduced through approximate integration rules, a 
characteristic of standard FFT  methods of computing the HT, are not compounded when making a follow 
up transform. Stcondly, in some applications it may be necessary and possible to analytically integrate eq. 
(9) or eq. (14), as in the last example. It may additionally be possible to use one of the relationships in eqs. 
(16)-(19) in determining a solution. For example, eq. (15) may be relevant to problems in which Dini's 
expansion [11] is required. 

In summary, in solving a differential equation requiring Hankel transforms, one may be able to 
dramatically improve the speed of calculation utilizing some of the fundamental principles outlined in this 
paper. It is also hoped that further study of some of the unique symmetries of our particular algorithm 
may lead to the development of a truly fast algorithm. 
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Appendix A 

We first consider a variation of the Hankel-Schl~ifli contour integral [11], namely 

1 2(lJv(XW)Jv+l(lw ) -- xJ~(tw)Jv+l(~Cw)) 2 ~ i f  ( t 2 - x 2 ) j 2 ( w )  dw, 

where x + t < 2, v is real, v >I - 1 / 2 ,  and/x = v + p  where p is an integer. 

(A.1) 
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Fig. 12. Fig. 13. 

It can be verified that the residue of  the integrand at w =j~,.,, is 

2 : . (x j~ , . . , ) : . (  tj~,,.,)/sf+,(j~,,,,,), (A.2) 

where j. , . ,  is the ruth zero of J~,(w) arranged in ascending order. 
If  # ~< p then the residue at w = 0 is zero. If  # = v + 1 then it can be verified that the residue at zero is 

4(~, + 1)x ' t ' .  (A.3) 

We now consider the contour  of  integration as a partial rectangle with vertices + B i ,  C + Bi, and with a 
side that crosses the real axis at A N where A N is chosen so that j u  < A N <JN+x. This is illustrated in fig. 
12. 

By considering the asymptot ic  value of the integrand for large argument,  one finds that the integral 
along the upper  and lower sides of the contour  tend to zero as B ~ oo provided that x + t < 2. 

We can therefore write 

_ _  1 f + i o o  t \ 2J.(xj . , . , lJ.(t j . . . , )  _ 1 fc+ioOg(w ) dw+ 2-~J-ioo gtw)  dw, 
',,,=, Jf+l(J~,,,,,) 2~ri c - i ~  

r 

where the contour  for the integral on the right must  cross the real axis at A N , and where 

g ( w )  = 2(  tJ~(xw)J~+l(tw ) - xJ~(tw)J~+l(xw) } / ( t  2 - x 2 ) j 2 ( w ) .  

Since g(w)  is an odd function of  w, we not  only notice that 

1 f+ioo : \ ~ ( 0 2 ( u + l )  x~t~ if /~<~, ,  Co(t, x; Ix, v ) = - ~ i  J._ioo gl.w) d w =  i f / z = 1 , +  1, 

but  we also notice that we can now write 

1 fei'=A N t \ 
TN(t,  x; l~, u) = 1 fc+iOOg(w) dw+~__~iJe%+ioogtw)dw.  

aN 

where 

N 2S.(xj~,.,,,)S.(tj~,,.,) 
TN( t, X; I x, I , )= , , -1  ~-" S/,,,,,( . + Co(t, x; Iz, p). 

(A.4) 

(A.5) 

(A.6) 

(a.7) 

(A.8) 
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Now if we make the substitution 

V(w) = w ( tJ~(xw)J~+l(tw) - xJ~(tw)J.+t(xw) } / (  t 2 - x2), 

8 

dV(w) = -r dw = - -  

, S~(w) 

where 

dU(w) = wJ~(xw)J~(tw) dw, V ( w ) =  
i ~ ( w )  

2dw 

We can integrate eq. (A.7) by parts to obtain 

1 1 r c + i o o  . . rN(t, x; ~, ~)= [U(ei~AN)V(e'~AN)- U(AN)V(AA] ~ i  + ~ i  JA~ VCw~ dVIw) 

+ 1...l_/e"Au V(w) dU(w).  
2~ri Jei.~c+ ico 

Noting that/~ = v + p where p is an integer and assuming v is real, we can then write 

TN(t, x; #, 1,)= AN( tJ"(XAN)J"+x(tAN)- xJ~(tAN)J~+I(XAN)} 
t 2 - -  X 2 

21 f,+i~oA~ wJ"(xw)J~(tw)H~a}(w) J .(w) dw 

1 fc+i*o wJ~(xw)J~(tw)H~X)(w) )* 
- 2  a~ J~ (w)  dw , (A .9)  

where * denotes the complex conjugate t. If we now define u - xA N, o - tA N, we can make a change of 
variables and write 

TN(o/A N, U/AN; I~, p ) /A~= °S~(u)J~+l(°)- uJ"(o)J~+l(U) 
0 2 - -  U 2 

It is now illustrative to examine the asymptotic value of the above integral. If we set w = X + iy  then it can 
be shown that 

I-I(~X)(ANw) ~ 1 - -  sinh(ANY) c°sh(ANY) + i  s i n ( A N x + * )  c o s ( A N x + * )  (A.11) 

