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Helmholtz Equation

Helmholtz, Hermann Ludwig
1821 — 1894

• for situations with a well-defined color/wavelength/frequency

• eliminates (and thus simplifies) the temporal dimension of the problem

• is closely related to the wave equation

In complex representation:
~E(~r, t) = ~E(~r, ω) exp[−iωt]

Here we “impose” harmonic dependence on time. Also called continuous wave (CW) regime.

Note:

• We use arguments of vector fields such as ~E(~r, t) and ~E(~r, ω) to distinguish which quantity we

are talking about.

• both are in general complex valued, and real physical fields are associated with their real parts.

• nontrivial time-dependent fields can be constructed as superpositions of components with different

frequencies.
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Helmholtz Equation

Let us see what the wave equation implies for ~E(~r, ω):
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~E(~r, ω) exp[−iωt] = 0(
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~E(~r, ω) exp[−iωt] = 0

and using the dispersion relation

k2 =
ω2n2(ω)

c2

leads to the Helmholtz equation: [
∆ + k2

]
~E(~r, ω) = 0

I many cases, it is an effective “replacement” for the (time-dependent) wave equation.

M. Kolesik, Fall 2013



OPTI-310, Harmonic EM waves Paraxial beam propagation

Paraxial approximation, and slowly varying envelope

Note: The following material answers our long-delayed question: Which equations are solved by

Gaussian beams?

So, we have to solve [
∆ + k2

]
~E(~r, ω) = 0 .

Assume we are looking at a laser beam propagating along z. A plane wave would behave as

~E(~r, ω) ∼ exp[ikz] k =
2π

λ
,

and we expect that this feature will be preserved also in more complex solutions. That is why we try

the following ansatz:
~E(~r, ω) = ~A(x, y, z) exp[ikz]

in which we expect that the dependence of A(x, y, z) on z is “slow.” This is called slowly varying

envelope.

The resulting equation for A reads:

(∂xx + ∂yy)A(x, y, z) + ∂zzA(x, y, z) + 2ik∂zA(x, y, z) − k2A(x, y, z) + k2A(x, y, z) = 0

This is where we neglect ∂zzA(x, y, z) in comparison to 2ik∂zA(x, y, z) and thus obtain the paraxial

beam-propagation equation:

∂zA(x, y, z) =
i

2k
(∂xx + ∂yy)A(x, y, z)
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Exercise:

Show that the Gaussian beam formula (derived before as a superposition of plane waves with small

angles of propagation w.r.t. axis) is a solution to the paraxial beam propagation equation.

Hints:

• Make sure that you remove the carrier wave from the Gaussian beam formula

• This exercise is easier with the complex beam parameter representation

• Gaussian beam recap:

In terms of complex beam parameter:

E(x, y, z, t) = E0e
iω(z/c−t) 1

q(z)
exp

[
+ik

x2 + y2
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]
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πw2
0

λ
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ω

c

In terms of z-dependent beam size, and wavefront radius:

E(x, y, z, t) = E0e
iω(z/c−t) w0
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Important characteristics:
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What next:

We will utilize Helmholtz to analyze continuous-wave regime problems, such as reflection from a

material interface.
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