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Wide-angle beam propagation using
Pade approximant operators
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A new beam-propagation method is presented whereby the exact scalar Helmholtz propagation operator is
replaced by any one of a sequence of higher-order (n, n) Pad6 approximant operators. The resulting differential
equation may then be discretized to obtain (in two dimensions) a matrix equation of bandwidth 2n + 1 that
is solvable by using standard implicit solution techniques. The final algorithm allows (for n = 2) accurate
propagation at angles of greater than 55 deg from the propagation axis as well as propagation through materials
with widely differing indices of refraction.

The beam-propagation method is at present the most
widely used tool employed in the study of guided-
wave optics, largely owing to its numerical speed and
simplicity. These attractive properties result chiefly
from the use of the paraxial (Fresnel) approxima-
tion, which in turn severely limits the formalism in
the following two respects. First, beams containing
appreciable Fourier components at angles of more
than a few degrees from the propagation axis will
experience substantial phase errors; thus the method
cannot treat wide-angle propagation. Second, beams
propagating through regions with indices of refrac-
tion that differ by more than a few percent from the
input reference index will also suffer serious phase
distortion.

Attempts to generalize the formalism so as to over-
come these limitations have been few indeed1 -4 owing
to the severe mathematical difficulties2 that typically
accompany only modest advances in generality. So-
called wide-angle wave equations have been stud-
ied previously in connection with the propagation of
acoustic waves.5 In the arena of guided-wave optics,
methods tried include a Pad6 approximant scheme" 2
(a special case of the present, more general, formal-
ism), an approach based on the method of lines,3
and another utilizing iterative Lanczos reduction.4
The method of lines is essentially an eigenfunction
expansion technique that often requires considerable
numerical effort for waveguides of nonconstant cross
section. Propagation by Lanezos reduction is a new
technique whose validity for true wide-angle propa-
gation is still under investigation.6 In this Letter I
describe the application of the Pad6 approximant for-
malism to optical beam propagation. This approach
offers substantial improvements in both wide-angle
propagation and index variation tolerance while in-
curring (in the two-dimensional case) only a modest
numerical penalty. The formalism is generalizable
to arbitrarily high order, with a concomitant increase
in numerical complexity.

We begin by considering the scalar Helmholtz equa-
tion obtained by using the slowly varying envelope
formalism:

aH i a2H iP_ __ = -H,
az 2k az 2 2k'

(1)

where k = ko) with ko the free-space propagation
constant and ni the (input) reference refractive index
and where the operator P is defined by

P-k 22[ ( ) --2 ] + V12. (2)

We may formally rewrite Eq. (1) in the form

ip
aH= 2k H
az i a

1 2k az

Although of little use in its present
suggests the recurrence relation

(3)

form, Eq. (3)

ip
a I 2k

AZ n I _ i a
2k az In

(4)

If Eq. (4) is now used to replace the z derivative in the
denominator of Eq. (3) with an expression containing
only the operator P, then a useful propagator of
the form

aH iN
az D (5)

results, where N and D are polynomials in P. If
Eq. (5) is compared with a formal solution of Eq. (1)
written in the well-known form

= i(-P + k2-k)H,
az

(6)

then it becomes clear that Eq. (5) contains in effect
an (n, d) Pad6 approximant7 for the exact Helmholtz
operator in Eq. (6), where n and d are the highest
degrees of P in the polynomials N and D, respectively.
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Table 1. Most Useful Low-Order Pade
Approximants for the Helmholtz Operator in
Terms of the Operator P Defined in Eq. (2)

Order Expression

(1,0) P
2k

P

(1, 1)a 2k

1 + 4k2

p p2

(2, 2) 2k 4k3

4k2 + 16k4

p p2 3p3

(3,3) 2k 2k3 32k5

1 5P 3P2 P+ 3

4k2 8k4 64k6

aSee Refs. 1 and 2.

In a similar manner we may assess the ability of
the various propagators to propagate a beam accu-
rately through a region that has an index of refraction
considerably different from the reference index. For
this test, we set V1

2 - 0 so that P = k0
2(e/e0 - ii 2) _

-k2 (Ae/1W2 ). Using Eq. (6) as the standard, we once
again plot relative errors for each propagation method
in Fig. 2. As before, the various Pad6 approximant
operators afford dramatic improvements. The ex-
treme case of a beam whose reference index is that
of pure GaAs impinging upon an air interface cor-
responds to a relative dielectric constant variation
of -0.918, marked by the vertical line in the figure.
Even for this case the (3, 3) Pad6 is quite accurate and
the (2,2) Pad6 is tolerable, provided that discretiza-
tion errors are minimized.

Finite-difference equations may be derived from
Eq. (5) by clearing the denominator and centering
with respect to z in the usual way:

D(IP+1 - IP) = iAZN(Hn + Hn+1).
2

(7)

The most useful low-order Pad6 approximant opera-
tors that result from the application of Eq. (3) are
shown in Table 1.

