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Transparent boundary condition for beam propagation
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A new boundary condition algorithm is presented that passes outgoing radiation freely with a minimum reflection
coefficient (typically 10-5) while inhibiting the flux of incoming radiation. In contrast to the commonly used
absorber method, this algorithm contains no adjustable parameters and is thus problem independent. It adapts
naturally to a standard Crank-Nicholson difference scheme and is shown to be accurate and robust for both two-
and three-dimensional problems.

The beam-propagation method is currently the most
widely used tool for the investigation of complex op-
toelectronic structures such as tapered or bent wave-
guides and Y junctions.1-3 Unfortunately this meth-
od is notoriously weak in modeling structures that
permit radiation loss, since that radiation tends to
reflect from the problem boundaries back into the
solution region where it causes unwanted interference.
The seriousness of this problem follows from the fact
that virtually all the structures of interest do in fact
result in scattered radiation. The most common way
of preventing boundary reflection has been the inser-
tion of artificial absorbing regions adjacent to the per-
tinent boundaries.4 This procedure is accurate, pro-
vided that the absorbing region is carefully tailored,
i.e., by using a small enough absorption gradient so
that the absorber itself does not generate reflections
and a thickness sufficient to absorb all radiation im-
pinging upon the region. Unfortunately, ensuring
that these conditions are properly met for each new
problem is often a difficult and time-consuming pro-
cess. Even when one is successful, the addition of
extra problem zones results in computational penal-
ties of run time and storage space. Recently, a differ-
ent beam-propagation algorithm was reported (the so-
called method of lines) that properly treats radiation
loss through the problem boundaries.5 This method
is quite effective for longitudinally uniform structures.
Because it is essentially an eigenmode expansion tech-
nique, however, the treatment of problems containing
longitudinally varying dielectric constants is hindered
by the necessity of recalculating the eigenmode spec-
trum whenever the dielectric constant changes.
Thus, this method is cumbersome at best for simulat-
ing a number of important structures such as tapered
waveguides or Y junctions.

In this paper I describe a new boundary condition
algorithm that allows radiation to escape the problem
freely without appreciable reflection while prohibiting
the flux of radiation back into the problem region.
This transparent boundary condition (TBC) employs
no adjustable parameters and is thus problem inde-
pendent. In addition, it is easily incorporated into a
standard Crank-Nicholson differencing scheme and is
applicable to longitudinally varying structures of in-
terest for optoelectronics research.

A technical description of this new technique begins
by considering the scalar paraxial beam-propagation
equation. Since only the boundary region is of inter-
est, we further restrict ourselves to the diffraction
terms,
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where an additional exp(ikz) dependence was as-
sumed in the derivation of Eq. (1). By simple ma-
nipulations, Eq. (1) may be rewritten in the useful
energy conservation form

IE12dx = ( ,9E _ECE* b
Ox ax a
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where Fb represents the energy flux leaving the right
boundary and Fa represents that entering through the
left boundary. Since the treatment of the two bound-
aries is essentially identical, we consider only the right
boundary. We next make the important assumption
that at this boundary E = E0 exp(ikxx), where E0 and
k, are complex, and k, is for the moment unknown.
With this assumption, Fb becomes

Fb = R k,)Eb12 (3)k

Therefore, as long as the real part of k, is positive, the
contribution to the overall change in energy from this
boundary will always be negative, i.e., radiative energy
can only flow out of the problem region.

If we now consider the finite difference equivalent of
Eq. (1) using a standard Crank-Nicholson scheme, it
can be shown that the above energy balance relation-
ship is preserved. Thus, assuming the same exponen-
tial dependence described above, we adjust the bound-
ary value EM prior to the start of the (n + 1)th propa-
gation step so that

En[ En
- n = exp(ikxAx). (4)

EM-1 EM-2

This then determines kx, and the boundary condition
for the new propagation step is thus
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Fig. 1. Propagation of two Gaussian pulses through*
transparent boundary at different angles. Shown are sn
shots of the pulses at 30-/sm intervals.

EVM1 = EUM+1 exp(ikAx).

However, prior to the application of Eq. (5), thex
part of k, must be restricted to be positive to ens
only radiation outflow.

An important feature of the above procedure is t
kx is allowed to change as the problem progresses, ti
eliminating the need for a problem-dependent adjt
able parameter. However, the exact manner in wh
kx is determined is not an essential part of the meth
so that the prescription given in Eq. (4) (which i
used in obtaining the test results discussed bell
should be looked on merely as a reasonable start
point.

The TBC procedure described above has been tE
ed for accuracy and robustness on three test proble
the first two being two dimensional and the third
ing three dimensional. In each case the scalar par
ial propagation equation [the differenced version
Eq. (1) plus the extra dielectric function term] i
solved with a standard tridiagonal algorithm. 9
three-dimensional simulation employed a split-s
procedure (described in Ref. 6 as FDBPM), and
TBC algorithm was applied in a straightforward m
ner to each individual step.

