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1. Introduct ion  

This paper is concerned with methods of evaluating numerical solutions of the non- 
linear partial differential equation 

O0 020 cgw 
Ot - Oz ~ 2  q cgt ' (1) 

where 
Ow 
Ot 

subject to the boundary conditions 

I O=f l (x )  
W = f2(x) 

O0 ~ =~(o) 

0O = H2(O) G 

- - -  kwe -A/O, (2) 

a t t = 0  f o r 0 < x <  1, 

a t x = 0  f o r t ) 0 ,  

a t z = l  f o r t > / 0 ,  

(3) 

A, k, q are known constants. 
Equation (1) is of the type which arises in problems of heat flow when there 

is an internal generation of heat within the medium; if the heat is due to a chemical 
reaction proceeding at each point at a rate depending upon the local temperature, the 
rate of heat generation is often defined by an equation such as (2). 

The presence of the non-linear term q(Ow/at) in (1) and the empirical nature, 
in many cases, of the surface heat transfer function Hi (0), render the use of formal 
methods unsuitable. Now Hartree [3-5] has suggested two methods (methods I and II 
below) of evaluating approximate solutions of partial differential equations in two 
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variables, of the heat-conduction type. In the first the time derivative is replaced 
by a finite difference ratio, and the resulting ordinary differential equation with x 
as independent variable is integrated numerically or mechanically. This integration 
is repeated for each finite step in time, and a trial and error process of solution is 
necessary to satisfy conditions at the two ends of the range in x. In Hartree's second 
method the range in x is divided into a finite number of intervals, and the second 
space derivative of 0 at each point is expressed in terms of the values of 0 at that 
point and at the neighbouring points on each side. In this way the partial differential 
equation is replaced approximately by a set of first-order equations in time, two of 
which express the boundary conditions at x = 0, x = 1 to the same degree of 
approximation. The differential analyser has been used to obtain solutions of these 
equations, the integration proceeding in time. In sections 2 and 3 of the present 
paper, the application of Hartree's methods to equations (1) and (2) with conditions 
(3) is discussed, and the difficulties arising in carrying out mechanical solutions are 
examined. 

The main purpose of this paper is to discuss a numerical method, method III 
below, developed by the authors in which both derivatives are replaced by finite 
difference ratios and the solution proceeds by finite steps in time. In a method proposed 
by Richardson [8, 9] the steps in time are overlapping which gives rise to a rapidly 
increasing oscillatory error. A method recently reported by the American Applied 
Mathematics Panel [1] would seem liable to a similar disadvantage. In the method III 
below, the time steps do not overlap and an iterative process is involved at each step. 
In this way the oscillatory error is removed and much bigger steps in time may be 
used than in Richardson's treatment. 

For convenience in discussion, the present paper refers to equations (1) and (2), 
but it is clear that the numerical method can be applied to other forms of equation (2) 
and is capable of extension to other types of second-order partial differential equations 
where there is an open boundary in one of the variables. 

2. Method I: replacing the time derivative 

Writing O(t) for temperature at time t, regarded as a function of x, and considering a 
time interval St, the derivative with respect to time may be written 

~t ( t  + l St) = O(t + gt) - O(t) + (4) 

Hence equation (1) becomes approximately 

1 0 2 [O(t+St) +0( t ) ]  - ( q / S t ) [ w ( t +  5t ) -w( t ) ] .  (5) (1/St)[O(t + 5t) - 0(t)] - 2 0 x  2 

Similarly (2) may be written 

(1/St)[w(t + St) - w(t)] = -~k[w( t  + St) + w(t)]e -2A/[°(t+~t)+°(t)l 
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o r  

where 

Therefore 

o r  

w(t + St) - w(t) = E[w( t  + 5t) + w(t)], 

w(t + st) 
log w(t) (approximately) 

(6) 

1 
= - -  ~ k S t  e - 2 A / [ O ( t + 5 0 + O ( t ) ]  . (7) E 

1 + Ew(t)" w(t  + dt) = 1 -  (8) 

Alternatively, on integrating with respect to time, (2) becomes 

t+S t  
= - k e -A/°  dt = kSt e -2A/[O(t+6t)+~(t)] 

, I t  

w(t + St) = w(t) e 2E. (9) 

It is easy to see that (8) and (9) reduce to the same for E small, for 

e zE = 1 + 2E + O(E2),  

and also 
I + E  

= 1 + 2E + O(E2).  
1 - E  

For E large, however, (9) is a better approximation to the original equation (2) 
than (8). The form (9) was suggested to the authors by Prof. D. R. Hartree. 

Now the equations (5) and (8) or (5) and (9) are a pair of ordinary differential 
equations which can be solved either numerically or mechanically to determine O(t+St) 
and w(t  + 5t) as functions of x, given O(t) and w(t) as known functions of x. The 
integration proceeds by a number of successive finite intervals St, which in practice are 
taken to be of equal length. The approximate solution of (1) and (2) thus evaluated 
is a function of 5t as well as of x and t, and the true solution is the limit of the 
approximate one as 5t --+ 0. 

