
OPTI-310, Practice problems EM waves

Problem 1:
Consider the plane wave traveling in free space with the wave vector ~k = 2π(1, 1, 1)/(

√
3λ), where λ = 600nm,

and with an electric field amplitude of E0 = 30V/m. The phase of the wave is 2π at the origin (i.e. the
magnitude of the electric field vector at x = 0, t = 0 is E0). Direction of the electric field oscillation is given by
a unit vector ê.

A) Find an expression for the wave using a real representation. State the condition for ê that must be satisfied
to ensure that divergence of the electric field vanishes.

êE0 cos[~k.~r − ωt] where ω =
2πc

λ
and ê.~k = 0

B) Find an expression for the wave using the complex notation.

êE0 exp[i(~k.~r − ωt)]

C) Find the frequency ν of the wave in THz.

ν =
c

λ
=

3× 108ms−1

6× 10−7m
= 0.5× 1015s−1

D) Find a point other than the origin where the phase is 2π at t = 0

any point for which ~k.~r = 2π for example ~r = (
√

3λ, 0, 0)

E) Describe (either using words or by giving an equation) the phase fronts of this wave

1. phase front = any plane that is perpendicular to ~k
2. ~k.~r = const

F) Give two possible choices for ê (so that divergence of the field is zero)

ê1 = (1,−1, 0)/
√

2 ê2 = (1, 1,−2)/
√

6

G) For your first choice in F), specify the unit vector b̂ for the direction of oscillation of the magnetic field

b̂ = (−1,−1,+2)/
√

6 = −ê2

H) Calculate the amplitude of the magnetic field, and remember to specify units

B0 = E0/c =
30V m−1

3× 108ms−1
= 10−7V sm−2

I) Give an expression for, and calculate the irradiance

I =
1

2
ε0ncE

2
0 =

1

2
8.854× 10−12(As/V m) 3× 108m/s 900V 2/m2 ≈ 1.2W/m2
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OPTI-310, Practice problems EM waves

Problem 2:
Consider the plane wave traveling in free space with the wave vector ~k = 2π(1, 1, 0)/(

√
2λ), where λ = 800nm,

and with an electric field amplitude of E0 = 3× 108V/m. The phase of the wave is π/2 at the origin (i.e. the
magnitude of the electric field vector at x = 0, t = 0 is zero). Direction of the electric field oscillation is given
by a unit vector ê.

A) Find an expression for the wave using a real representation. State the condition for ê that must be satisfied
to ensure that divergence of the electric field vanishes.

êE0 sin[~k.~r − ωt] where ω =
2πc

λ
and ê.~k = 0

B) Find an expression for the wave using the complex notation.

êE0 exp[i(~k.~r − ωt− π/2)]

C) Find the frequency ν of the wave in THz.

ν =
c

λ
=

3× 108ms−1

8× 10−7m
= 0.375× 1015s−1

D) Find a point other than the origin where the phase is 2π at t = 0

any point for which ~k.~r = 2π for example ~r = (
√

2λ, 0, 0)

E) Describe (either using words or by giving an equation) the phase fronts of this wave

1. phase front = any plane that is perpendicular to ~k
2. any plane parallel to the plane given by x+ y = 0
3. ~k.~r = const

F) Give two possible choices for ê (so that divergence of the field is zero)

ê1 = (1,−1, 0)/
√

2 ê2 = (0, 0, 1)

G) For your second choice in F), specify the unit vector b̂ for the direction of oscillation of the magnetic field

b̂ = (−1,−1, 0)/
√

2 = +ê1

H) Calculate the amplitude of the magnetic field, and remember to specify units

B0 = E0/c =
3× 108V m−1

3× 108ms−1
= 1V sm−2

I) Give an expression for, and calculate the irradiance

I =
1

2
ε0ncE

2
0 =

1

2
8.854× 10−12(As/V m) 3× 108m/s 9× 1016V 2/m2 ≈ 1.2× 1014W/m2
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OPTI-310, Practice problems EM waves

Problem 3:
Which of these pairs can represent an electromagnatic plane wave propagating in free space? If not, say why.
If yes, specify sufficient condition(s) that must be satisfied. Note that such conditions need not be unique — it
is OK to choose an easy way out.
A)

~E = îE0 cos[kx− ωt] ~B = ĵE0/c cos[kx− ωt]

NO: not transverse

B)
~E = k̂E0 cos[kx− ωt] ~B = ĵE0/c cos[kx− ωt]

