
OPTI-310, Polarization Worked-out problem examples

This problem deals with identification of the polarization state, given the vector field of electric

intensity. The approach here is straightforward:

1. project the field onto observation plane

2. switch to local time in arguments of functions describing ~E(~r, t)

3. identify several special points for the tip of the electric field vector in the observation plane. Having

these points, and knowing that the answer is ’ellipse’ in general, tells you the type of the polarization

state.

P0:

Identify the polarization state of the following waves:

A)
~E = îE0 sin[2π(z/λ− νt)] + ĵE0 cos[2π(z/λ− νt)]

B)
~E = îE0 sin[2π(z/λ− νt)] + ĵE0 sin[2π(z/λ− νt− 1/8)]

C)
~E = îE0 sin[2π(z/λ− νt)]− ĵE0 sin[2π(z/λ− νt)]
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Solution

A

Given field:
~E = îE0 sin[2π(z/λ− νt)] + ĵE0 cos[2π(z/λ− νt)]

Step 1. Choose your observation plane, e.g. z = 0:

~E = îE0 sin[2π(−νt)] + ĵE0 cos[2π(−νt)]

~E = î(−1)E0 sin[2πνt] + ĵE0 cos[2πνt]

Step 2. Switch to “local time” τ = 2πνt = ωt. This “time” is nothing but phase, with 2π representing

time of a single optical cycle:
~E = î(−1)E0 sin[τ ] + ĵE0 cos[τ ]

Note that unlike phase φ = 2π(z/λ − νt), τ increases with time, that is why we can call it “local

time.”

Step 3. Now we find several points on the polarization ellipse. First, determine the “bounding box”

in which this ellipse lives:

−E0 ≤ Ex ≤ +E0 − E0 ≤ Ey ≤ +E0

The point where the ellipse touches the bounding box are easy to determine. For example, Ex attains

the box when τ = ±π/2. Let us figure out the tip of ~E for these times:

~E(±π/2) = î(−1)E0 sin[±π/2] + ĵE0 cos[±π/2]
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~E(±π/2) = î(−1)E0(±1) + ĵE0 ∗ 0

~E(−π/2) = (+1)̂iE0
~E(+π/2) = (−1)̂iE0

Now let us do the same for points at which Ey is extremal. I look at the argument in the second term

to guess these:
~E(kπ) = î(−1)E0 sin[kπ] + ĵE0 cos[kπ] k = 0, 1

~E(0) = (+1)ĵE0
~E(π) = (−1)ĵE0

So we have found the tip locations for times corresponding to

−π/2, 0, π/2, π

and they tell us (draw a sketch) that we deal with circular polarization (ellipse is a circle), with the

tip rotating counter-clockwise, so this is Left-Hand Circular (LHC) polarization state.
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B Given field:
~E = îE0 sin[2π(z/λ− νt)] + ĵE0 sin[2π(z/λ− νt− 1/8)]

Transform to τ -language for z = 0:

~E = îE0 sin[2π(−νt)] + ĵE0 sin[2π(−νt− 1/8)]

~E = (−1)̂iE0 sin[τ ] + (−1)ĵE0 sin[τ + π/4]

Evaluate a few points:
~E(τ = 0) = (−1)ĵE0 sin(π/4) = (−1)ĵE0/

√
2

~E(τ = π/4) = (−1)̂iE0 sin[π/4] + (−1)ĵE0 sin[π/2] = (−1)̂iE0/
√

2 + (−1)ĵ

~E(τ = π/2) = (−1)̂iE0 sin[π/2] + (−1)ĵE0 sin[π/2 + π/4] = (−1)̂iE0 + (−1)ĵE0/
√

2

From the three points, connected in the order of increasing time (draw sketch) , we see that the figure

is an ellipse drawn in the clock-wise direction. So this polarization state is Right-Hand Elliptic.
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C Given field:
~E = îE0 sin[2π(z/λ− νt)]− ĵE0 sin[2π(z/λ− νt)]

Projected to local time language at z = 0:

~E = (−1)̂iE0 sin[τ ]− (−1)ĵE0 sin[τ ]

Simplifies to:
~E = (ĵ − î)E0 sin[τ ]

So this oscillates along a line direction given by ĵ − î which is at 45 degrees, in NW-SE direction.

This is therefore a linearly polarized wave.
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