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Non-diffractive vector Bessel beams
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(Received 14 November 1994 and accepted 30 January 1995)

Abstract. The non-diffractive vector Bessel beams of an arbitrary order are
examined as both the solution to the vector Helmholtz wave equation and the
superposition of vector components of the angular spectrum. The transverse and
longitudinal intensity components of the vector Bessel beams are analysed for the
radial, azimuthal, circular and linear polarizations. The radially and azimuthally
polarized beams are assumed to be formed by the axicon polarizers used with the
initially unpolarized or linearly polarized light. Conditions in which the linearly
polarized Bessel beams can be approximated by the scalar solutions to the wave
equation are also discussed.

1. Introduction

The concept of the so-called diffractionless propagation of electromagnetic
waves, proposed for the first time by Durnin [1, 2], plays an important role in optics
as it provides convenient techniques for reducing an inevitable diffractive spreading
and enhancing beam directivity. Exact solutions to the scalar wave equation known
as Bessel beams [4], Gauss—Bessel beams [5—7] and Weber beams [8] were obtained
for free-space propagation. The aperture realizations of such beams were simulated
numerically to examine properties of the realistic nearly non-diffracting fields
[8—10]. Various apodization techniques were proposed to eliminate the undesirable
oscillatory behaviour of the axial intensity of the truncated beams [11-13]. There
exist several experiments for generating the nearly non-diffracting fields. The
simplest solution to the scalar wave equation, the zero-order Bessel beam, can be
obtained by applying an annular ring mask [14], holographic optical element [15, 16],
reflective, refractive or diffractive axicons [17-20], aberrated lens [18] or two-
element aspherical system [21,22]. Bessel-Gauss beams can also be generated
directly from the laser resonator [23, 24].

Recently, attention has also been concentrated on the vector non-diffractive
solutions to the free-space wave equation. Romea and Kimura [25] developed the
wave equation on the assumption that the longitudinal electric field resembles
the zero-order Bessel function of the first kind. The model resulted in a radially
polarized diffraction-free beam whose radial electric field corresponds to the
first-order Bessel function of the first kind. The radially polarized non-diffracting
beam was also realized experimentally by Tidwel et al. [26] and it was suggested that
it could be used for accelerating relativistic particles. The azimuthally polarized

1 Also with Joint Laboratory of Optics of Palacky University and Physical Institute of
Academy of Sciences of the Czech Republic.
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non-diffracting beams were examined by Jordan and Hall [27]. Such beams were
obtained as solutions to the paraxial wave equation for the azimuthal beam
component.

This paper describes the non-diffractive beams as solutions to the vector
Helmholtz wave equation. The possibility of realizing such a beam experimentally
is explored by applying the vector angular spectrum composed of polarized plane
waves. We examine the general solutions providing radially, azimuthally, circularly
and linearly polarized Bessel beams of an arbitrary order. The radially and
azimuthally polarized beams discussed in [25, 26] can be obtained from our results
as special solutions. We also derive expressions for the transverse and longitudinal
electric fields of the linearly polarized Bessel beams. The electric field components
are circularly non-symmetric and in general cannot be approximated by the scalar
solution to the wave equation, as stated [27]. Radial and azimuthal polarizations are
examined for the non-diffracting beams produced by axicon polarizers by using
initially unpolarized and linearly polarized light, respectively.

2. Concept of the vector non-diffractive beams

2.1. Solutions to the vector wave equation
Consider a monochromatic electromagnetic field with the electric vector E given
in the form

E(r, 1) = 1[U(r) exp (— iwt) + U*(r) exp (iwt], (1

where U is a complex vector amplitude. On the assumption that the electromagnetic
field propagates through a source-free homogeneous isotropic medium, its vector
potential A can be written as a superposition of the solutions to the vector Helmholtz
wave equation [3]

1
A(r) =EE (@M, + BN, + 7,L,), )
where
L=VY,
M=V XuY,
N = 1 VXM
. .

The used symbols u and ¥ denote an arbitrary constant vector and a solution to
the scalar Helmholtz wave equation, respectively, and & is the wave number. As the
vector potential is assumed to be solenoidal, the vector complex amplitude can be
written in the form

um=> a,M,+p,N,. 3)