The nature of the boundary conditions for which this method can be used ef- 
fectively, and for which the Richardson h, 2 extrapolation process [9] can be used to 
remove the main part of the error in an approximate solution, has been examined by 
Hartree and Womersley [4]. 

A set of solutions of (5) and (9) for given values of the constants and for simple 
forms of Hi (0) and/'/2(0), namely, 

Hi (0) = a - / 3 0 ,  H2(0) = 0, (10) 

has been obtained using the differential analyser. For each step 5t the solution must 
satisfy boundary conditions at both ends of the range in x, that is, at x = 0 and 
x = 1. This involves evaluating a number of solutions starting at x = 0, with 
different initial values of O(t + St) and by trial and error finding a solution which 



210 J. Crank, P. Nicolson / Evaluation of solutions of partial differential equations 

satisfies the condition O0/Oz = 0 at z = 1. This may necessitate six or more trial 
solutions for each step in time; in the particular example under consideration twelve 
successive steps ~t were used and about seventy-two solutions were needed in all. 
Furthermore, three operators were required to feed into the differential analyser the 
functions O(t), w(t)  and E which is a function of (i/2)[O(t + c~t) + 0(t)], so that the 
time and labour demanded by this method tend to be prohibitive. On the other hand, 
only four integrator units of the analyser are needed to handle the problem in this way. 
Results obtained by this method are discussed in section I0. 

3. Method II: replacing the space derivative 

Equation (1) may be reduced to a set of ordinary differential equations of the first order 
by replacing the second space derivative by a finite difference ratio. If Ore- 1, Orn and 
Om+t are temperatures at time t, at the points z = (m - l)3z, m ~ z  and (m + 1)3z 
respectively, then 

( GO2 0 X I ff 04 0 ~ 
Om+l - 20m + Om-I = ( ~ z ) Z \ 0 z  2 j m  + 11 ( a z ) 4 \ ~ z 4 / / m  + " "  " 

Equation (1) may therefore be written approximately as 

OOm Ore-1 -- 20m + Om+l GOWm 
0 ~  - -  (6Z) 2 q GOt (I 1) 

An equation of this type holds for each point ra~z in the range 0 < ra3z < 1. It 
is convenient to take 3z such that there is a whole number of steps ~z in the range, 
i.e., 1/3z  = p say, an integer. There then exist p - 1 equations of the type (11) for 
0 < m < p. To take account of the specified conditions at z = 0 and 1, these points 
require special treatment. Consider the equation for the point z = 0. Assume that the 
range in z may be extended one step beyond z = 0, i.e., to the point - 3 z  so that the 
equation at z --= 0 may be written 

000 0_ I - 200 + 01 Owo 
GOt = (~Z) 2 -- q GOt " (12) 

To the same degree of accuracy the surface condition (3) becomes 

0 + l -  0-1 
2c~x 

= HI (00). (13) 

Elimination of 0-1 from (12) and (13) gives 

00o 2 
O l s  - -  ( ~ z )  2 ( 0 + 1  - 00 )  - 

0ZO0 
H l ( O o )  - q O t  " (14) 

A similar equation holds at z = 1. 
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The original partial differential equation with appropriate boundary conditions 
has now been replaced approximately by a set of ordinary equations. With each 
equation of the type (11) there is associated a second equation of type 

OWra _ kWm e -A/Om. (15) 
Ot 

This method has been used extensively by Hartree and co-workers to obtain ap- 
proximate solutions of the simple heat-flow equation in one dimension, that is equa- 
tion (1) without the term q(Ow/Ot). In such cases adequate accuracy was obtained 
by taking only three or four intervals 3z and it was possible to use an eight-integrator 
differential analyser to evaluate solutions of the resulting four or five ordinary equa- 
tions. It is of interest to examine the difficulties which arise in attempting to extend 
such a treatment to the equations (1) and (2) of this paper. 

For each point ra3z there is now a pair of equations (11), (15) and treatment 
of these demands three integrator units of the analyser, and also one input table from 
which e -A/Om is fed in by an operator. Thus with an eight-unit machine, which is 
the largest machine at present available in Great Britain, only two equations of the 
above type can be set up simultaneously. This means taking only one step to cover 
the whole range in x, and so the method cannot be applied directly. It should be 
emphasized that this is a limitation imposed not by theoretical considerations, but by 
machine capacity. 

Exploratory work using the method in which finite steps in time are taken, showed 
that for certain values of the constants A, k, q, namely those which correspond to a 
comparatively rapid evolution of heat at moderate temperatures, the term q(Ow/Ot) 
is important only over a small part of the range in z at any given time. For the rest 
of the range w remains constant either at its initial value or at zero and the term does 
not appear. Hence not all the equations (11) contain the term q(Owm/Ot), and for 
those which do not only one integrator is needed. In this way it is possible to use the 
analyser to evaluate a solution having three steps in z, the necessary condition being 
that only two of the four equations have the heat-generated term present and utilize 
simultaneously three integrators each. The interconnexions between the various units 
of the machine are made so that the heat-generated term can be included in successive 
equations of type (11) as the integration proceeds. Results discussed in section 10 show 
that the 3-step solution obtained in this way is not a sufficiently accurate solution of 
equation (1), but clearly a more accurate solution cannot be obtained without the use 
of a much larger machine. This method therefore, although very powerful for the 
simple heat-flow equation, is seriously limited by machine capacity in the case of 
equation (1). 

