
P: This problem pretends to be a “feasibility study” for laser Lunar ranging. Assume that we have a laser
producing a single pulse, carrying energyf of Ep = 1J at the wavelength of λ = 0.7µm. It is sent toward Moon
in the form of a Gaussian beam with the waist w0 = 3m. Our task is to estimate how many photons reach
a retroreflector with area R2 = 1m2 placed on the Moon surface, and how many will be received back. We
will assume that the Earth-Moon distance is L = 400000km, and neglect the existence of atmosphere (which
simplification makes the result way over-optimistic).

A) Calculate the spot size w(z = L) of the laser beam on the Moon surface. You may approximate the resulting
formula by taking into account that the distance is much larger than the beam Rayleigh range.

Answer:

For z much larger than Rayleigh, approximate the square root like so (negleting 1):
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B) Estimate the fraction f of photons that hit the retroreflector - this may be approximated as the ratio
between the reflector’s and beam-spot areas. Specify f as an expression in terms of given quantities before
giving numerical value.

Answer:
This is where we have to work very roughly: Ours will be only qualitative estimate, and all numerical factors
may be omitted. The idea is to say that the fraction will be proportional to the ratio of two areas:
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When you estimate this, you may keep in mind that we have already lost factors like π because of this very
approximate way of estimating the fraction — so it is OK to use orders of magnitude to get a feeling how big
this quantity may be.

Note: This number of ∼ 10−4 we get is in fact way too high, because we negleted the fact that the beam gets
wider while it travels through the atmosphere... Look e.g. here: http://physics.ucsd.edu/∼tmurphy/apollo/basics.html

C) How many photons there are in one laser pulse? What is the energy reaching the retroreflector?

Answer:

Ep = N~ω N =
Epλ

~2πc

This will be of the order of 1020 or so. Thus, even if a very small fraction will eventually get back, the number
of photons detected will be still large...

D) Assuming that the returning beam starts as Gaussian beam with the waist of size R, what is the fraction
f ′ of returning photons that reach the same telescope that launched the beam (so that the “receiver effective
radius” is given also by w0)?

Answer:
This calculation is exactly the same kind as for part B) The only difference is that paremeters w0 and R
exchange their meanings: Now R is the beam waist, and w0 is the “detector size.” So you can say that f ′ is
the same as f but with a change R↔ w0. But since f is proportional to both, the exchange does not affect it
and we get

f ′ = f



So the number of photons coming back will be
Nf2

E) True or false? If we were to use laser wavelength λ/2 instead of λ, but kept the beam power the same, the
number of emitted photons would drop by a factor of two. On the other hand, the diffraction angle of the beam
would decrease by the same factor (because shorter wavelengths diffract less), thus increasing the fraction of
photons on target by factor of two. Consequently, we would have the same number of photons reaching the
reflector.

Answer:
The important thing here is keep track of area and not only of linear dimension. In the language of formulas,
the number of photons reaching the reflector is

Ntarget = Nf =
Epλ
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R2π2w2
0

L2λ2

So the statement is false because this result still depends on λ.



P: (10pts) This problem deals with the three-dimensional wave equation for scalar waves that propagate
with velocity which we denote c. The solution we are going to analyse may represent an approximation for
the electromagnetic field inside a corner retro-reflector — in this case the reflecting surfaces of the reflector
coincide with the main Cartesian coordinate planes, and we look at a special solution in the first octant, for
x ≤ 0, y ≤ 0, z ≤ 0.

A) Write down the correesponding three-dimensional wave equation.

Answer:
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B) Given is a function
ψ(x, y, z, t) ≡ sin(kxx) sin(kyy) sin(kzz) cos(ωt) .

Using direct calculation, demonstrate that ψ can be a solution the the wave equation given above, provided a
dispersion relation between kx, ky, kz and ω is satisfied. Specify this dispersion relation.

Answer:
Do not do more calculations than really necessary. Here we can’t use operator equivalencies directly, because
the function is not given in terms of exponentials. Yet, the pattern repeats so it shoudl take no time to get:
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and similarly for other coordinates. Either point out this symmetry (so that I know you noticed) or write out
explictly everything if you prefer. You should end up with the familiar
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Because ψ is in general not zero, you must ask for the factor to vanish:
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and that is one form of the free-space dispersion relation. So the take-away here should be that even if the
wave-form function “looks different” the dispersion relation that one obtains from it must correspond to that
found in class.

C) What is the dispersion relation in case the relector is made of glass of refractive index n = 1.7?

Answer:
Like we said in the class, when generalizing results from free space to a dielectric medium, find all instances of
c and replace them by c/n. You could either make this statement or re-do all calculations to get
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D) Function ψ can be characterized as a three-dimensional standing wave which consist of superposition of
plane waves. By expressing sin(...) in terms of exp(±...), and by replacing cos(...) by exp(...) give the complex
representation of this solution. It is sufficient to specify the solution in a compact, factorized form.

Answer:
This is nothing but a simple use of Euler (for sin) and complex representation (cos→ exp)
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Do not expand... Note that everything before exponential is real-valued so we have as we must:

ψ = Re{ψc} .

E) Expanding the solution from part D), one could identify each plane wave contributing to ψ. Without doing
the calculation explicitly, can you tell how many plane waves there are in ψ?

Answer:
Obviously there will be eight terms, each of them in the form of an exponential. They differ only in the signs
in front of wave-vector components, ±kx,±ky,±kz — there is eight combinations of those. So our take-away
is that each sine or cosine in a standing wave contributes two (counter-propagating) waves but contributions
from different coordinate dimensions “multiply.”