On the assumption that u = u, is the unit vector in the z-direction and the solutions
of the scalar wave equation ¥, represent non-diffractive beams,
¥.(r) =J.(aR) exp (1bz) exp (ing), “

where @+ b6*=k?, and R, ¢ and z are cylindrical coordinates, the vector wave
functions, M,, and N,, can be written in the form
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M, =2 [uziUs-1@R) + Jy+1(aR)) = UyUn-1(aR)
— Ju+1(aR))] exp (ibz) exp (ing), )
N,= % [URib(y 1 = Ju+1) = Upb(Ju—1 + Jus1) + Us2a),] exp (ib2) exp (ing), (6)
where ug and u,, are unit vectors in the radial and azimuthal directions, respectively,
and J;=J{aR) denote jth-order Bessel functions of the first kind. The radial,

azimuthal and longitudinal components of the vector amplitude can now be written
as

.a . . . . _
Ur= =i exp(ibz) 2, exp(ing)(exp (i9)a ) + exp (= ip)ay )Mu(aR),  (7)
a . . . . _
U, =3 exp (ib2) >, exp (ing)(exp (i) — exp (— ip)ai_y)Ju(aR), 8)
2
U.= - ;’—b exp (ibz) . exp (in@)(o,") — ol )Ju(aR), 9
where

b
ai+)=an+;ﬁm

b
(V= 2
o, oy kﬁ"'

Let us now concentrate our attention on the simplest vector non-diffractive beams
which can be obtained from the general solution (7-9).

Example 1: Azimuthally polarized beam

- o
ot5,+)=oc£, )=a50,,, <A=— Mo):
10

UR = O,
U, = — anJi(aR) exp (ibz),
U.=0.

Example 2: Radially polarized beam

k
o= — o) = adon, <A =L No):
ibw
Ugr = i2a0J1(aR) exp (1b2),
U,=0,
&
U,= — n aJo(aR) exp (ibz).
Example 3: Circularly polarized beam

()= o) = Z“—k@ + ))
o, 0,0 aé;,.,(A b+ R kMz N:J):
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U= —i % Ji(aR) exp (ig) exp (ibz),

U,= 2‘22 Ji(aR) exp (i) exp (1bz),

aa
Uu,= - 2% Ja(aR) exp (12¢) exp (ibz).

Example 4: Linearly polarized beam

b
o) = bt o) = ad 1, <A=—.°‘ <M1+M_1+—(N1— N_l))):
120w k
U,= —iaaJo(aR)exp (ibz),

U, =0,
&
U,= — oc; Ji(aR) exp (1bz) cos ¢.

2.2. Decomposition to the vector angular spectrum
The vector complex amplitude of the electromagnetic field propagating into 2 > 0
can be decomposed to the angular spectrum of the form

U(r) = exp (ikz) ”’_ a(p,q)exp [ — 4k(p® + ¢))z]lexp [ik(px + gy)] dpdg, (10)

where p and ¢ are the direction cosines of the angular components with respect to
the x and y axes, respectively, and the direction cosine m, related to the z axis, was
approximated by m=1— (p*+ ¢*)/2. Applying the azimuthal angles @ and ¢, the
angular spectrum can be rewritten to the form [4]

ik
2n

where s =s(p, ¢, m) is the unit direction vector. To obtain the non-diffractive field,
the angular spectrum must be related to the Dirac delta-function

(@ — Oy)
|sin @()I ’
where @y < 1/2 and V(@) is an arbitrary vector complex function. By using the polar

coordinates R and ¢, the vector complex amplitude of the non-diffractive field can
be written in the form

T /2
U(r) = J’ d(i)J’ d@ sin OF(O, ¢) exp (1ks 1), an
-n 0

F(O,¢9)=V(¢) (12)

.k T
V() =5 exp (b2) f V($)exp [iaR cos (¢ — ¢)] do, (13)
where
a=Fksin@,
b=Fkcos @,
@ = @0.

On the assumption that the field amplitude is the scalar function of the form
i —(n+1)

V= Z

exp (in@), (14)
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we obtain the known diffraction-free beam transverse intensity distribution which
is given by the Bessel functions J,.