J~,(ANw) sinh2(ANy)+cos2(ANx+qJ) sinh2(ANy)+cos2(ANx+q,) ' 

f This follows from the verifiable fact that 

- . ,*S .  ( -  x,,,*) S. ( -  t,,,*)H2) ( - .,*) 
sA-~* ) 

for real v,  

saw) 
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where q) = - ~r/z/2 - ~r/4. If we choose X = 1 and A N =J~,N we can see that 

H~I)(j N + i jNy) /J~( jN + i jNy ) = -- e-JNY/sinh(jNy ). (A.12) 

If we now take the dominant terms in the asymptotic expansion of wJ.(uw)J.(ow) we obtain 

t+ i~Re{WJ. (uw)J~(vw)H~l ' ( jNw)  i } 2 ~ e-J~Y d ( u , v , y )  dy  , d r  = ~ (A.13) 
- ' t  f J~,(jN w) 'n~-ff -o sinh(jNY) 

where 

d(u,  v, y )  = [sinh(uy) cosh(oy) sin(u + q~) cos(v + ~) 

+ sinh(oy) cosh(uy) sin(v + ~) cos(u + q))]. 

This integral can now be evaluated by taking y as a complex variable and integrating the integrand of 
(A.13) around the rectangular contour with vertices 0, ~ri/j N, A, A + ~ i / j  N. Taken in the limit A ---) oo, we 
obtain 

2 f ~  e -j~y 2 u s i n ( u + q ) ) c o s ( v + q ) ) - v s i n ( v + ~ ) c o s ( u + ~ )  
Irx]-u-ff -~ s inh( juy ) d(u,  v, y)  dy  = ~r--'~uo u 2 - v 2 

s i n - ~  sin(u + , )  cos(v + q)) - sinY~-v sin(v + q,) cos(u + q,) 
1 JN JN (A.14) 

jNx/-ffff COS( ~rv / j  N) -- COS( 'tr u / j  N ) 

We can now write 

- f lc+i~Re( wJ~(uw)J~(vw)H~l)(jNw)J~(jNw ) dw)  

• ' lT l l  . 4 0  

vJ, , (u)4+l(v ) - uJ~(v)J,+,(u) .~ s'n J-~ J ' + l ( u ) J ' ( v )  - s'n~NJ"+~(v)J"(u) 
(A.15) 

0 2 - -  U 2 2jN cos(~rv/j N) - cos( ~r u/ j  u ) 

Thus ~ve can write 

sin ~ru. j~+x(u)j,,(v ) _ sin .Irv j .+t(o) j , , (u  ) 
TN(/O u ) 1 ~r J~.N J~,,N (A.16) 

" -  ; " - -  2s.,N N J.,~ J;,N 

for u, o <J~t,N" 
We now can establish a few fundamental properties of the function 

, . - -  ; / x , u  
N JI~,N . 2  J/,,N 

From the asymptotic expansion of H~t)( jNw)/J.( jNw) in eq. (A.12), it is clear that if we choose u =jp 
then 

( j N + i j N P ) J . ( j p + i j p p ) J . ( v + i v p ) H ~ t ) ( j N + i j N P )  fO, p > 0 ,  
lim 

N--. ~ J. ( JN + i jNP ) bounded, p = O, 
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Therefore it is apparent that the integral in the latter part of eq. (A.10) is zero in this limit. Thus, we may 
write 

N--,~--" ( j :  "L'P--; J~,." v )1 ~ J,,pJ.+l(J~,,p)4( ° ) l im r,,  
N J;,N "2 __ 02 Jv ,p 

(A.18) 

and for v =J,,k 

rim T ( i~.k X . , .  Vl 1 8 , . k :A~( j , . , )  
N--.• NIj,.N'J,.N' ft, ] "= = 2 J~.N 

This is the desired orthogonality relation (eq. (11)) for the limiting case N ~ co. For finite N, eq. (A.16) 
strongly suggests that 

77N , ~ .N [ .g.k. ' J"PJ~.N ; I~, V ) .21 = 8P'kJ~2+ I ( J~"P 
J~,N 

(A.19) 

When one numerically evaluates TN(j, r/J, N, J~ e/J~, N; I ~, V) one finds that relationship (A.19) is exact to 
within the limits of computational e~or (~10  u ' )  for /~--v  = 0 and for zeros calculated accurately to 7 
decimal places. If, however, the smallest value of N is taken (N = 1) we find 

4j ° ( j 2 / j z ) / j~  (jl) g = 0 •9999739. 

The deviation from expression (A.19) for this case is 2.61 × 10 -s. If we take the appropriate Taylor 
expansions of the above expression, it is found that the expected computational error should be about 100 
times less. Thus, it appears that the relationship may not be analytically exact. 

For all other values of # and v it is found that for values of N > 30 that (A.19) holds to within the 
limits of computational error (-t-10-7). For smaller values of N, the relationship does not hold exactly. 
The worst case ( N =  1) giving a deviation from eq. (A.19) of at most +10 -3. 

