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Multistep method for wide-angle beam propagation
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A new beam-propagation method is presented whereby the Pade approximant wide-angle propagation operator
is factored into a series of simpler Pade (1, 1) operators, thus leading naturally to a multistep method whose
component steps are each solvable by using readily available paraxiallike solution techniques. The resulting
method allows accurate approximations to true Helmholtz propagation while incurring only a modest numerical
penalty. In addition, the tridiagonal form of the component steps allows the straightforward use of the
previously reported transparent boundary condition.

The beam-propagation method has proven to be an
extremely important tool in the simulation of guided-
wave optics since its inception. Although initially
limited to the study of paraxial beams, methods have
recently been reported1" that include approximate
treatments of wide-angle propagation. Such exten-
sions are invaluable not only for the simulation of
propagation at large angles to the axis but also be-
cause they allow accurate propagation through re-
gions whose refractive index may differ greatly from
the input reference index.

However, all the methods currently available for
wide-angle propagation suffer from serious draw-
backs. Those based on eigenfunction expansions3
require recalculation of the eigenfunctions whenever
there is a change in waveguide structure. This
is numerically expensive because of the large
number of eigenfunctions that must be included and
also requires relatively complicated coding. Another
method based on an expansion of the field in terms of
a set of so-called Lanezos vectors2 has been found to
exhibit convergence problems.5 Several authors'4 '6
have employed various Pad6 approximations of the
Helmholtz operator. In one case6 this approach
leads to difference equations that are only first order
in the propagation step size. Otherwise, the lower-
order Pad6 approaches1 are numerically attractive,
but their range of validity is still somewhat limited.

In an attempt to broaden this range, a recent
method4 utilized a sequence of higher-order Pad6
approximant propagation operators to provide an ar-
bitrarily close approximation to true Helmholtz prop-
agation. Unfortunately, this increase in accuracy
was obtained only at the expense of a corresponding
increase in matrix bandwidth as the order of approx-
imation was increased. Thus, complicated general-
izations of the simple Thomas tridiagonal algorithm
to treat matrix equations of bandwidth 2n + 1 for
a Pad6 (n,n) scheme were required. Although the
n = 2 case is not particularly difficult, algorithms
for n > 2 involve significantly greater complexity and
run times and were therefore not tested.

In this Letter, a simple finite-difference beam-
propagation method is presented whereby the
higher-order Pad6 approximant operators derived

previously4 are expressed as factors of Pad6 (1,1)
operators, thus resulting in a simplified multistep
algorithm. Because each component step is tridiag-
onal, wide-angle propagation may now be performed
by using well-known, efficient solution algorithms
commonly employed for paraxial propagation. (A
similar factorization has recently been employed
to perform high-order paraxial propagation.7 ) This
capability should in turn allow the modeling of
more complex photonic structures and systems than
was previously possible, without undue numerical
penalty. Furthermore, the fact that each component
step is tridiagonal also allows a straightforward us-
age of the transparent boundary-condition algorithm
previously reported for paraxial propagation.8

A description of the present simplified method
begins with the scalar propagation equation obtained
using a Pad6 (n, n) approximation of the true
Helmholtz operator,4

OH = iNH
az D

where N and D are polynomials
operator P, defined as

(1)

of degree n in the

P-ko2[ (x) _ n2] + V12, (2)

and z refers to the distance along the axis of prop-
agation. In Eq. (2), ko is the vacuum wave vector,
e(x) is the dielectric function of the medium, and n
is the reference index. If Eq. (1) is discretized using
standard centered differencing, we obtain

D(IP+l - H-) = iAZN(H + H+),
2

(3)

where the superscript indicates position along the z
axis. Equation (3) may be conveniently recast in the
form

n

Ir+1 = i=O

Y ei*pi
i=o

(4)
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where eo = PO = 1 and the other e's are easily de-
termined from the coefficients of the polynomials N
and D.4

Since a polynomial of degree n can always be
factored in terms of its n roots, we may rewrite
Eq. (4) as

H.,, = (1 + aP)(1 + a2P).. .(1 + a,,P) Hn7
(1 + ai*P)(1 + a2*P).. .(1 + an *P)

Simple relationships exist between the two parame-
ter sets defined by Eqs. (4) and (5). For example, for
n = 2 we have

a, + a2 = el)
ala2 = e2 , (6)

and for n = 3 we have

a, + a2 + a3 = 61,

aja2 + a2a3 + ala3 = 62,

ala 2a3 = 63. (7)

In general, determination of the a's requires the
one-time solution of an nth-order complex algebraic
equation.

It is apparent from the form of Eq. (5) that an nth-
order Pad6 propagator may be decomposed into an
n-step algorithm for which the ith partial step takes
the form

Jr+ i 1 + aiPmP nH . (8)
Each such partial step is unitary and tridiagonal

(block tridiagonal for propagation in three dimen-
sions). These two important properties imply that
the resulting algorithm is fast and unconditionally
stable. The run time for an nth-order propagator is
obviously n times the paraxial run time. Because
the latter is usually short, the resulting algorithm is
capable of providing extremely accurate wide-angle
propagation with only a modest numerical penalty.

