
OPTI-310, Polarization Linear, Circular, Elliptic Polarizations

Light polarization:

• OPTI-310: fully polarized light

• Polarization state: 2D vector in a complex vector space

• Jones calculus: light = vector, optical element = matrix, system = string of matrices

• Partially polarized light = polarized wave + natural light

• Unpolarized light = relative phases between vector components (of E) change randomly, and

faster than the detector can follow

• Polarization state: Stokes vector

• Muller matrix calculus
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OPTI-310, Polarization Linear, Circular, Elliptic Polarizations

Isolating the polarization state of light (from an EM plane-wave)

Consider a harmonic plane-wave propagating along the z-axis

~E(~r, t) = x̂Ex(z, t) + ŷEy(z, t)

where

Ex(z, t) = Ax cos(kz − ωt + φx) =
1

2

[
Exei(kz−ωt) + c.c.

]
Ey(z, t) = Ay cos(kz − ωt + φy) =

1

2

[
Eyei(kz−ωt) + c.c.

]
with complex amplitudes

Ex = Axe
iφx Ey = Aye

iφy

Q: If we could follow the “tip” of the electric field vector at a fixed location in space, over one period

of the optical cycle, what (parametric) curve it will “draw” ?
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OPTI-310, Polarization Linear, Circular, Elliptic Polarizations

Substitute (rename the phase argument that appears in the exponentials):

τ = ωt− kz

and get ( using cos(a + b) = cos a cos b− sin a sin b )

Ex(τ )

Ax
= cos τ cosφx + sin τ sinφx

Ey(τ )

Ay
= cos τ cosφy + sin τ sinφy

Manipulate to obtain equation of ellipse:(
Ex

Ax

)2

+

(
Ey

Ay

)2

− 2

(
Ex

Ax

)(
Ey

Ay

)
cosφyx = sin2 φyx

where

φyx = φy − φx ≡ −δ
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OPTI-310, Polarization Linear, Circular, Elliptic Polarizations

A:

• Tip of the E-field vector in the (x− y) plane must fall on the above ellipse parametrically with τ .

• orientation and ellipticity depend on Ax/Ay and φyx.

tan 2α =
2 cosφyxAxAy

A2
x − A2

y
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OPTI-310, Polarization Linear, Circular, Elliptic Polarizations

Example:

φyx = 0 gives (
Ex

Ax

)
=

(
Ey

Ay

)
or

Ey =
Ay

Ax
Ex

which represents a straight line of slope (Ay/Ax)

Example:

φyx = π gives the same, except the slope changes sign

For Ax = Ay, these are examples of linear polarizations with orientation of 45 and -45 degrees.

Motion of the tip of ~E(τ ) is a straight line in the (x− y) plane.
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OPTI-310, Polarization Linear, Circular, Elliptic Polarizations

Summary so far:

• φxy = 0,±π implies linear polarization

• ratio Ax/Ay determines the orientation (“slope”) of oscillation

• Ay = 0 means x̂ polarization

• Ax = 0 means ŷ polarization
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OPTI-310, Polarization Linear, Circular, Elliptic Polarizations

Example:

Ax = Ay, φyx = +π/2, circularly polarized, Left, LHC

Ax = Ay, φyx = −π/2, circularly polarized, Right, RHC

Take the first case, φyx = +π/2

Ex(τ )

Ax
= cos τ cosφx + sin τ sinφx = cos τ cosφx + sin τ sinφx

Ey(τ )

Ay
= cos τ cosφy + sin τ sinφy = − cos τ sinφx + sin τ cosφx(
Ex

Ax

)2

+

(
Ey

Ay

)2

− 2

(
Ex

Ax

)(
Ey

Ay

)
cosφyx = sin2 φyx(

Ex

A

)2

+

(
Ey

A

)2

− 2

(
Ex

A

)(
Ey

A

)
0 = 1

where

φyx = φy − φx = π/2
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OPTI-310, Polarization Linear, Circular, Elliptic Polarizations

Right polarized light:

• clock-wise rotation (with time) at a given point in space when viewed against direction of propa-

gation

• for a fixed time (a snapshot), vectors describe right-handed spiral

Left polarized light:

• anti-clock-wise rotation (with time) at a given point in space when viewed against direction of

propagation

• for a fixed time (a snapshot), vectors describe left-handed spiral
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OPTI-310, Polarization Linear, Circular, Elliptic Polarizations

Complex-valued polarization vectors:

Take
~E(~r, t) = A [x̂ cos(kz − ωt) + ŷ sin(kz − ωt)] = A [x̂ cos τ − ŷ sin τ ]

which is RHC light (Why?, Keep in mind that τ = ωt− kz).