Let us now concentrate our attention on the vector non-diffractive beams which
are assumed to be composed of the angular components given by the Dirac
delta-function (12). Such angular components are plane waves with their wave
vectors kg on the conical surface. The vector amplitudes of the plane waves
V' (p)=(V,,V,, V) are defined in the Cartesian coordinate system (x',y’,z")
whose 2'-axis coincides with the wave vectors kg. The corresponding vector
amplitudes V(¢) =(V,, V,, V) used in equation (13) can be obtained by the matrix
transformation

V(¢)=V' ()T, (15)
where
~sin¢ cos ¢ 0
T=| —cos@cos¢p —cosPOsing sin® |. (16)

—sin@cos¢p —sin@sin¢g cosO

If we now define the vector amplitudes V', the various polarized non-diffracting
beams can be simply examined.

3. Radially and azimuthally polarized non-diffractive beams

The simplest solution providing the radially polarized non-diffracting beams can
be obtained on the assumption that its angular spectrum is composed of plane waves
with constant amplitudes and phases at the given plane = 2 = zo. In that case, the
amplitude components can be written as

V,=Vo=const, V,=V,=0. a7n

The proposed model is related to the experiment in which unpolarized light is
transmitted through axicon polarizers. As stated in [28] this technique can provide
both of the nearly pure radial and azimuthal polarizations, respectively, with
transmission of the wanted component of more than 96%. On introducing the
amplitude transformation (15) into (13), the beam amplitude components can be
obtained analytically as

UJR, ¢)= — Vobcos pJi(aR) exp (ibz), (18)
Uy R, @)= — Vibsin pJi(aR) exp (ibz), 19)
UAR, ¢) = iVoaJo(aR) exp (ibz), (20)

where Jy and J; are the zero and first-order Bessel functions of the first kind,
respectively. The beam is radially polarized with the radial and longitudinal
intensity components given by

IT(R) =}V b i(aR), (21)
IL(R) =}V a*J (aR). (22)

The transverse and longitudinal intensity components (see figure 1) depend upon
b=Fkcos@ and a=ksin @, respectively, so that the longitudinal component of
the field is appreciable only for beams with a small spot size. Note that the
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Figure 1. Intensity of the radially polarized non-diffractive beam generated by an axicon
polarizer (n=0, unpolarized input wave): (4) normalized transverse intensity
component, (b) normalized longitudinal intensity component.

above-examined angular spectrum (12) and (14) with =0 provides the non-
diffractive zero-order Bessel beam in the scalar approximation.

Consider now the more general vector beam whose angular spectrum consists of
components with phases varying in dependence on the azimuthal angle ¢. Such a
situation is important as the phase variations of the angular components result in
high-order Bessel beams in the scalar approximation. The radially polarized beam
can now be defined by the amplitudes of the angular components given by

V= Voexp (ing), Vi=V,=0. (23)

Applying the transformation matrix (16), we obtain the following amplitude

_components of the formed non-diffractive beam

U(R, ) =i"" 4V obexp (inp)[exp (i9)J,+ 1(aR)

—exp (— ip)J,—1(aR)] exp (1bz), (24)
Uy(R, @) =i"* "} Vb exp (ing)[exp (i9)J, + 1(aR)

+exp (— i)/, - 1(aR)] exp (ibz), (25)
UAR, @) =i"* Y aexp (inp)J,(aR) exp (ibz). (26)

The transverse and longitudinal intensity components can be expressed in the form
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Figure 2. As in figure 1 (n=1, unpolarized input wave).
2 2 2
IT(R) =1V b’(J - 1(aR) + J 5, ((aR)), (27)
IL(R) =}V id'J (aR). (28)

Results obtained numerically for n=1 and »n =2, respectively, are shown in
figures 2 and 3. Note that the transverse intensity component is non-zero at the axial
points of the beam only if n = * 1. Asis obvious, the above-examined non-diffractive
beam can be formed from initially unpolarized light. If the examined axicon polarizer
providing radial polarization is used with the initially linearly polarized light [28],
the amplitudes of the angular components become

