
OPTI-310, Light-Matter Interactions Polarization in a dielectric medium

Recap: Our model of an “elementary dipole”

• Nucleus + Electron “cloud”

• Nucleus is heavy, and oblivious to the optical field

• Electron cloud experiences the Lorentz force ~F = qe ~E, and responds to it in terms of an effective

displacement ~x

• To account for the fact that electron is bound to the nucleus, we introduce a restoring force due

to the Coulomb attraction:

FC = −meω
2
0~x

Note that this is nothing but a harmonic oscillator. me is electron mass, and the parameter

ω0 measures the strength of force.

• Refractive index as a function of frequency:

n2(ω) = 1 +
Nq2

e

ε0me

∑
j

fj
(ω2

0j − ω2)
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• Problem: We should account for energy dissipation in order to “heal” the singularity in the

above refractive index expression

• Question: Since the dipoles (as an ensemble) can affect the propagating optical field, can they

also affect each other?
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OPTI-310, Light-Matter Interactions Cauchy formula

Refractive index in transparent media

• Practically speaking, (linear) refractive index as a function frequency can not be calculated accu-

rately from first principles.

• In practice, experimental data are used to generate various formulas to represent n(ω)

• We want simple and smooth representations (often we need to take derivatives: e.g. the formula

for the group velocity).

• Cauchy formula

• Sellmeier formula
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Cauchy formula:

and assume that ω0j >> ω for all j. In other words, we are looking at

n2(ω) = 1 +
Nq2

e

ε0me

∑
j

fj
(ω2

0j − ω2)
,

specialized for small ω. So, we can Taylor-expand around ω = 0:

n(ω) ≈ A0 + A2ω
2 + A4ω

4 + . . .

Use ω = 2πc/λ:

n2(λ) = C0 +
C2

λ2
+
C4

λ4
+ . . .

This is called Cauchy formula for the refractive index of a transparent dielectric.

Example: Fused silica has C0 = 1.4580 and C2 = 0.00354 (for λ in µm).

Note: For practical reasons, we want these “fitting formulas” to have as few parameters as possible.

Different functional forms may be suitable for different materials or wavelength regions...

Exercise: Calculate C0 and C2 from our “microscopic” formula for n(ω). Note that many transitions

(many resonance terms) can contribute to each parameter.
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Sellmeier formula

Start from

n2(ω) = 1 +
Nq2

e

ε0me

∑
j

fj
(ω2

0j − ω2)

and use ω = 2πc/λ:

n2(ω) = 1 +
Nq2

e

ε0me

∑
j

fj
(ω2

0j − (2πc/λ)2)
,

now multiply top and bottom of each term by

λ2

ω2
0j

to get:

n2(ω) = 1 +
∑
j

fjNq
2
e

ε0meω2
0j
λ2

(λ2 − (2πc/ω0j)2)
,

and collapse all unknowns into Sellmeier coefficients:

n2(ω) = 1 +
∑
j

Bjλ
2

(λ2 − Cj)
,

M. Kolesik, Fall 2013



OPTI-310, Light-Matter Interactions Sellmeier formula

Sellmeier formula

... is better (than Cauchy) because it better reflects the resonant structure of the refractive index.

Note:

• Sellmeier coefficient values are tied to the wavelength unit used, usually µm.

• Any formula is only valid in a certain interval of wavelengths.

• The “nontrivial” part of the Sellmeier equation expresses susceptibility χ.
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OPTI-310, Light-Matter Interactions Complex-valued refractive index

Accounting for losses

Oscillator model with friction:

~F = me~a = me
d2~x(t)

dt2
= qe ~E(t)−meω

2
0~x(t)− γme

d~x(t)

dt
the last term causes velocity to decrease, and manifests itself as exponential damping of free oscillations.

This provides a “channel” for the energy from the optical field to dissipate into the medium.

Exercise: Apply the same method we used previously in the friction-less case to show that the index

of refraction becomes complex:

n2(ω) = 1 +
Nq2

e

ε0me

∑
j

fj
(ω2

0j − ω2)− iγω

Note: The sign of the new term depends on the convention for the complex representation of optical

fields.

characteristic frequency dependence
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Consequences of complex refractive index

• nothing changes on the dispersion relation:

k =
ωn(ω)

c
=
ω[nR(ω) + inI(ω)]

c

• the wavevector therefore acquires imaginary part, too

k = kR + ikI

• ... and plane waves decrease in intensity with propagation distance:

E0 exp[ikx− iωt] = E0 exp[−kIx] exp[ikRx− iωt]

• Intensity decays twice as fast;

I(x) = I(0) exp[−2kIx]

• Intensity can also increase, if the imaginary part of the index becomes negative — this occurs

in gain media, e.g. in semiconductor lasers.
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OPTI-310, Light-Matter Interactions Clausius-Mossotti formula

Mutual interaction between induced dipoles

• Induced dipole: reaction to the local electric field.