~E(~r, t) =
A

2

[
x̂(eiτ + e−iτ )− ŷ(eiτ − e−iτ )/i

]
=

A√
2

[
x̂ + iŷ√

2
eiτ +

x̂− iŷ√
2
e−iτ

]
~E(~r, t) =

A√
2

[
x̂ + iŷ√

2
e−i(kz−ωt) +

x̂− iŷ√
2
e+i(kz−ωt)

]
Normalized, complex-valued, polarization vector:

ê± =
1√
2

(x̂∓ iŷ)

RHC (+) and LHC (-) constitute a basis. They are also orthogonal:

êµ.ê
∗
ν = δµν

In general: The are two linearly independent polarization states for any given direction of propa-

gation (here z). They form and orthonormal basis.

Note: keep in mind that the scalar product is now “complex”!
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OPTI-310, Polarization Linear, Circular, Elliptic Polarizations

Example: φyx 6= 0,±π, elliptical polarization states

• 0 < φyx < π is left-handed elliptic polarization

• π < φyx < 2π is right-handed elliptic polarization

~E(z, t) = îE0 cos(kz − ωt) + ĵE0 cos(kz − ωt + π/4)

What is the polarization state of this wave?

~E(z = 0, t = 0) = îE0 cos(0) + ĵE0 cos(0 + π/4) = îE0 + ĵE0/
√

2

~E(z = 0, t = T/8) = îE0 cos(−π/4) + ĵE0 cos(−π/4 + π/4) = îE0/
√

2 + ĵE0

~E(z = 0, t = T/4) = îE0 cos(−π/2) + ĵE0 cos(−π/2 + π/4) = î0 + ĵE0/
√

2
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OPTI-310, Polarization Linear, Circular, Elliptic Polarizations

What is the orientation of the polarization ellipse?

tan 2α =
2E2

0

E2
0 − E2

0

cos(π/4) =∞ α = 45o

What is the maximum and minimum field amplitude?

A) Maximum occurs halfway between t = 0 and t = T/8, i.e. at t = T/16, so

~E(z = 0, t = T/16) = îE0 cos(−2π/16) + ĵE0 cos(−π/8 + π/4)

( ~E. ~E) = 2E2
0 cos2(π/8) Emax =

√
2 cos(π/8)E0 = 1.31E0

B) Minimum one quarter of a cycle later, at t = T/16 + T/4 i.e. at t = 5T/16, so

~E(z = 0, t = 5T/16) = îE0 cos(−5π/8) + ĵE0 cos(−5π/8 + π/4)

~E(z = 0, t = 5T/16) = îE0 cos(−5π/8) + ĵE0 cos(−3π/8) = −îE0 sin(π/8) + ĵE0 sin(π/8) =

( ~E. ~E) = 2E2
0 sin2(π/8) Emin =

√
2 sin(π/8)E0 = 0.54E0
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OPTI-310, Polarization Linear, Circular, Elliptic Polarizations

Example:

Ex(z, t) = îE0x cos(kz − ωt)
Ey(z, t) = ĵE0y cos(kz − ωt + π/2)

A) What is the polarization state of this wave?

B) What can you say about the orientation of the polarization ellipse?

C) Under what condition is this a circularly polarized wave?
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OPTI-310, Polarization Linear, Circular, Elliptic Polarizations

Answer:

A) Since in general we have no specification of amplitudes E0x,y it is safe to say that in most cases

this will be an elliptically polarized wave. Note that without being sure about the signs of the two

amplitudes, we can’t even tell if the wave is right- or left-polarized.

B) In view of the above remark, we assume that that E0x,y are both positive. This is reasonable

because any negative sign could have been “absorbed” in the appropriate phase of cos functions.

First, identify a point corresponding to the tip of the E-vector for z = 0, t = 0:

~E(z = 0, t = 0) = E0xî

Second, figure out which way vector ~E departs from this point as as time increases, so that t > 0,

but small:

Ey(z = 0, t > 0) ∼ E0y cos(−ωt + π/2) > 0

so the vector departs in the positive vertical direction, and that means that the “rotation” will be

counter-clock-wise. This is therefore left-handed polarization. We can also see that the ellipse is

oriented horizontally (or vertically).

C) Obviously, the bounding box for circularly polarized wave must be a square, and we need to ask

for E0x = E0y.
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OPTI-310, Polarization Jones Calculus

Jones Calculus: Polarization Vectors

State of polarization represented by complex amplitudes Ex and Ey (assuming propagation along z).

