
OPTI-310, Additional (optional) material Transfer Matrix Method

Alternative derivations for layered structures: Transfer matrix calculus

We have derived the following expression in the class

ET = E0
t2

1− r2eiδ

for the transmitted amplitude in the Fabry-Perot geometry. Here we want to avoid the consideration

based on partial waves.

Instead, represent the solution as a superposition of plane waves propagating in both directions (index

R, and L for right and left, respectively), and look for their amplitudes at locations indicated in the

picture:

In complete analogy to the case of a single material interface, we must satisfy the boundary conditions

— that is how we determine the unknown amplitudes of the forward and backward waves.
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Start with the first material interface and TE polarization when the electric field must be continuous:

E2R = tE1R + r′E2L E1L = t′E2L + rE1R

Pretend we know field amplitudes with index 1, and solve for those with index 2. Use the relations

we derived previously,

tt′ = 1− r2 r′ = −r ,

and write the field amplitudes E2 (in the middle region) in this matrix form:(
E2R

E2L

)
= M

(12)
TE

(
E1R

E1L

)
≡
(

1/t′ −r/t′
−r/t′ 1/t′

)(
E1R

E1L

)
MTE is the transfer matrix (for TE polarization) that relates the field amplitudes in medium 1 to

medium 2, or “transfers” them from one side of interface to the other.

Next we need a similar matrix for a length of homogeneous material (to represent the inside of FP).(
E3R

E3L

)
= MSLAB

(
E2R

E2L

)
≡
(
eikzd 0

0 e−ikzd

)(
E2R

E2L

)
Important: kz is the z-component of the wave-vector in the medium between the interfaces:

kz =
2π

λ
n cos θt kzd ≡ φ = δ/2
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The last is the matrix for the “output interface”. We can obtain it from the first interface matrix,

MTE by changing r → r′ and t→ t′ (this only holds for our situation when the first and last media

are the same, of course):(
E4R

E4L

)
= M

(21)
TE

(
E3R

E3L

)
≡
(

1/t −r′/t
−r′/t 1/t

)(
E3R

E3L

)
The relation between the “input” and “output” amplitudes of the whole FP slab is then(

E4R

E4L

)
= MFP

(
E1R

E1L

)
≡M

(21)
TE MSLABM

(12)
TE

(
E1R

E1L

)
Note: This is a similar technique as the Jones calculus, but these column vectors and matrices must

not be confused with Jones!

Explicitly, the FP matrix is:

MFP =

(
e+iφ−e−iφr2

1−r2 +(e+iφ−e−iφ)r
1−r2

−(e+iφ−e−iφ)r
1−r2

e−iφ−e+iφr2
1−r2

)
and its inverse is: M−1

FP =

(
e−iφ−e+iφr2

1−r2 −(e+iφ−e−iφ)r
1−r2

+(e+iφ−e−iφ)r
1−r2

e+iφ−e−iφr2
1−r2

)
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Now we can extract the amplitude transmission coefficient. In our situation, E1R is given as the

incident amplitude. Further, we know that E4L is zero (because no light is incident from the right).

Thus, (
E1R

E1L

)
= M−1

FP

(
E4R

E4L

)
= M−1

FP

(
E4R

0

)
and

E1R =
(
M−1

FP

)
11
E4R

from where we simply read off the transmission coefficient as

tFP =
ET

E0
=
E4R

E1R
=

1(
M−1

FP

)
11

=
1− r2

e−iφ − e+iφr2
= e+iφ

1− r2

1− r2e2ik cos θt
= e+iφ

tt′

1− r2eiδ

Apart from the phase pre-factor e+iφ (which the method used in class simply dropped), this is the

same result as the one obtained by summing up partial wave amplitudes.
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Advantage: Transfer-matrix technique applies directly to arbitrary stratified structures.

Active mirror reflectivity: Depending

on temperature and pumping, there

can be net gain during the reflection.

This kind of laser design requires

accurate calculation of the reflection

coefficient across a band of wave-

lengths and range of temperatures.

Transfer matrix technique is most

suitable.
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Material interface revisited

Next, we figure out “elementary” matrices for bare material interfaces, both in the TE and TM

polarizations. Then we will be able to apply the transfer matrix method to an arbitrary complicated

structure.

Solution to the wave (or Maxwell) equations will be parametrized by vectorial amplitudes of forward

(+) and backward (−) propagating plane-waves:

~E1(z) =
[
~E+
1 e

+ikzz + ~E−1 e
−ikzz

]
ei(kxx+kyy−ωt)

~H1(z) =
[
~H+
1 e

+ikzz + ~H−1 e
−ikzz

]
ei(kxx+kyy−ωt)

We will use index (here 1) to indicate the medium in which this expansion is applied.
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Transfer matrix for a material interface

This time we want to express the transfer matrix of an “elementary” material interface, i.e. a sharp

boundary between two media, but no intermediate layers no matter how thin...

TE case: (
E+

2

E−2

)
= MTE

(
E+

1

E−1

)

MTE =
1

2

(
1 + α 1− α
1− α 1 + α

)
α =

k
(1)
z

k
(2)
z

TM case: (
H+

2

H−2

)
= MTM

(
H+

1

H−1

)

MTM =
1

2

(
1 + β 1− β
1− β 1 + β

)
β =

ε2k
(1)
z

ε1k
(2)
z
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Relation to Fresnel formulas

The above relations are nothing but an equivalent statement of Fresnel equations for a simple material

interface.