4. Method III: replacing both derivatives by finite difference ratios 

The authors have developed a satisfactory method of evaluating solutions of equa- 
tions (1) and (2) in which derivatives with respect to both z and t are replaced in a 
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particular way by finite difference ratios; the solution is carried out numerically, and 
the only limitation on the number of intervals in x is that of time of solution. 

The particular finite difference form of (1) used by the authors is given below, 
equation (16), and is obtained by replacing space and time derivatives at the point 
[mrx, (n + 1/2)~t] by the usual finite difference ratios: 

0m(n+l)--0m(n)-- 6t 
2(6X)2 ! 

- 2 { 0 m ( n  + 1 ) +  O r e ( n ) } ] - q [ w m ( n +  I) - win(n)],  

where 
Em(n + 1/2) = kdte -2A/[°m(n+z)+°m(n)]. (16b) 

e 2E, being a function of the mean temperature at m(~x over the time interval 6t, can 
be tabulated before the process of solution commences, once the interval ~t has been 
decided. 

Given Ore(n) for all values in the interval 0 ~< m ~< p, the equations (16), 
(16a) and (16b) form a set of simultaneous non-linear equations for Om(n + 1) as a 
function of m.  The fact that these equations are simultaneous leads to an iterative 
method of solution, in some ways similar to the Southwell relaxation process, applied 
successively at each time nrt. 

Another way of replacing the derivatives by finite differences, described in detail 
in section 6, leads to equations which formally give each Om(n + 1) separately from 
the others and so avoids the solution of a set of simultaneous equations for each time 
point. This method, however, suffers from the serious disadvantage that oscillatory 
errors are likely to arise in the process of solution, and the form (16) above is much 
preferable in spite of the complication of simultaneous equations. (In practice this is 
not a serious complication.) 

The details of the method of solution of the equations (16) are best illustrated 
by an example. 

or, on rearranging, 

6t 
-- 2 (~x)2  [Om-l(n + 1) + Om+l(n + 1) + Om-I(n) + Om+l(n)] 

+[1  (2)2]Om(n)-q[Wm(n+l)-wm(n)]  (16) 

Here Ore(n) and win(n) are the values at the point (m(Yx, n~t), which point will in 
future be referred to as (m, n). 

[wm(n + 1) - win(n)] is obtained by using relation (9), i.e., 

Wm(n + 1) _ e2Em(~+l/2 ) (16a) 
win(n) 
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5. Example: method III 

For convenience in examining the results later in the paper, it is useful to replace 
the boundary conditions (3) by more definite ones, the method of solution being 
unaffected. Consider the solution of (1) and (2) subject to boundary conditions 

0 = constant at t = 0 
w = constant at t = 0 

0 0  = (0) 

O0 
b-~z = 0  

for0~< x ~< 1, 
for0~< z ~< I, 

f o r t ) 0 ,  x = 0 ,  

f o r t ) 0 ,  z = l .  

(17) 

Let the range 0 ~< z ~< i be divided into eight intervals so that &c = 1/8, 
and choose the interval 8t such that (St/(3z) 2 = 1. The equations (16) and the two 
boundary equations at z = 0, z = 1 then take the particularly simple forms 

1 

~q[wm(n + 1) - win(n)], (18) 

1 q[wo(n + 1) - wo(n)], (19) 
2 

0 8 ( n + l ) = ~ [ O 7 ( n + l ) + O v ( n ) ] - 2 q [ w s ( n + l ) - w 8 ( n ) ] .  (20) 

There are seven equations of the type (18) for 1 ~< m ~< 7. Each equation has a 
subsidiary equation of the form Wm(n + 1)~win(n) = e 2~ associated with it. 

Before the process of solution commences, tables of Hi ,  e 2E and ( 1 / 2 ) q ( 1 - e  zE) 
as functions of 0, are constructed. 

Table 1 shows a section of the scheme of computation adopted; it has been 
divided into three panels arranged vertically for ease in printing. The table is drawn 
up with a row for each step in t and a column for each step in z. Values of 0 are 
recorded on the left-hand side of the columns, and those of w on the right. 

Leaving until later the consideration of the problem of starting the integration 
from t = 0, assume the solution has proceeded as far as the nth step in time, i.e., 
t = n3t, and it is desired to evaluate the (n + l)th step. The following operations are 
performed successively: 

(a) Estimate values of 00(n + 1), 01 (n + 1), . . . ,  08(n + 1) by inspection of previous 
differences in each column. 
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Table 1 
Section of computation sheet. 