Relation to the polarization ellipse:

φyx = arg(Ex/Ey) (Ax/Ay) =

∣∣∣∣ExEy
∣∣∣∣

Jones Vector:

Ē(z) =

(
Ex(z)

Ey(z)

)
A complex-valued, two-component column vector:

• Usually normalized to unity, but not always

• It is the ratio of components that is important

• Can factor-out arbitrary complex factor

• In problems dealing with transmitted power, normalization is important

• Power in the beam = norm2 of the Jones vector:

< Ē |Ē >= (ĒT )∗.Ē = Ē+.Ē = E∗xEx + E∗yEy = |Ex|2 + |Ey|2

M. Kolesik, Fall 2016



OPTI-310, Polarization Jones Calculus

Jones Calculus: Polarization Vectors

• x-polarized:

Ē =

(
1

0

)
• y-polarized:

Ē =

(
0

1

)
• RHC, right circular polarization:

Ē =
1√
2

(
1

−i

)
• LHC, left circular polarization:

Ē =
1√
2

(
1

+i

)
• linear polarization, +45 deg

Ē =
1√
2

(
1

1

)
• linear polarization, −45 deg

Ē =
1√
2

(
1

−1

)
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OPTI-310, Polarization Jones Calculus

Jones Calculus: Polarization Vectors and their transformation by optical elements

Note: If the problem is linear, the relation between Jones vector before and after transition through

an optical element must be also linear:(
Ex
Ey

)
after

= M

(
Ex
Ey

)
before

where M is some 2× 2 (complex-valued) matrix.

This obviously generalizes to a system consisting of a number of elements:(
Ex
Ey

)
after

= Mn . . .Mi . . .M1

(
Ex
Ey

)
before

Note: The first matrix in the string is for the element encountered first.

M. Kolesik, Fall 2016



OPTI-310, Polarization Jones Calculus

Jones Calculus: Matrices for Optical Elements

Polarizers:

• Linear polarizer, transmission horizontal (x)

M =

(
1 0

0 0

)
• Linear polarizer, transmission vertical (y)

M =

(
0 0

0 1

)
• Linear polarizer, transmission axis at ±45 deg

M =
1

2

(
1 ±1

±1 1

)
• Circular polarizer, Right and Left:

M =
1

2

(
1 i

−i 1

)
M =

1

2

(
1 −i

+i 1

)

Note: Polarizer matrices have zero determinants. Why?
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OPTI-310, Polarization Jones Calculus

Jones Calculus: Matrices for Optical Elements

Plates:

• Quarter wave-plate, fast axis vertical:

M =

(
1 0

0 −i

)
• Quarter wave-plate, fast axis horizontal:

M =

(
1 0

0 +i

)
• Quarter wave-plate, fast at ±45 deg

M =
1√
2

(
1 ±i
±i 1

)
• Half wave-plate, fast axis horizontal or vertical

M =

(
1 0

0 −1

)

Note: Plates have | detM | = 1, i.e. they are unitary operators.
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OPTI-310, Polarization Jones Calculus

Rotated optical elements (and their Jones matrices):

Consider a Jones vector

Ē =

(
Ex
Ey

)
in a rotated basis system ê′x, ê

′
y (

E ′x
E ′y

)
= R(θ)

(
Ex
Ey

)
where

R(θ) =

(
cos θ sin θ

− sin θ cos θ

)
= R−1(−θ)

Take (
Ex
Ey

)
z=L

= M

(
Ex
Ey

)
z=0

and represent the same in the rotated frame of reference:(
E ′x
E ′y

)
L

= R(θ)

(
Ex
Ey

)
L

= R(θ)M

(
Ex
Ey

)
0

= R(θ)MR−1(θ)R(θ)

(
Ex
Ey

)
0

≡M ′R(θ)

(
Ex
Ey

)
0

= M ′
(
E ′x
E ′y

)
0

so the Jones matrix in the rotated system is

M ′ = R(θ)MR−1(θ)
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OPTI-310, Polarization Jones Calculus

Rotated optical elements (and their Jones matrices):

Assume it is the element M ′ in the rotated system that we know. Then back in the lab frame we

have:

M = R−1(θ)M ′R(θ) = R(−θ)M ′R(θ)

Example: Rotated polarizer

In the rotated frame it is

M ′ =

(
1 0

0 0

)
What is it in the lab frame:

M(θ) =

(
cos θ − sin θ

sin θ cos θ

)(
1 0

0 0

)(
cos θ sin θ

− sin θ cos θ

)

M(θ) =

(
cos θ − sin θ

sin θ cos θ

)(
cos θ sin θ

0 0

)
=

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
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OPTI-310, Polarization Jones Calculus

Example: Consider a LHC polarized wave incident on a rotated polarizer:(
Ex(L)

Ey(L)

)
=

(
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)(
Ex(0)

Ey(0)

)
(
Ex(L)

Ey(L)

)
=

(
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)(
1

i

)
1√
2(

Ex(L)

Ey(L)

)
=

1√
2

(
cos2 θ + i sin θ cos θ

sin θ cos θ + i sin2 θ

)
=

1√
2

(
cos θeiθ

sin θeiθ

)
=
eiθ√

2

(
cos θ

sin θ

)
This means that

φyx(L) = arg(cot θ) = 0, π(
Ay

Ax

)
= tan θ

So the action is: Circular → Linear

Q: Do this for “any” incident polarization state and show that the result is “the same” with one

exception.
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