NO: wrong sign of magnetic field

C)
~E = îE0 exp[i(kz − ωt)] ~B = ĵB0 exp[i(kz − ωt)]

YES: If B0 = E0/c and k = ω/c

C)
~E = êE0 exp[i(u(z + y + x)− ωt)] ~B = b̂B0 exp[i(u(x+ y + z)− ωt)]

YES: If B0 = E0/c, ê = (1,−1, 0)/
√

2, b̂ = (−1,−1,+2)/
√

6, and
√

3u = ω/c

D)
~E = ĵE0 cos[kx− ωt] ~B = k̂E0/c sin[kx− ωt]

NO: wrong combination of cos and sin, fields do not oscillate “together”

E)

~E = êE0 exp[i
2π

λ
(x− y − ct)] ~B = b̂B0 exp[i

2π

λ
(x− y − ct)]

NO : wrong propagation speed

E)

~E = k̂E0 exp[i(
2π√
2λ

(x− y −
√

2ct) + π)] ~B = (̂i+ ĵ)E0/(
√

2c) exp[i
2π√
2λ

(x− y −
√

2ct)]

YES: as is
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OPTI-310, Practice problems EM waves

Problem 4:
Given are electric and magnetic fields:

~E = k̂E0 exp[i
2π√
2λ

(x+ y −
√

2ct)] ~B = (̂i− ĵ)E0/(
√

2c) exp[i
2π√
2λ

(x+ y −
√

2ct)]

A) State the Ampere’s law (in differential form) for free space

∇× ~B =
1

c2
∂t ~E

B) Demonstrate by direct calculations that the above fields do satisfy the equation you gave in A)

First, it will be convenient to rewrite the given fields as follows:

~E = k̂E0 exp[i(~k.~r − 2πc

λ
t)] ~B =

(̂i− ĵ)√
2

(E0/c) exp[i(~k.~r − 2πc

λ
t)]

where we identify the wave vector and a unit vector pointing in the same direction:

~k =
2π

λ
n̂ n̂ = (1, 1, 0)/

√
2 .

Using operator equivalencies, calculate LHS:

∇× ~B = ∇× (̂i− ĵ)√
2

(E0/c) exp[i(~k.~r − 2πc

λ
t)] = i~k × (̂i− ĵ)√

2
(E0/c) exp[i(~k.~r − 2πc

λ
t)]

Here it is fastest to express ~k with the help of n̂ and use algebra of î, ĵ, k̂ to evaluate the cross product (do not
bother with a determinant or similar)

∇× ~B = i
2π

λ

1

2

[
(̂i+ ĵ)× (̂i− ĵ)

]
(E0/c) exp[i(~k.~r − 2πc

λ
t)] = −ik̂ 2π

λ
(E0/c) exp[i(~k.~r − 2πc

λ
t)] .

Now evaluate RHS:

1

c2
∂t ~E =

1

c2
−i2πc
λ

k̂E0 exp[i(~k.~r − 2πc

λ
t)] = −i2π

λ
k̂(E0/c) exp[i(~k.~r − 2πc

λ
t)]

So we have

LHS = RHS
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OPTI-310, Practice problems EM waves

Problem 5:
Given are electric and magnetic fields:

~E = k̂E0 exp[i
2π√
2λ

(x+ y −
√

2ct)] ~B = (̂i− ĵ)E0/(
√

2c) exp[i
2π√
2λ

(x+ y −
√

2ct)]

A) State the Faraday’s law for free space

∇× ~E = −∂t ~B

B) Demonstrate by direct calculations that the above fields do satisfy the equation you gave in A)

First, it will be convenient to rewrite the given fields as follows:

~E = k̂E0 exp[i(~k.~r − 2πc

λ
t)] ~B =

(̂i− ĵ)√
2

(E0/c) exp[i(~k.~r − 2πc

λ
t)]

where
~k =

2π

λ
n̂ n̂ = (1, 1, 0)/

√
2 .

Using operator equivalencies, calculate LHS:

∇× ~E = i
2π

λ

1√
2

[
(̂i+ ĵ)× k̂

]
E0 exp[i(~k.~r − 2πc

λ
t)] = i

2π

λ

î− ĵ√
2
E0 exp[i(~k.~r − 2πc

λ
t)] .

Now evaluate RHS:

−∂t ~B = i
2π

λ
(̂i− ĵ)E0/(

√
2) exp[i(~k.~r − 2πc

λ
t)] .

So we have

LHS = RHS
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