V,=Vycospexp(ing), V,=V,=0, (29)
and the amplitude components of the generated beam are obtained in the forms

UJR, ) =i"*V1Vbexp (ing)[J.(aR) — L(exp (12¢)],+ 2(aR)

+ exp (— i2Q), - 2(aR))] exp (ibz), 30)
UyR, ) =i""P4Vobexp (inp)[exp (12¢)), + 2(aR)
—exp (—12¢)J, - 2(aR)] exp (ibz), 31

UR, ¢) =i""P4Voaexp (ing)[exp (i¢), + 1(aR)
—exp (— i@),—1(aR)] exp (ibz). (32)
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Figure 3. As in figure 1 (n= 2, unpolarized input wave).

The circularly non-symmetrical intensity distributions can now be obtained as
IR, @) =4V b+ 3002+ T0-2) = Uns 2+ T, - )Wucos 2¢], 33)
IR, ) =4Via*(J sy + T2 1= 2ns1Ju 1008 20), (34)

where J;=J(aR). As is obvious from figures 4 and 5, the intensity distributions are
circularly non-symmetrical due to azimuthal amplitude dependence of the angular
components. On the assumption that the linearly polarized input wave is
transformed by the radially polarizing axicon without azimuthal phase variations,
i.e. n =0, the amplitude components of the generated diffraction-free beam can be
simplified to the forms

UAR, @) = i3 Ve[ Jo(aR) — cos 2¢Jx(aR)] exp (1bz), . (35
U,(R, 9) = — i1 Vobsin 2¢Jx(aR) exp (ibz), (36)
U.(R, )= — Voacos ¢Ji(aR) exp (ibz). 37

We now consider the azimuthally polarizing axicon used with the unpolarized and
linearly polarized input light, respectively, so that the corresponding amplitudes of
the angular components can be written as

V5= Voexp (ingd), V.=V.=0, (38)
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Figure 4. As in figure 1 (n= 0, linearly polarized input wave).

Vi=Vocosgexp(ing), V,=V.=0. (39)

Applying the transformation matrix (16) we can verify that the amplitudes of the
azimuthally and radially polarized beams are simply related as

1

Ud(ry= - 5 U (r), (40)
(az) _ 1 (rad)

Uj (')‘Z Uy, (41)

U%(ry=0. (42)

4. Linearly polarized nondiffractive beams

The simplest form of the linearly polarized non-diffracting beam was examined
in example 4 as a solution to the vector Helmholtz wave equation. Let us now discuss
the possibility of generating such a beam from the linearly polarized wave applying
the linear axicon. The examined experimental situation is related to the field
amplitudes by

cos O cos ¢
=T 2 T a2
(cos® @ + sin® @ sin® ¢

v 77 5P (ind), (43)
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Figure 5. As in figure 1 (n =1, linearly polarized input wave).

' sin ¢ _
V =
! (cos O +sin’@sin’ ¢)'? exp (in¢),

V.=0.

(44)

(45)

Applying the transformation matrix (16), the amplitude components of the formed

linearly polarized non-diffractive beam can be obtained in the form

U.=0,

U, i' "RV exp (in@) exp (ibz) 2 v (exp (= i2¢Q)J - 24+ n)
¢=0

+ exp (1299 - ),
U,=1i""1kV,exp (ing) exp (ibz) tan @ 2 wylexp [ — 1(2¢ + 1)@lJag—n+1
qg=0
+ €xXp [1(2q + 1)(P)J— (2q+n+ I)))

where

2 -1
( m > _(bn—l)tanzm@’
m—q m!8”

%=@ 1+( )2

m=gq

(46)

(47)

(48)
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On the assumption that the angular plane wave components are superposed without
phase changes, i.e. n =0, the simplest form of the realizable linearly polarized beam
can be expressed as

U,=0, (49)
U, =i2kVyexp (ibz) >, v/2(aR)cos2q, (50)
q=0
U, =kVyexp (ibz) tan @ E wel24+ 1(aR) sin 2q@. (31
q=0

The used coefficients v, and w, strongly decrease with increasing g (see figure 6) so
that the simplest form of the linearly polarized beam discussed in example 4
represents a good approximation to the one obtained in the experiment only if the
beam central spot is much larger in comparison with the wavelength.