An assessment of the accuracy of the various Pad6
approximant operators for wide-angle propagation
may be made for the case of a single plane-wave
component by comparing the predicted phase fac-
tor from Eq. (5) with the exact value obtained from
Eq. (6). For this comparison we set n2 = e/eo so that
P - V1

2 = -k 2 sin2 0 for propagation at an angle
0 with respect to the z axis. Figure 1 shows the
phase error obtained with a variety of propagators
relative to the exact value of -2ik sin2 (0/2). As is
clearly seen in the figure, the paraxial propagator
leads to sizable errors even for angles of less than
20 deg. By contrast, the (1, 1) Pad6 approximant
operator1'2 is highly accurate to - 30 deg. This op-
erator should be the recommended replacement for
the paraxial operator, since it offers a substantial
improvement in accuracy with virtually no numerical
penalty. Curves for the next two higher Pad6 ap-
proximants demonstrate increased accuracy at large
angles, although now at the expense of some increase
in numerical complexity. The utility of the present
approach may be more fully appreciated by noting
that the curve for the (3,3) case is mostly obscured
by another curve, labeled Expan (15th order). This
latter curve was computed by following the more
conventional approach of expanding the square-root
expression in Eq. (6) in powers of P up to order
15. It is remarkable that operationally equivalent
accuracy is obtained with only a third-order Pad6
approximation. However, this finding is consistent
with the properties of Pade approximants, which
typically behave much better for large arguments
than do the corresponding power series.7 Similarly,
the (2,2) Pad6 approximation is operationally equiv-
alent to an expansion of order 7-8. Operationally
equivalent means that the errors are similar for
angles large enough to incur a significant error but
possibly different for smaller angles where the errors
from both approaches are small.

In Eq. (7), the superscripts designate the z position.
The use of centered spatial differencing results in
the following form for the operator P for the two-
dimensional case:

PH|i = 2 (viHi + HiH + Hi-,),
£(AX)2

(8)

where

(9)i- o2(6 )2( 'E' _-) - 2.

Higher powers of P are constructed by repeated ap-
plications of Eq. (8). It is apparent from the form
of the above equations that difference equations con-
structed by using an (m, m) Pad6 approximation re-
quire the inversion of a matrix of bandwidth 2m + 1.
It can also be easily shown that these difference
equations are unitary and thus preserve the sum
of the absolute value squared of the solution vector
elements at each step. It should be pointed out,
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Fig. 1. Phase error incurred by the use of the operators
shown for propagation of a plane wave at various angles
with respect to the z axis. The curve labeled Pad6 (3,3)
is mostly obscured by that corresponding to the operator
obtained by expanding the square root in Eq. (6) to 15th
order in P.
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Fig. 2. Phase error incurred by the use of the opera-
tors shown for propagation of a plane wave along the z
axis through media of differing dielectric constants. In
each case the reference index is 3.5 (corresponding to a
dielectric constant of 12.25).
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Fig. 3. Intensity profiles resulting from the propagation
of an initial Gaussian beam with a 45-deg phase tilt a
distance of 10 Am through a uniform medium. The beam
was initially centered at zero, and the reference index
employed was unity.

however, that for wide-angle propagation this latter
quantity no longer has the interpretation of total
beam energy. A proper treatment of energy conser-
vation is a somewhat lengthy endeavor and is not
dealt with here.

Dirichlet or Neumann boundary conditions for the
above difference equations may be easily derived
through the introduction of fictitious mesh points
beyond the boundary, together with the application
of either odd or even symmetry. More complicated
boundary conditions such as the transparent bound-
ary condition ' 9 previously developed for paraxial
propagation are considerably more difficult to imple-
ment and are still under investigation.

Strictly speaking, extension of this formalism to
three-dimensional problems requires the inversion
of block (2m + 1) diagonal matrices, a numerically
intensive task. However, for a large category of in-
teresting problems that are expected to be paraxial in
one of the two transverse dimensions, the commonly
employed split-step procedure2 may be used, which
thus greatly reduces the numerical effort.

Finally, a demonstration of the accuracy and util-
ity of this technique follows from a comparison of
wide-angle beam propagation between three differ-
ent methods. This comparison was performed by
first propagating an initial Gaussian beam having
a 45-deg phase tilt through a uniform medium by
using both paraxial and (2,2) Pad6 wide-angle for-
malisms. The vacuum wavelength for this calcula-
tion was 1.06 Am, the medium was given an index of
refraction of unity, and the initial Gaussian intensity
profile had a width of 2.828 Am at the le points.
The beam was propagated with a 0.01-Am step size
on a field of width 50 pum that contained 1280 mesh
points in order to minimize the discretization error.
The Pad6 propagation was performed by using an
efficient pentadiagonal solution algorithm that is a
simple generalization of the familiar Thomas tridi-
agonal algorithm. Intensity profiles obtained after
a propagation distance of 10 Aum with both methods
were then compared with a known analytic solution
for true Helmholtz propagation computed by numer-
ical evaluation of a complex Fourier integral.

The resulting intensity profiles computed with the
three methods just described are shown in Fig. 3. As
is clearly seen, the paraxial calculation preserves the
Gaussian shape, propagates at an incorrect angle,
and underestimates the envelope spreading by almost
a factor of 2. In contrast, the wide-angle calculation
agrees with the analytic result to within - 3%, accu-
rately reproducing the correct non-Gaussian shape.

In conclusion, this Letter describes the application
of the Pad6 approximant approach to wide-angle
beam propagation. Although propagation at angles
approaching 90 deg would require the solution of a
matrix of moderate bandwidth, accurate propagation
at angles of as much as 30 deg can be accomplished
with a tridiagonal matrix, and accurate propagation
at angles of greater than 55 deg can be accomplished
with an easily solved pentadiagonal matrix. In
addition, these schemes allow accurate propagation
through media with a wide variety of refractive
indices, thus decreasing the need for an accurate
initial guess for the modal propagation constant.
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