The tridiagonal form of the constituent steps also
affords another advantage, allowing the straightfor-
ward use of the transparent boundary-condition algo-
rithm previously developed for paraxial propagation.8
This algorithm has been shown to simplify greatly
the modeling of problems in which radiation loss at
the boundaries is encountered. Although currently
in use for paraxial propagation,9 previous attempts
to extend it to higher-order methods had been un-
successful. By using the present multistep method,
its use is identical to that in paraxial propagation,
except that the field ratio8 should only be updated
after a complete propagation step.

The formalism described above applies to both
two- and three-dimensional propagation. However,
its application to three-dimensional problems still
awaits efficient methods for the solution of the
component step described by Eq. (8), because the
well-known split-step method' is not second-order
accurate when a is not purely imaginary. Conse-
quently, we demonstrate the accuracy and utility
of the above approach using only two-dimensional

test cases. The first such test case involves the
propagation of an initial Gaussian beam through a
uniform medium at an angle of 450 with respect to the
z axis. The vacuum wavelength for this calculation
was 1.06 um, the medium was given an index of
refraction of unity, the reference index was also set
to unity, and the initial Gaussian intensity profile
had a width of 2.828 Am at the l1e points. The
beam was propagated with a 0.01-/um step size on
a field of width 50 ,m that contained 1280 mesh
points in order to minimize discretization error.
The propagation was performed by using both two-
step (n = 2) and three-step (n = 3) methods and
was subsequently compared with a known analytic
solution for true Helmholtz propagation computed by
numerical evaluation of a complex Fourier integral.

The resulting intensity profiles computed by using
the two-step method and the analytic solution are
shown in Fig. 1, along with the paraxial result to pro-
vide additional perspective. The two-step results are
highly accurate and appear to be identical (as they
should be) to results for this same test case reported
previously4 that used a Pad6 (2, 2) operator and
a pentadiagonal solution algorithm. Corresponding
results for the three-step method are shown in Fig. 2.
These results are clearly more accurate than those
obtained using the two-step method, reproducing the
analytic results to within 1%. More importantly,
however, these latter results were obtained with vir-
tually no increase in code complexity and only 50%
more run time than the two-step method. Indeed,
further increases in accuracy (higher-order meth-
ods) will require still smaller fractional increases in
run time, thus aptly illustrating the real power of
this approach. By comparison, the propagation of
a beam using a Pad6 (3, 3) operator and a single
step would require the use of more complicated and
time-consuming band matrix inversion routines.

The second test case involves the computation of
the effective mode index of a simple ridge waveguide
by using beam propagation and, more specifically,
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Fig. 1. Intensity profiles resulting from the propagation
of an initial Gaussian beam having a 450 phase tilt a
distance of 10 ,Am through a uniform medium. Results
for the two-step method are compared with the exact ana-
lytic results. Paraxial results are included for additional
perspective.
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input, the mode index was then determined from
the change in phase between adjacent propagation
steps together with the assumed reference index.
As expected, an input reference index of 3.34562

Three-Step Method resulted in a calculated mode index of the same value,
Analytic regardless of the propagator used. However, as the
Paraxial reference index was increased from this value, an

error was observed in the calculated mode index that
varied significantly with the propagation method,
as is shown in Fig. 3. This figure clearly shows a
decreasing sensitivity of the calculated mode index
to errors in the reference index for the higher-order
methods as required. For the three-step method [la-

..... beled Pad6 (3, 3)], a reference index error equivalent
20 25 30 to propagation through air with a reference index

appropriate to GaAs was still found to result in a
im the propagation mode index error of less than 10-3.
a 450 phase tilt a In conclusion, this Letter describes the simplifi-
medium. Results cation of the Pad6 approximant approach to wide-
redywithpahedexact angle beam propagation to a multistep method
iacy compared with whose component steps are each tridiagonal in form.
.ndicated. This simplification allows the use of well-developed,

efficient paraxial solution techniques to accomplish
. . . ._____-- accurate wide-angle propagation and thus make

possible the modeling of wide-angle photonic devices
_ __ __ __ __ - such as microlenses. This simplified form also

allows the use of the transparent boundary condition
to remove radiation scattered to the problem bound-

_IPaze(4' 2 _____ - aries. Although present usage of this multistep
^ 11 _ _ _ _ approach is restricted to two-dimensional propa-

gation, application to three dimensions will follow
automatically once an efficient method for solution
of the component-step block tridiagonal equations is

_ l y __ I I I discovered.
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Fig. 3. Error in the calculated mode index of a simple
ridge waveguide is plotted versus the reference index
error (reference index minus the correct mode index) for
several propagation schemes. Parameters for the calcu-
lation are given in the text.

its dependence on the input reference index. Be-
cause true Helmholtz propagation does not involve a
reference index, insensitivity of the calculated mode
index to this input index serves as a convenient
measure of propagation accuracy.4 For this test,
light of wavelength 1.064 Aum was propagated along
a 2.0-,utm-wide waveguide of indices 3.34179 (outside)
and 3.34865 (inside) until a steady-state fundamental
mode profile was obtained. By using this profile as

This study was performed at Sandia National Lab-
oratories and was supported by the U.S. Department
of Energy under contract DE-AC04-76DP00789.
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