As a point of additional interest, if we now choose X = 1 and A N = K,, N =-(J~,,N +J~,N+I)/2 in eq. 
( A l l )  to obtain 

H(~I)(K~,.N+iK~.Ny) e-K~.,y 
r , . ,  + iK,.,y) cosh(/q..y)' 

we can evaluate expression (A.9) in a similar manner as before to obtain 

o_L_ u.___L_.. ) 1 

• ' f l U  ql '0 "fly "f lU 
sm 2--~-~. ., cos 2---~.. Jo+x(u) J , (o  ) - s i n ~ c o s ~ J o + x ( v )  Jo(u) 

"fl ~,.N ~.N 2K~,.N 2K~,.N 
2K~.N 

(A.20) 

This relationship yields a whole new set of orthogonality relations which include all those given in eqs. 
(11), (16)-(19) with JN replaced by ½(JN +in+l)"  
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Appendix B 

Eqs. (16) and (17) follow immediately from eq. (A.16). 
We can derive eq. (18) by writing eq. (10) as 

N 2F,+l(hm/r ) 
f(Jkr/XN) = E J,.+~()t,,,Jk/)tN) (B.1) 

,,,-1 J~2 (X,,,) T2 

if we now multiply both sides by 2J~(hpjJ~N)/J~+l(jk)X 2 and sum with respect to k, by utilizing 
relationship (17) we obtain 

(F.+dx,/r).  p<g,  
J,,+t(jkXp/hN) = ~ 4N F "T" (B.2) 

N T 2 2f(jkT/)tlv) 
E 
~-x G Jg+l(J~) 

If we now multiply both sides of the above equation by 2J.+l(Xpj.,/hN)/J2(hp)h% and sum p from 0 to 
N, we obtain (after a little algebra) 

E S2(~tp)T2 4+x(XpJk/~.,) 
p - 1  

N 

E 
k=l  

2f(jI, T/XN ) ~ 1  2j~+l()tpjt,/XN)j~+l(~t,,j,,,/)tN) 

Jg÷~(Jk) ,-1 Jg(x,)G 
On comparison with eq. (B.1) we obtain 

,,,-12s..+,(x,,j,/x~,)sv+~(x#,,,/xN) 
E ,-1 sg(x,)x% 

+ L+x(Jk)L+I(L,) ] (B.3) 
2N j 

~2 
= ~ v+ l ( J k )  Jp+ 1 ( J k )  Jr+ 1 ( L , )  

.... k ~ 2N 
+c .  

Appenq, ix C 

Eq. (19) can be derived using a similar contour integral to that used in appendix A, such as integrating 

1 J"+'(hkWlJN){J~(w)H(~X)(Jkw/JN)--J~(jkw/jN)H(~X)(w)} dw 
2~i f J,,(w) 

over the same contour illustrated in fig. 12. We can also, however, integrate a variation on Hankel's 
integral [11] namely 

1 [ J~+l(az)H(~l)(bz) dz 
2'rri J z 2 _ r 2 

over the contour as illustrated in fig. 13, where B is allowed to approach infinitly and where the 
indentations abound the origin and around the singularities at + r are allowed to become infinitely small. 
Taking the real igart of this result, we obtain 

J~(bz)S~+l(az) dz ].+l(aw)U.(bw) 
fo ° = b > a, (C.1) g2 _ W 2 2 W ' 
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l e t t ing  b =JN, w =Jp/JN, a = ajN an d  a < 1, we see 

fO .2 • • ' 
OL<I ,  

j ; - z  JN #4,+,(#)JN 

Ut i l i z ing  this resul t  to in tegra te  eq. (9) direct ly  we o b t a i n  

N- ,  2F~(jm/T) j .+l(aj , , , )  
fJo F"( ' jN/T)J~+x(a 'JN)dr= ~ j 2  • ,n-t ,+t(Jm)Z,,JN 

i f  we now use algorithm (13) we obtain 

F,,(dJT)4,+,(,~dN) dr= N-,E 2f(jpT/j~) ~1 24,(JpL,/Ju)4,+l(~L,) r 2 f 
Jo p : t  J,,2+l(Jp) M : t  J,,+I(J,,,)J,,,JN J~ 

A c c o r d i n g  to eq. (14), we can  wri te  the l e f t -hand  side of  the above  e q u a t i o n  as 

T~ ~1 2f(jvT/jN)J" . folJ,.(jff )J,+t(atjN) dr 
J# ,-1 ,7+,(#) 

= r_~ ~ ~ '  2f(j,T/JN) ~ '  2Z,(4L,/J~IL+,(~L,) 
JN 2 v - 1  J.2+t(Jv) ,n-1 J,,2+,(J,,,).L,,JN 

which  yields the des i red  resul t  

N-, 2J,(j#,,,/j~)s,,+x(~j,,,) 
flJ,,(Jpr)J,,+x(ctrjN) dr"~ E J2+l(j,,,)jmJN "o 11"1 = 1 

(c.2) 

(c.3) 

(C.4) 

(c.5) 
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