The first test problem purports to provide a m
sure of the effective power reflectivity at the bound
by propagating two noninteracting Gaussian bea
through the right boundary and determining the fh
tion of the initial power remaining in the solut
region. The two beams are incident at angles of
and 11.5 deg, and their intensity profiles are showi
Fig. 1 at propagation distances spaced by 30 ,
These calculations employed 512 mesh points an
longitudinal step size of 0.2 tim. The beams ha
free-space wavelength of 0.828 Atm and were propaf
ed through a region that had a constant index of
fraction of 3.3. As is vividly shown in Fig. 1, the wa
virtually disappear into the boundary, which resulti
an effective reflection coefficient of 1.5 X 10-5.

The second test problem involves calculation of 1

energy lost to radiation that results from the passage
of light through a Y junction. The junction was com-
posed of a single-mode waveguide with an index step
of 0.0694 and a width of 2 ,um. With the single bound
eigenmode as an initial profile, the beam was propa-
gated through a Y junction defined by the union of two
waveguides of the type mentioned above with centers
located at ±[1 - cos(7rz/40)](t/2) (all distances are in
micrometers).4 The calculation was performed for
several values of the final waveguide separation, gov-
erned by the parameter t. The propagation was con-
tinued until only the bound mode remained in each
waveguide, and the amount of power in the mode was
noted. This calculation was done by using the TBC
and was then repeated by using the artificial absorber
method with standard Dirichlet boundary conditions.
The absorber was constructed by linearly ramping the
absorption coefficient to an optimal value, and it was

the extremely thick (145 zones) so as to serve as an accu-
a rate standard of comparison. Only half of the prob-

lem was zoned with 512 zones and a symmetry (OE/Ox
= 0) condition at the left boundary. Figure 2 shows
the fraction of power remaining in the waveguide for

(5) each method as a function of t. The two methods
agree to within 1% over the range of separations con-

real sidered.
ure For the third test problem, the radiation loss of a

three-dimensional Y junction was computed by using
hat as before the TBC and absorber methods. In this
ius case, however, the loss rate as well as the total loss was
ist- examined. The Y junction studied is a union of sin-
ich gle-mode waveguides with the same shape function as
od, in the two-dimensional case. The rib waveguide ge-
vas ometry employed (a structure that has been previous-
)w) ly analyzed 4 ) is shown in Fig. 3. The TBC calculation
ing was performed on a 4 ,um X 4 ,um problem region

subdivided into 64 horizontal and 80 vertical zones
,st- (only half of the problem was zoned in the horizontal
bMs, direction). For the absorption method calculations,
be- the problem region was expanded by adding addition-
ax- al absorption zones to the bottom and right bound-
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Fig. 2. Fraction of initial power remaining after the beam
traverses a smooth two-dimensional Y junction (wavelength
1.55 Am) and the radiative loss of all but the single bound
mode. The curves are for the TBC method (solid curve) and
the more conventional artificial absorber method (dashed
curve) using 145 absorption zones.
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Fig. 3. Cross-section schematic of the rib waveguide used
to construct the three-dimensional Y junction for the third
test. Only half of the device was zoned, with symmetry
boundary conditions employed at the left boundary.
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Fig. 4. Fraction of initial power remaining in a three-di-
mensional Y junction (wavelength 1.55 lm) versus propaga-
tion distance. The absorber method results seem to ap-
proach the TBC results as the absorption region thickness is
increased. The absorption profile used was that given in
Ref. 4.

aries with an absorption profile similar to that used in
Ref. 4. However, only the energy within the original
problem region was computed, in order to provide a
consistent comparison between the two methods. In
contrast to the second test case, the absorbers were of
limited thickness (8 and 20 mesh points) owing to
machine storage and run-time constraints. Figure 4
shows the fraction of the original energy remaining in
the guides as a function of longitudinal position for
both the TBC and absorber methods. Although the
results for the 8-mesh absorber are in approximate

agreement with previous calculations,4 the agreement
is not exact because in Ref. 4 the energy in the absorb-
ing region was included in the total. Figure 4 shows
clearly that the amount of energy absorbed is still
increasing as the number of absorption zones is in-
creased to 20 and that these results appear to be ap-
proaching the TBC results. As a further check, the
TBC calculation was run until a steady-state value for
the remaining energy fraction was reached (a propaga-
tion distance of 7500 Am). At this point the energy
fraction was 0.55, in excellent agreement with the val-
ue 0.545 determined previously. The latter was calcu-
lated by computing the overlap integral of the solution
at a distance of 40 Asm with the known bound eigen'
mode. 6

The three test problems presented here show con-
clusively that the TBC performs as well as or better
than the absorber method, without the need for tailor-
ing to a specific problem or extra computational zones
and without the ever-present uncertainty concerning
absorber optimization. The method appears to pro-
vide effective reflection coefficients of approximately
10-5, although it should be kept in mind that this
figure will depend somewhat on the angle of incidence
and will worsen as grazing incidence is approached.
Finally, the last two test problems illustrate the effec-
tiveness of the TBC in treating radiation scattered to
the boundaries through a wide range of angles. This
method should thus see significant use in future beam-
propagation calculations and is therefore expected to
affect strongly the design of complex optoelectronic
structures.
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