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Coatings and Multi-layers

Fabry-Perot geometry is crucial for many devices. Here we look at (anti-reflective) coatings, which

are essentially miniature FPs.

Plan:

• Apply what we learned about FP. We will need a bit of a generalization...

• Develop an intuitive picture of “what happens inside” of a multilayer. This will rely on the

behaviors described by Fresnel equations, and in particular on phase changes experienced at

reflections.
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Three-layer structure: Transfer matrix treatment

For simplicity and concreteness, consider the TE polarized case.

This choice does not matter too much:

1. TM and TE results are identical for normal incidence

2. it often sufficient to work with near-normal angles

The transfer matrix representing the three-layer structure is

M = M (23)M (slab)M (12)

M (12) =
1

2

(
1 + a12 1− a12

1− a12 1 + a12

)
M (slab) =

(
e+ik

(2)
z l 0

0 e−ik
(2)
z l

)
M (23) =

1

2

(
1 + a23 1− a23

1− a23 1 + a23

)

a12 =
k

(1)
z

k
(2)
z

=
n1 cos θ1

n2 cos θ2
≈ n1

n2
a23 =

k
(2)
z

k
(3)
z

=
n2 cos θ2

n3 cos θ3
≈ n1

n2

where ≈ denotes approximate relations usable for nearly-normal incidence

M. Kolesik, Fall 2014



OPTI-310, Interference AR coatings, thin-film mirrors

. . . matrix multiplication gives

M = M (23)M (slab)M (12) =
1

2

(
1 + a23 1− a23

1− a23 1 + a23

)(
e+ik

(2)
z l 0

0 e−ik
(2)
z l

)
1

2

(
1 + a12 1− a12

1− a12 1 + a12

)

M =
1

2

(
(1 + a12a23) cos(k

(2)
z l) + i(a12 + a23) sin(k

(2)
z l) (1− a12a23) cos(k

(2)
z l)− i(a12 − a23) sin(k

(2)
z l)

(1− a12a23) cos(k
(2)
z l) + i(a12 − a23) sin(k

(2)
z l) (1 + a12a23) cos(k

(2)
z l)− i(a12 + a23) sin(k

(2)
z l)

)
The relation between incident, reflected, and transmitted amplitudes, expressed with this matrix is(

Et

0

)
= M

(
Ei

Er

)
The “lower-row” component of this equation reads

0 = M21Ei + M22Er

from where we obtain the amplitude reflection coefficient of the tri-layer as:

rs =
Er

Ei
= −M21

M22

rs = −(1− a12a23) cos(k
(2)
z l) + i(a12 − a23) sin(k

(2)
z l)

(1 + a12a23) cos(k
(2)
z l)− i(a12 + a23) sin(k

(2)
z l
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Special cases: AR-coating

Say we wish to minimize reflection. Assuming we can choose freely two parameters, namely thickness

l and the refractive index of the coating layer, is it possible to achieve zero reflectivity?

rs suggests two options:

Either

cos(k(2)
z l) = 0 and (a12 − a23) = 0

or

sin(k(2)
z l) = 0 and (1− a12a23) = 0

The second is not useful, because a12a23 = a13 which does not depend on the index of refraction of

the second layer (our free parameter).

Fortunately, the first is usable, and requires that

• k(2)
z l = π

2 which means that the thickness corresponds to one quarter of wavelength

• n1n2 = n2
2 which means that the refractive index n2 should be the geometric mean of the index

of substrate and of the incident medium.

• if the first medium is air, n2 =
√
nsubstrate

Note: Because of the frequency dependence of the refractive index, we can only achieve zero reflec-

tivity for a single wavelength. Such a choice may not be optimal at other wavelengths...
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Intuitive picture of AR-coating

Fresnel says: reflection from an optically denser medium causes a phase change of π (equivalently,

change of sign).

Thus if

n1 < n2 < n3

then:

If, further, we adjust the thickness of the coating layer such that

k(2)
z l =

π

2
,

the total phase difference between R1 and R0 will be

π + π/2 + π/2− π ,
and the two waves will interfere destructively. Provided these two waves dominate the reflected field,

we can see that the coating acts as a Fabry-Perot at resonance, and decreases the reflectivity of this

coated surface.
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Intuitive picture of AR-coating continued...

Q: Having justified, based on qualitative argument, that the thickness should be a quarter of wave-

length, is it also possible to “guess” what is the optimal value of n2?

A: The idea is to maximize potential for interference between R0 and R1. We have seen previously

that the biggest interference effects occur for comparable field amplitudes. If R0 and R1 were different

amplitudes, they could not destruct each other completely...