Exercise:

A) Starting from the above equations, derive Fresnel equations for a TE (s) polarization

B) Starting from the above equations, derive Fresnel equations for a TM (p) polarization
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Solution A)

TE case:

This is possible to do in more than one way (of course). One efficient approach is to imagine that the

incident wave comes from the medium 2:

(
E+

2

E−2

)
=

1

2

(
1 + α 1− α
1− α 1 + α

)(
E+

1 = 0

E−1

)
α =

k
(1)
z

k
(2)
z

(
E+

2

E−2

)
=
E−1
2

(
1− α
1 + α

)

rs =
Er

Ei
=
E+

2

E−2
=

1− α
1 + α

=
k2 − k1
k2 + k1

=
n2 cos θ2 − n1 cos θ1
n2 cos θ2 + n1 cos θ1

=
ni cos θi − nt cos θt
ni cos θi + nt cos θt

ts =
Et

Ei
=
E−1
E−2

=
2E−1

(1 + α)E−1
=

2k2
k2 + k1

=
2n2 cos θ2

n2 cos θ2 + n1 cos θ1
=

2ni cos θi
ni cos θi + nt cos θt
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Solution B)

TM case (using the same frame of reference):(
H+

2

H−2

)
=

1

2

(
1 + β 1− β
1− β 1 + β

)(
H+

1 = 0

H−1

)
β =

ε2k
(1)
z

ε1k
(2)
z(

H+
2

H−2

)
=
H−1

2

(
1− β
1 + β

)

rp =
Er

Ei
=
E+

2

E−2
=
H+

2

H−2
=

1− β
1 + β

=
n21k2 − n22k1
n21k2 + n22k1

=
n21n2 cos θ2 − n22n1 cos θ1
n21n2 cos θ2 + n22n1 cos θ1

=
nt cos θi − ni cos θt
nt cos θi + ni cos θt

Hint: Because E−1 and E−2 propagate in different media, their ratio is not equal to the corresponding

ratio of magnetic fields. Needed correction is obtained from B = n/cE (which holds for PWs).

tp =
Et

Ei
=
E−1
E−2

=
n2H

−
1

n1H
−
2

=
n2
n1

2H−1
(1 + β)H−1

=
n2
n1

2n21k2
n21k2 + n22k1

=
2n2 cos θ2

n1 cos θ2 + n2 cos θ1
=

2ni cos θi
nt cos θi + ni cos θt

Thus, the TE and TM material interface transfer matrices are equivalent to imposing the Fresnel

equations.
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Three-layer structure: Transfer matrix treatment

As an illustration, we derive the expression given in Fowles. It should be evident that more complex

structures can be treated the same way.

For simplicity and concreteness, consider the TE polarized case.

This choice does not matter too much:

1. TM and TE results are identical for normal incidence

2. it often sufficient to work with near-normal angles

The transfer matrix representing the three-layer structure is

M = M (23)M (slab)M (12)

M (12) =
1

2

(
1 + a12 1− a12
1− a12 1 + a12

)
M (slab) =

(
e+ik

(2)
z l 0

0 e−ik
(2)
z l

)
M (23) =

1

2

(
1 + a23 1− a23
1− a23 1 + a23

)

a12 =
k
(1)
z

k
(2)
z

=
n1 cos θ1
n2 cos θ2

≈ n1
n2

a23 =
k
(2)
z

k
(3)
z

=
n2 cos θ2
n3 cos θ3

≈ n1
n2

where ≈ denotes approximate relations usable for nearly-normal incidence
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. . . matrix multiplication gives

M = M (23)M (slab)M (12) =
1

2

(
1 + a23 1− a23
1− a23 1 + a23

)(
e+ik

(2)
z l 0

0 e−ik
(2)
z l

)
1

2

(
1 + a12 1− a12
1− a12 1 + a12

)

M =
1

2

(
(1 + a12a23) cos(k

(2)
z l) + i(a12 + a23) sin(k

(2)
z l) (1− a12a23) cos(k

(2)
z l)− i(a12 − a23) sin(k

(2)
z l)

(1− a12a23) cos(k
(2)
z l) + i(a12 − a23) sin(k

(2)
z l) (1 + a12a23) cos(k

(2)
z l)− i(a12 + a23) sin(k

(2)
z l)

)
The relation between incident, reflected, and transmitted amplitudes, expressed with this matrix is(

Et

0

)
= M

(
Ei

Er

)
The “lower-row” component of this equation reads

0 = M21Ei + M22Er

from where we obtain the amplitude reflection coefficient of the tri-layer as:

rs =
Er

Ei
= −M21

M22

rs = −(1− a12a23) cos(k
(2)
z l) + i(a12 − a23) sin(k

(2)
z l)

(1 + a12a23) cos(k
(2)
z l)− i(a12 + a23) sin(k

(2)
z l

So one can see that the transfer-matrix method is conceptually simpler than the summation of all

possible partial waves. Structures with more layers only add more matrices to the product and

everything can be easily programmed.
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