• local field consists of the imposed external field, plus contributions from all other dipole-fields.

The result of “summation” is the Clausius-Mossotti formula:

n2(ω)− 1

n2(ω) + 2
=

Nq2
e

3ε0me

∑
j

fj
(ω2

0j − ω2 + iγω)

Note: If the medium is sufficiently dilute, dipoles are far from each other, and should not influence the

local field much. Also, the refractive index will be close to one. In such a case the Clausius-Mossotti

formula reduces to the expression we derived earlier.

Clausius, Rudolf
1822 — 1888

Mossotti, Ottaviano-Fabrizio
1791 — 1863

M. Kolesik, Fall 2013
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Birefringence in crystals

• So far we have assumed that our medium model was isotropic, i.e. all directions were equivalent

(or indistinguishable).

• For atoms in crystals, their immediate neighborhood is anisotropic, and that means that our ω0

can depend on the direction of oscillation.

• This means that we can have different

ω0x ω0z ω0z

• ... and that we have different refractive indices nx, ny, and nz, e.g.

n2
x ≈ 1 +

Nq2
e

ε0meω2
0x

• This is called birefringence, and it occurs in anisotropic crystals where the atoms are arranged

in unit cells that have low symmetry.

• Note: refractive index depends on the direction of oscillation. That means that in general,

there can be different refractive index for the same direction of propagation.
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Crystal units cells - Bravais lattices
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Cubic crystals:

nx = ny = nz

Macroscopic properties in these media are isotropic.

Uniaxial crystals:

no = nx = ny 6= nz = ne

measure of birefringence:

∆n = (ne − no)
depending on its sign, we distinguish positive and negative uniaxial crystals

Biaxial crystals:

nx 6= ny 6= nz 6= nx
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Uniaxial crystals:

• Have one refractive index that is different (from the other two).

• Its direction is the direction of optical axis.

• Light polarized along the optical axis is called extraordinary ray, and experiences the refractive

index ne.

• Light that is polarized perpendicularly to the axis is called ordinary ray, and experience refrac-

tive index no.

• These polarization directions are the crystal principal axes

• Light with any other polarization must be broken down into its ordinary and extraordinary com-

ponents.

• We perform calculations with each of them individually, using appropriate refractive index, and

recombine them afterward.
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Uniaxial crystals, polarization decomposition:
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Birefringence can separate the two polarizations into separate beams
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Uniaxial crystals, examples:

Interesting consequences of anisotropy:

• Electric field E and electric induction D are not parallel (in general)

• Gauss dictates that wave-vector ~k is perpendicular to D, which in turn means that E and ~k need

not be perpendicular ...

• ... and Poynting ~S will have direction different from that of ~k.

... we will justify and clarify these observations in solving simple problem examples ...
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Examples: Wave Propagation in a Uniaxial Medium

A propagation along optic axis:

all wave-polarizations “see” the same refractive index

B propagation direction perpendicular to optic axis:

orthogonal polarizations experience different refractive indices

C propagation at angle w.r.t. optic axis:

ordinary wave polarized perpendicular to the axis “sees” no
extraordinary wave experiences refractive index that depends on the propagation direction
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Problem Example:

This is to explore regime B in some detail. Consider a slab of uni-axial crystal, thickness L, with the

optic axis parallel to its surface, and refractive indices no and ne. An electromagnetic plane wave is

incident from vacuum, in direction normal to the surafce of the slab. Given are:

the electric field amplitude E0

wavelength λ

linear polarization direction 45 deg w.r.t. optic axis

electric field value is zero at t = 0 at the surface of the crystal

Also assume that no reflections occur at material interfaces.

• A) Write the complex representation of the incomming plane wave solution

• B) Find the plane wave solution inside the crystal. You should observe that the polarization of

the wave depends on the propagtaion distance.

• C) Find the condition that the thickness L has to satisfy in order to have the outgoing plane wave

polarized at 90 deg w.r.t. the incoming wave polarization.
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