Approximation:

• each transmission is nearly perfect, with t ≈ 1

• only R0 and R2 contribute to the reflected field

• incidence is normal

Under these assumptions we have

R0 ≈ E0r12 = E0
n1 − n2

n1 + n2
R1 ≈ E0r23 = E0

n2 − n3

n2 + n3

Asking that the two are equal, leads to

0 =
n1 − n2

n1 + n2
− n2 − n3

n2 + n3
= −2

n2
2 − n1n3

(n1 + n2)(n2 + n3)
,

. . . and we see that the two amplitudes are indeed equal if

n2 =
√
n1n3

Thus, both important properties of AR-coating can be argued without much calculations.
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Problem example: From the transfer matrix calculation, we have obtained one of the conditions

for the tri-layer reflectivity being zero as

cos(k(2)
z l) = 0

and said that it implied quarter wavelength thickness. What about other solutions with a thicker

coating? Why not to use 3/4-wavelength or larger thickness?

A) Take the reflection coefficient rs as derived, and argue that chromatic dispersion implies that

rs becomes non-zero in the immediate vicinity of the optimal wavelength as long as ∂n2/∂λ is

nonzero (as it always is).

B) Give an argument showing that this reflectivity detriment is lesser if

∂rs(n2)

∂n2

as small as possible.

C) Show, through explicit calculation, that the above becomes larger and larger for the ”thicker”

solutions.
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High-Reflectance multi-layers

• For a high-reflectivity structure, we need at least two layers deposited on a substrate.

• From the AR discussion we know that the second layer must be lower index

• We guess that quarter-wavelength thickness will work

Intuitive picture:

The phase changes in the reflected amplitudes are:

R0: +π due to reflection on the first, air-nt interface

R1: +π/2 + π/2 due to traveling twice through quarter-wavelength slab. No reflection phase.

R2: +π due to reflection off the bottom-substrate interface. 2π due to propagation through four

quarter-wavelength thickness of top and bottom coating layer.

Result: Constructive interference = high reflectivity
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Distributed Bragg Mirrors

Transfer matrix for N period-repeats:

M = M 1s
(
M (21)M (2)M (12)M (1)

)N
M (01)

Assume that layers are quarter-wavelength:

M (1) = M (2) =

(
i 0

0 −i

)
then

A = M (21)M (2)M (12)M (1) = −1

2

(
a12 + a21 a21 − a12

a21 − a12 a12 + a21

)
=
−1

2
a21

(
+1 +1

+1 +1

)
+
−1

2
a12

(
+1 −1

−1 +1

)
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We need to find AN for

A = −1

2

(
a12 + a21 a21 − a12

a21 − a12 a12 + a21

)
= −1

2
a21

(
+1 +1

+1 +1

)
− 1

2
a12

(
+1 −1

−1 +1

)
≡ (−a21)Pe + (−a12)Po

This is easy when you realize that the two matrices Po, Pe on the right have pleasant properties: They

are what is called orthogonal projectors:

PePo = 0 P k
e = Pe P k

o = Po

so it is straightforward to calculate their arbitrary (matrix) functions.

This is why we get

AN = (−a21)NPe + (−a12)NPo

Note: Those familiar with eigenvector decomposition of matrices will recognize that Pe,o are nothing

but projectors onto even and odd eigenvector of A.
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So we have the transfer matrix in the form:

M = M (1s)ANM (01)

with

M (01) =
1

2

(
1 + a01 1− a01

1− a01 1 + a01

)
≡ Pe + a01Po

and

M (1s) =
1

2

(
1 + a1s 1− a1s

1− a1s 1 + a1s

)
≡ Pe + a1sPo

so that

M = (Pe + a1sPo)
[
(−a21)NPe + (−a12)NPo

]
(Pe + a01Po)

M = Pe(1× (−a21)N × 1) + Po(a1s × (−a12)N × a01)

Explicitly:

M =
1

2

(
(−a21)N + a0s(−a12)N (−a21)N − a0s(−a12)N

(−a21)N − a0s(−a12)N (−a21)N + a0s(−a12)N

)
where we have used

a1sa01 = a0s
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Having found the transfer matrix, we can obtain the reflection coefficient the same way as on page 3:

rs = −M21

M22
= −(−a21)N − a0s(−a12)N

(−a21)N + a0s(−a12)N

For nearly normal incidence aik reduces to ratio of refractive indices and we finally get:

r = −(−n2/n1)N − n0/ns(−n1/n2)N

(−n2/n1)N + n0/ns(−n1/n2)N
= −(−n2/n1)2N − n0/ns

(−n2/n1)2N + n0/ns
and the reflectance is

R = |r|2 =

[
(n2/n1)2N − n0/ns
(n2/n1)2N + n0/ns

]2

Note:

• as n2 > n1 the reflectance tends to unity for a large number of periods

• in that limit, influence of the incident n0 and substrate refractive index ns is insignificant

• this expression can only be applied at the “design wavelength” for which the layers are quarter-

wavelength (which we have assumed)

• the result applies to TE and TM polarizations (because nearly-normal incidence was also assumed)
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Exercise:

Perform sanity check of the result for the multilayer reflectivity. Assume that the refractive indices of

the alternating layers are equal. The situation is then the same as for a three-layer structure. Verify

that the result agrees with the prediction for three-layer rs on page 3.

Hint: pay attention to the total thickness of the layer...
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