5. Conclusions

The amplitude components of the vector non-diffractive beams were obtained
as general solutions to the Helmholtz wave equation. The simplest beam forms were.
related to the radially, azimuthally, circularly and linearly polarized beams.
The possibility of realizing such beams was discussed, applying the vector angular
spectrum for the experiments based on the axicon polarizers used with both the
initially unpolarized and linearly polarized light.



Downloaded by [University of Arizona] at 20:39 04 August 2011

1566 Non-diffractive vector Bessel beams

Acknowledgment
This work was partially supported by the Grant No. 202/94/0789 of the Grant
Agency of Czech Republic.

References
[1] DURNIN, J. E., 1987, J. opt. Soc. Am. A, 4, 651.
[2] DURNIN, J. E., MICELL J.J., and EBERLY, J. H., 1987, Phys. Rev. Lett., 54, 1499.
[3] STRATTON, J. A., 1941, Electromagnetic Theory (New York: McGraw-Hill).
[4] M. NIETO-VESPERINAS, M., 1991, Scattering and Diffraction in Physical Optics
(New York: Wiley).
[5] Gorl, F., GUATTARI, G., and PADOVANI, C., 1987, Optics Commun., 64, 491.
[6] ZaHID, M., and ZUBAIRY, M. 8., 1989, Optics Commun.,. 70, 361.
[71 MARoN, E., KoNFORTI, N., MENDLOVIC, D., and KATz, J., 1993, in SPIE Proc. Conf.,
Optics as a Key to High Technology, Budapest, Hungary, p. 526.
[8] Vicari, L., 1989, Optics Commun., 70, 263.
[9] OVERFELT, P. L., and KENNEY, C. S., 1991, J. opt. Soc. Am. A, 8, 732.
[10] BoucHAL, Z., 1993, J. mod. Optics, 40, 1325.
[11] Cox, A.]., and DiBBLE, D C., 1992, J. opt. Soc. Am. A, 9, 282,
[12] Cox, A.]., and D’ANNA, J., 1992, Optics Lett., 17, 232.
[13] HErRMAN, R. M., and WIGGINS, T. A., 1992, Appl. Optics., 31, 5913.
[14] LiN, Y., SEKA, W, EBERLY, |J., HUANG, H., and BROWN, D. L., 1992, Appl. Optics,
31, 2708.
[15] TURUNEN, J., VASARA, A, and FRIBERG, A. T., 1988, Appl. Optics, 27, 3959.
[16] Cox, A.]., and DiBBLE, D. C., 1991, Appl. Optics, 30, 1330.
[17] PtreEz, M. V., GOMEZ-REINO, C., and CUADRADO, J. M., 1986, Optica Acta, 33, 1161.
[18] HERMAN, R. M., and WIGGINS, T. A,, 1991, J. opt. Soc. Am. A, 8, 932.
[19] AriMOTO,R.,SALOMA, C., TANAKA, T., and KAWATA, 8., 1992, Appl. Optics, 31, 6653,
[20] ScotT, G., and MCARDLE, N., 1992, Opt. Engng, 31, 2640.
[21] THEWES, K., KARIM, M. A., and AwwaL, A. A. 8., 1991, Opt. laser Technol., 23, 105.
[22] IFTEKHARUDDIN, K. M., AwwaL, A. A. S,, and KARIM, M. A., 1993, Appl. Optics,
32, 2252.
[23] UEeHARA, K., and KIKUCHI, H., 1989, Appl. Phys. B, 48, 125.
[24] JaBczyNskl, J. K., 1990, Optics Commun., 77, 292.
[25] RoMEA, R. D, and KiMURA, W. D., 1990, Phys. Rev. D, 42, 1807.
[26] TiDWELL, 8. C., FOrRD, D. H., and KIMURA, W. D., 1992, Opt. Engng., 31, 1257,
[27] JorDaN, R. H., and HAaLL, D. G., 1994, Optics Lett., 19, 427.
[28] ScHAFER, F.P., 1986, Appl. Phys. B, 39, 1.