No. of step 6t ~3 w~ 01 wi 02 w2 

28 786 0 750 0 715 0.004 
29 787 0 752 0 719 0.002 
30 788 0 754 0 723 0.000 
31 789 0 756 0 727 0.000 

No. of step ~t 03 w3 04 w4 05 w5 
28 684 0.132 649 0.304 618 0.360 
29 691 0.094 658 0.276 628 0.350 
30 697 0.062 667 0.243 638 0.336 
31 703 0.037 676 0.20t 647 0.322 

No. ofstep ~t 06 w~ 07 w7 0s ws 
28 593 0.372 578 0.374 573 0.374 
29 603 0.369 588 0.373 583 0.373 
30 613 0.363 598 0.371 593 0.371 
31 623 0.355 608 0.369 602 0.369 

(b) Evaluate q[wm(n + 1) - win(n)]~2 for each column by looking up the value of 
q(1 - e2E)/2 corresponding to [Om(n + 1) + Om(n)]/2 in the subsidiary table, 
and forming the product (i/2)Wm(n)(1 - e-2E)q. 

(c) Look up Hl[Oo(n + 1) + Oo(n)]/2 in the H-O table. 

(d) Evaluate Oo(n + 1) by substituting known and estimated values in the right-hand 
side of equation (19). 

(e) If this calculated value for Oo(n + 1) differs from the estimated, adjust Hi and 
q[wo(n + 1) - wo(n)]/2 and recalculate Oo(n + 1). Repeat until the calculated 
and estimated values agree. 

(f) Solve equation (18) for 01(n + I) and iterate if the new Ol(n + 1) differs from 
the estimated value, adjusting q[wm(n + 1) - win(n)]~2 if necessary. 

(g) Evaluate 02(n + 1), . . . ,  O8(n + 1) by solving the appropriate equations itera- 
tively, remembering that an alteration in Om(n + 1) may necessitate resolving the 
equations for Ore- l (n + 1) and Ore+ l (n + 1). 

(h) Calculate w(n+ 1) for each column by looking up the value of e 2E corresponding 
to [O(n + 1 ) +  O(n)]/2 and multiplying it by w(n). 

The iteration of a whole line may appear prohibitive, but in practice very little 
labour is involved and the method has proved quite easy to carry out. In parts of 
the range where the term involving q is negligible the differences in the 0 column 
are so smooth that it is rarely necessary to solve an equation more than once. Also 
since a change A in Om(n + 1) produces a change (1/4)A in Om-l(n + 1) which 
affects Om(n + 1) itself by only (1/16)A, these adjustments are readily made without 
repeating the full solution of an equation. Even for the 8x steps in which there is a 
contribution from the heat-generated term, it is rarely necessary to iterate more than 
twice. 
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It is to be noted that for the 3t defined above, i.e., 3t/(3z) 2 = 1, a change of 4 
in Om(n + 1) produces only a change of 1 in Ore-l(n + 1), and so the iterative process 
converges rapidly. It is clear that the convergence is more rapid for a smaller value 
of 3t/(az) 2. It is interesting to note that a value of at/(az) 2 as large as 4 has been 
found quite satisfactory in cases where the rate of evolution of heat is fairly slow; 
with this value a change of 5 in Om(n + 1) produces a change of 2 in Om-l(n + 1) 
and Or.+ l (n + 1). 

6. Richardson's  "overlapping steps" method 

It is useful to state briefly Richardson's method of overlapping time steps and to see 
what difficulties arise in the use of it. 

Consider the solution of the simple heat-conduction equation 

00 020 
- (21) 

0t  0X 2 

Richardson constructs a table similar to table 1 of the present paper in which 
there is a line for each step in t and a column for each step in z. Let table 2 be a 
sample of the main table, taken well away from the boundaries. 

Let the entries in the lines t = (n - 1)at and n6t be known. At the point 
(Tr/,,7"/.), 020/02C 2 is approximately [Om+l (n) - 20re(n) -b Om-I (n)]/(~z) 2, and by 
equation (21) this is the value of O0/Ot at the same point. Richardson replaces the 
latter by 

[ 0 m ( n  + 11 - 0ra in  - l / ] / 2 a t ,  

and obtains 

0 re (n+  1 ) =  0 r e ( n -  1)+ ' / [Om- t (n ) -20m(n)+Om+l(n)] ,  (22) 

where 
7 = 2at/(az) 2. (22a) 

In this way Om(n + 1) is obtained without any estimation or iteration, which at first 
sight is a great advantage. 

An obvious disadvantage of the method, as compared with method III above, is 
that, although it only advances by steps at, the effective interval for the integration is 
2at and hence the second-order error term of equation (4) is increased by a factor 4. 

A much more serious objection to the method is that rounding-off errors tend 
to build up and may produce rapidly increasing oscillatory errors as the solution 

Table 2 
( m -  1)az maz (m + 1)6z 

( n -  l)~t 0,~_,(r~- 1) 0m(n- 1) 0m+t(n- 1) 
/"/.~ t 0m-, ('fl.) 0m ('r/.) 0m+l(~) 

(n+ 1)& 0,,~-l(n+ 1) 0,,~(n+ 1) 0m+l(n+ 1) 
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Table  3 
Er ror /A is shown .  As  the  tab le  is s y m m e t r i c a l  about  m ~ x  only  ha l f  is shown .  

(m - 5)~x (rn - 4)6x (rn -- 3)6x (rn - 2)t~x (m - l)6:r rn~x 
n6t  . . . . .  l 
(n + l)6t . . . .  +7 - 2 7  
(n + 2)6t - - - 72 -472 1 + 672 
(n + 3)6t - - 73 -673 [27 + 15731 - [47  + 207"~1 
(n + 4)~t - 74 - 8 7 '  [372 + 287'1 -[1272 + 56741 [1 + 187 z + 70741 
(n + 5)6t 7 "s - 1 0 T  ~ [473 + 45751 -{247 "~ + 12751 [37 + 603' ~ + 210751 - [67  + 80";' ~ + 252751 

progresses. The cause of this is clear. Suppose a small positive error A arises in 
On(n), i.e., Ore(n) is too large by an amount A. Then from equation (22) Om(n + 1) 
will be too small by an amount 27A and Om(n + 2) will be too large by an amount 
(1 + 672)A. The way in which errors build up is illustrated in table 3, in which an 
error A is supposed to arise in Ore(n). It is clear that the error in Om(n + s) builds up 
as s increases, however small 3' is. (It is significant to note here that method III was 
satisfactorily used with a value o f " / a s  large as 8.) 

The error after a given number of steps clearly decreases with 3' decreasing, but 
the error in a definite total time T may not do so; for if the reduction in 3' is due to 
a decrease in ~t more steps will be required to cover the range T, and the increase 
in error due to this may more than counteract the decrease due to a smaller 3". If, on 
the other hand, the reduction in 3" is effected by an increase in ~x, i.e., fewer steps in 
x, the error in the solution of equation (22) will be less, but this equation will be a 
poorer approximation to the exact equation (21). 

An alternative way of examining the accumulation of errors in the case of 
Richardson's process was proposed to the authors by Prof. D. R. Hartree, follow- 
ing a suggestion by Prof. J. von Neumann. As this treatment can also be applied to 
method III it will now be outlined. 

7. Analytical treatment of the building up of errors 

This treatment is simplest in the case of equation (21), where the term containing q 
is absent. As equation (21) is linear, the error A0, to which 0 is subject, must satisfy 
the same finite difference form of (21) as does 0. For simplicity the surface boundary 
condition, 0 a specified function of t, is taken, so that the boundary conditions for A0 
may be written 

A 0 = 0  a t x = 0 ,  x = 2 ,  
A0 symmetrical about x = 1. 

Taking 2 P  intervals across the block, the equation (22) for A0 has an exact solution 
of the form 

P 

AOm(n) = ~ fj(ncSt)sin [ ( 2 j -  1)Trm~x/2], (23) 
j = l  

where fj (n~t) is independent of x. The form of this function fj depends upon the 
particular finite difference form of (21) used. 
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(a) Richardson's method 

From (23) 

A0m+i (n) - 2AOm(n) + AOra-i(n) 

: _ 2 ~ f j ( n S t ) s i n ( 2 j - 1 ) T r m S x ( 1  - (2J-2)TrSx) 2 cos . 

Substituting this in (22), taking a single component of the sum, and dividing through 
by the factor sin(2j - 1)TrmSx/2 gives 

fj[(n + I )5~ ] -  f j [ (n-1)St]  = -27 f j (nS t ) (1 -cos  (2 j -1 )TrSx)"  (24) 

The general solution of (24) is 

fj(nSt) = d je  nk~6t + Bj(-1)ne -nkl6t, (25) 

where kl is given by 

sinh(kl~t) = - ' ) , ( 1 - c o s  7rj~x). (26) 

From (26) kl is real and negative, and so the term in the expression for fj  
which alternates in sign in successive t steps, increases exponentially in magnitude. 
This is true for each j. The rate of increase in amplitude of the oscillating term is 
different for different modes (kl being a function of j); however these modes are 
superimposed to give A0, that is, whatever the coefficients Aj, By, the resulting A0 
must oscillate with increasing amplitude for large enough n. This is true however 
small 7 is. Furthermore, the aggregate error over a given time range T is roughly 
independent of 5t for, from (26) 

nklSt ---- (T/St)sinh - l  [{25$/(5x) 2 } (1 - cos [(2j - 1)TrSx/2]) ] 

which, for small % is independent of St. 

(b) Method III 

A0 now satisfies equation (16) with q = 0, that is 

(l + ")'/2)AOm(n + 1 )=  ('y/4)[AOm-I(n + 1)+  AOm+l(n + 1 )+  AOm-l(n) 

+ AOm+l(n)] + (1 - 7/2)AOm(n). 

Each component of A0 therefore satisfies 

sin jrrm6x 
( l  + 2 ) f J ( n +  I) " 2 

= %[f j (n  + l ) +  f j(n)]  [ z s m ~ c o s  + f j (n)  1 -  sin jrrmSx 
2 
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Table 4 
( m -  2)6x ( rn -  l)6x rn6x (m + l)(~x (m + 2)am 

(n - 3)at - - x - - 
(n - 2)& - - x - - 
( n -  1)(it - - x - - 

n~t x x x x x 

(n+  1)& - - x(P) - - 

from which it follows that 

f j ( n  + l ) / f j ( n )  < 1 for all 3' and j .  

Since this is true for all j ,  A0 must decrease as n increases, i.e., any error tends 
to disappear. I f  3' is very large an oscillatory error which only disappears very slowly 
may arise. 

This treatment thus confirms the conclusion arrived at empirically, that errors 
tend to be damped out when method III is used. 

8. Methods reported by the American Applied Mathematics Panel [1] 

The main method of section II of the A.M.R report is similar to the above using finite 
differences in both directions; terms up to the fourth order are taken into account in 
the differentiation formulae by using sets of  points as indicated by x in table 4 to 
derive the value of  0 at the point P, [mSx, (n + 1)rt]. 

This makes the formula giving 0 at P very cumbersome; also the method would 
seem liable to the same defect as Richardson's in that errors may tend to build up. 

An alternative scheme for the solution of  the finite difference equations, analo- 
gous to the Adams-Bashforth method [6] is outlined in the A.M.P. report. It involves 
an iterative process at every step, but is not used by the A.M.P., since not only are 
the formulae to be evaluated very elaborate but also many iterations are required. 

The other main method described in this report (section I) is completely different 
and does not use finite difference approximations. The method is based upon the 
formal expression of  the solution of (1) as an integral equation [7]; this integral 
equation is then solved by a method of successive approximations. In the case of 
boundary conditions (3) above, where surface temperature is not constant, the method 
is impracticable on account of the extreme complexity of the formal expression for the 
solution. Its use would seem to be restricted to the special case in which the surface 
temperature is held constant. 

9. Formal solutions in special cases 

To avoid starting numerical integration at t : 0 and for the purposes of testing the 
accuracy of  the step by step solutions, formal solutions of the equation 020/0x 2 = 
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O0/Ot subject to appropriate boundary conditions have been developed for (1) a semi- 
infinite slab, (2) a finite slab, heated symmetrically. 

The boundary conditions for these two cases are tabulated below, (27) and (29). 
The solutions were obtained by the method of Laplace transforms and only the results 
need be quoted here. 

(1) Semi-infinite slab 

Boundary conditions: 

0 = 0 a t t = 0  

0 ~ =  - a  + / 3 0  at z = 0 

O~ -+ 0 as x - +  ~ 

for x > O, 

for t /> O, 

for t ~> O. 

(27) 

Solution 

O=;[1-e[3Z+[32terfc(2-v~v/~÷/3v/t)-erf2-v/~v/~]. (28) 

(2) Finite slab 

Boundary conditions: 

0 = 0 a t t = 0  for - l < x < + l ,  

O0 
= -c~ +/30 at x = - 1 for t >~ 0, (29) 

O0 
= a - t 3 0  at x = +1 for t >i 0. 

(Here the solution was developed in the form of a series suitable for use at small 
values of t; only the first two terms of this series will be given.) 

Solution: 

0 

( l ÷ x  + / 3 @  - erfl ÷ x 1] t. 1 - e~(l+z)+t~2teffc\ 2x/~ 2vq J J  + (3o) 

The first term gives the main contribution to the heat flow from the surface 
x = +1 and the second from x = - 1 .  For t and (1 - Izl) small, this solution is for 
practical purposes the same as solution (28) referring to a semi-infinite slab; physically 
this means that at small t no appreciable amount of heat flowing from one surface has 
reached a point in the vicinity of the second surface. 
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Table 5 
Comparison of results obtained by method III with formal solution. 

t = 5& t = 206t 
l + z  0 0 0 0 

(method 111) (formal) (method III) (formal) 
0 459 458 587 586 
0.125 283 281 468 466 
0.25 156 156 361 359 
0.375 76 75 269 269 
0.500 33 32 194 196 
0.625 12 11 138 137 
0.750 4 3 98 98 
0.875 1 I 75 77 
1.000 0 0 66 68 

From (28) it will be seen that O0/Ot at z = 0 is infinite at t = 0 (for small t, 00 
/3v"t). Consequently it is inadvisable to start any method, in which O0/Ot is replaced 
by a finite difference ratio, from t = 0. In the physical problem actually treated, the 
term due to evolution of heat is negligible until the temperature has risen considerably 
from its initial value, so that in the neighbourhood of t = 0, the equation to be solved 
is simply 020/Oz 2 = O0/Ot; the solution of the full equation may therefore be started 
at some convenient value of t > 0 with values calculated from solution (28). 

(3) Accuracy of the numerical method III 

To examine the accuracy of the step by step process described in section 5, it was 
used to evaluate a solution of equation (21) subject to conditions (29); this was then 
compared with the formal solution of equation (21) for the same values of a and/3, 
namely c~ = 3618, /3 = 4.44. In the numerical solution 8 steps were taken between 
x = 0 and 1, so that ~x = 1/8 and the time interval was such that ~t/(~x) 2 = 1/2. 
In table 5 comparison between the two solutions at two values of t is shown. 

Although only three figures were carried in the computation, the largest difference 
between the finite step solution and the formal solution is two in the last figure. This 
accuracy is quite adequate for most practical purposes. It is interesting to note that 
using method III, the computation of a single line with ~x = I /8  takes under 10 min 
which is considerably quicker than evaluation of the formal solution, for the same 
number of points. 

(Using Richardson's method with the above values of ~z and ~t, and error of 
order (27) 2°, i.e., 22o or say 106 in the last figure kept, could be expected after 20 
steps in time.) 

10. Discussion of results in two particular cases 

This paper is concerned with methods of evaluating solutions rather than with physical 
applications of the methods. However, the number of steps needed in z and t is so 
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Table 6 
0o = surface temperature of block. 

Example I Example II 
(2 cm block) (I cm block) 

A 22,500 16,580 
q 532 261 
k 7.23 x 1017 1.62 x 1011 

H,(O) 0.90(0,, - 1400) 1.1(0, ,-  1400) + 0.253{(0,,/100)4 -- 1920} 

closely related to the nature of each particular problem that it is most convenient to 
discuss the effect of interval size on solutions by reference to a specific example. 

The equations relating to a parallel-faced slab of wood, heated symmetrically 
on each face by a flame, reduce to (1) and (2) with suitable choice of variables. 
Equation (2) describes the rate at which the wood decomposes into charcoal and 
volatile substances; this decomposition is an exothermic reaction and gives rise to the 
second term on the right-hand side of (1). A reaction zone is established at the wood 
surface and moves inwards leaving charcoal behind it. (The physical aspects of this 
problem are discussed in detail in a separate paper [2].) 

It is to be expected that the high derivatives of 0 will be most important near the 
wood surface at the start of the heating, i.e., when the flame is applied, and later in that 
part of the wood which is then decomposing. For a given external supply of heat, the 
behaviour of the solution near the wood surface (z = 0) for small t, is independent 
of the slab thickness and clearly a given number of steps in the whole thickness 
will give a better representation of surface behaviour in a thin block than in a thick 
one. Furthermore, a slow rate of decomposition in the reaction zone will have less 
local effect on the temperature gradient than a rapid decomposition. These general 
considerations suggest that a thin block with comparatively slow chemical reaction 
will present a more favourable case for finite step methods (i.e., fewer steps will be 
required for a given accuracy) than a thick block with rapid reaction. Solutions for 
these two extreme types of conditions have been evaluated for various sizes of steps 
in z and t and the results are described below. The values of the various constants 
and the form adopted for Hi (0) in the two examples are shown in table 6. 

In example I, Ht (0), the surface heat transfer function, is based upon Newton's 
law of heating; in all the early work on this problem this law was assumed to give an 
adequate representation of the transfer of heat from the flame to the surface. Later, 
as a result of  more serious consideration of the surface transfer combined with new 
experimental data [2], the form of H1 (0) was modified to that used in example II. 
With this new law, heat is transferred more rapidly at the beginning and more slowly 
later; transfer ceases when the surface temperature is about 800 ° K as HI (0) vanishes 
at about this value. 

Example L 2 cm block with very rapid reaction rate 

Figure 1 shows the variation of the surface, central and halfway to the centre 
(z = 0, 1/2, 1) temperatures with time as calculated by method I, i.e., by tak- 
ing finite steps in time and integrating with respect to z by the differential analyser. 
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Figare  1. Example  I: temperature- t ime curves for z = 0, 1/2, 1. 

For the main evaluation, steps of 30 sec were used. In the region 120-240 sec, the 
surface temperature oscillates, suggesting that 30 sec steps are too big in this region. 
Values using ~t = 15 sec are also shown in this diagram; the oscillation although 
reduced is still present, and it is clear that even smaller steps are required to define the 
curve accurately when the surface layers are decomposing. No further solutions were 
obtained in this way mainly because the time taken was prohibitive (see table 7). 

It is to be noted that the machine solutions start at t = 0 and so the infinite 
time gradient at this point is replaced by a finite difference ratio. The effect of this 
is seen by comparing the full and dotted curves. The latter are thought to be a fairly 
accurate solution of the exact equation; they are started by numerical evaluation of the 
formal solution (28) and then continued by method III; they end at the point where 
8- and 12-step solutions (see figures 2 and 3) begin to diverge significantly. The error 
introduced at t = 0 appears to cause the machine solutions using finite steps in t to 
lag behind the true solution over almost the whole range in z and t. 

Figure 2 shows the surface temperature-time relation, calculated by dividing the 
range 0 < z < 1 into 3, 8 and 12 steps respectively and for part of the time range a 
solution for 48 steps is given. In the case of the 3-step solution the integration was 
carried out by the differential analyser (method II). The other solutions were obtained 
by method III. 

It will be seen that the general shape of the surface temperature curve as defined 
by the 3-step solution is quite different from the corresponding curve of figure 1. 
These were the first two solutions obtained and at that stage of the work, their lack 
of agreement was very puzzling. It was not obvious whether the peaks of figure 2 
were a direct result of taking finite steps in z and would disappear in the true solution 
of equation (1) or whether the peaks were real but were smoothed out in figure 1 by 
taking finite steps in t. It was this difficulty that led to the development of method III. 
It will be seen that the peaks become less prominent as more steps in z are taken and 
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Figure 3. Example I: temperature-time curves for x = 1/2 and z = 1. 

have entirely disappeared in the 48-step solution. It is clear therefore that the peaks 
are spurious, being a result of taking too few steps in z. 

In the critical region 90 < t < 120 sec, the surface temperature for the 48-step 
solution is in fairly good agreement with that obtained by method I (shown in figure 1) 
when allowance is made for the lag of the latter behind the true solution. This 48- 
step solution is taken to define the true solution in this region. For t > 4.5 rain all 



224 J. Crank, P. Nicolson / Evaluation of solutions of partial differential equations 

solutions, even including the 3-step, tend to the same curve which suggests that this 
is the true surface temperature. 

In figure 3 temperature-time curves are shown for z = 1/2 and z = 1 derived 
by 8- and 12-step solutions respectively. The solution obtained by taking finite steps 
in time is also shown. There is a spurious peak in the 8-step solution when the wood 
in the region of z = t / 2  is decomposing and subsidiary peaks when decomposition is 
occurring in the steps centred on z = 3/8 and 5/8. In the 12-step solution the peaks 
have almost disappeared and this solution is in good agreement with the solution using 
finite steps in time when allowance for the time lag of the latter is made. 

The 8- and 12-step central temperatures are in good agreement until the centre 
of the block begins to decompose, then the 12-step lags behind the 8-step solution. 
The discrepancy in this region is not surprising as the temperature is very difficult 
to determine precisely once the exothermic reaction has started, on account of the 
rapidity with which this reaction proceeds. 

Example H. 1 cm block with moderate rate of reaction 

Figure 4 shows the corresponding 8- and 12-step solutions for a case where the block 
is thinner and the reaction slower. The two solutions are now in good agreement 
throughout the range in z and ~; there is no trace of the spurious peaks which were 
so conspicuous in the surface temperature curves for both 8 and 12 steps in z, in 
example I. The variation of w with time was almost identical in the two solutions as 
is illustrated in figure 5 for the surface layer. 

In the particular problem for which the methods described above were investi- 
gated, a quantity whose behaviour was ultimately required was 

dW fo 10w 
dt - --~ dz. 

"-2. ~d 
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Figure 4. Example II: comparison of 8- and 12-step numerical solutions. 
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Figure 6. Example II: dW/dt for 8- and 12-step solutions. 

The reasons for the importance of this quantity are not relevant here, but it is of 
interest to note that satisfactory agreement in dW/dt was obtained from the 8- and 
12-step solutions in example II (see figure 6). In example I, on account of the rapidity 
of the reaction and the consequent narrowness of the reaction zone, fewer than 12 
steps in the range 0 < x < 1 were insufficient to define dW/dt. 

11. Conclusion 

From the comparison of 0, ~o and dW/dt for 8- and 12-step solutions, it is evident 
that an 8-step solution defines these quantities adequately throughout the range in x 
and t, in the case of example II. 

For example I, where the reaction is much more rapid, more steps are needed to 
define 0 and w at any point of the slab in the time range during which the reaction 
is occurring there; outside this time range an 8-step solution gives a fairly good 
approximation to the temperature. 

A great deal of exploratory work has been undertaken on the effect of variations 
in the function Hi(0) and the constants A, k and q, intermediate between those 
corresponding to examples I and II above. For this purpose method III, using 8 steps 
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Table 7 
Method No. of operators Approximate time for 1 

required complete solution 
I. Finite steps in t '~ Differential 3 

Integrate in z j analyser 

II. 3 steps in z 1 Differential 2 
Integrate in t j analyser 

III. Finite steps in x and t ") 
(a) 8 steps in z ~ Numerical 1 
(b) 12 steps in z 

2 weeks 

3-4 h 

7-8 h 
10-12 h 

in z,  has proved a most  valuable tool. In this context it is significant to compare  
the approximate  t ime of  evaluation of  a single solution by the three main methods 

described in this report (table 7). 
These  times refer to the actual process of  solution only. They do not include time 

spent in preliminaries such as setting up the machine and constructing input curves in 
the case of  methods I and II, and constructing the table of  e 2E as a function of  0 in 

the case of  method III. 

The authors are grateful to Prof. D. R. Hartree for many  helpful suggestions. In 

operating the differential analyser, the authors were assisted by Messrs E. C. Lloyd, 
H. W. Parsons and W. W. J. Cairns. 
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