
OPTI-310, Electromagnetic Waves Optical interference I

Regimes in optical interference

From our examination of interference between solutions of the 3D wave equation:

• frequencies must be very similar. In practice it means that in the optical regime the two waves

must be “derived” from the same source.

• interference patterns attain their deepest modulation when the two interfering waves have com-

parable amplitudes

Ways to obtain waves ready for interference:

• Division of wavefront: Separate “pieces” from the same-wave wavefront and bring them to overlap

and interfere at a different location

• Division of amplitude: Leave the wavefront intact, but split it into two (or more) waves with

smaller amplitudes and let them propagate along different paths. The splitting occurs at the same

point in space.
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Interference between two optical fields

Electric field of a two-wave superposition:

~E(~r, t) = ê1E1 cos[~k1.~r − ω1t + p1] + ê2E2 cos[~k2.~r − ω2t + p2]

Detecting the magnitude of Poynting vector:

S(~r, t)

ε0nc
= ~E(~r, t). ~E(~r, t)

Identify three contributions:

S = S1 + S2 + S12

S ∼ E2
1 cos2[~k1.~r−ω1t+p1]+E

2
2 cos2[~k2.~r−ω2t+p2]+2(ê1.ê2)E1E2 cos[~k1.~r−ω1t+p1] cos[~k2.~r−ω2t+p2]

Obviously, S1 and S2 are magnitudes of Poynting of individual waves. S12 is the interference term.

Fresnel-Arago law:

If the two fields have orthogonal polarization (ê1.ê2) = 0, there is no interference.
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Next, take:

ê1 = ê2 p1 = p2 = 0

S ∼ E2
1 cos2[~k1.~r − ω1t] + E2

2 cos2[~k2.~r − ω2t] + 2E1E2 cos[~k1.~r − ω1t] cos[~k2.~r − ω2t]

Now use:

cosA cosB =
1

2
[cos(A + B) + cos(A−B)]

so that the interference term becomes:

S12 ∼ cos[~k1.~r−ω1t] cos[~k2.~r−ω2t] =
1

2

[
cos[(~k1 + ~k2).~r − (ω1 + ω2)t] + cos[(~k1 − ~k2).~r − (ω1 − ω2)t]

]
The first term is fast oscillating and the second is slow oscillating as long as ω1 ∼ ω2.

Time averaging: First term lost. S1 and S2 attain their independent time-averaged values:

< S1(~r, t) >T

ε0nc
=

1

2
E2

1

< S2(~r, t) >T

ε0nc
=

1

2
E2

2

and
< S12(~r, t) >T

ε0nc
= E1E2 cos[∆~k.~r −∆ωt] ∆~k = (~k1 − ~k2) ∆ω = (ω1 − ω2)

Q: For the above to be OK, we had to assume something about the length of the averaging time.

What?
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So the final result is:

< S >T= I1 + I2 + 2
√
I1I2(ê1.ê2) cos[∆~k.~r −∆ωt]

with

∆~k = (~k1 − ~k2) ∆ω = (ω1 − ω2)

Example, Standing waves:

Take
~k1 = +kî , ~k2 = −kî , ω1 = ω2 , I1 = I2 = I

so that we have two identical waves (counter-) propagating in opposite directions.

< S >T= 2I(1 + cos[2kx− 0t])
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Problem example:

A) Generalize the above derivation of the interference pattern for I1 6= I2 and sketch the intensity

profile as a function of the coordinate x, making sure to mark all important scales such as minimal

and maximal intensity, intensity modulation depth, and the spatial period of the fringe pattern.

B) Generalize the above derivation for ω1 6= ω2. Show that the resulting interference pattern will

be moving. Determine this velocity, and estimate its value for two close wavelength from the visible

region.

C) Which direction is the pattern moving? With, or against the direction of the wave with the higher

frequency?
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Example, nearly co-propagating waves

Now we consider two waves (same frequency ω) which propagate in the same general direction. Of

course, the formula remains valid...

What is the spacing L between the fringes in this case?

|~k1 − ~k2|L = ∆kL = 2π

L =
2π

∆k

Note: In this case, the fringes can be “arbitrarily” thick, the smaller the angle between the waves,

the larger L gets.

Problem example: For the case of nearly co-propagating waves with very close frequencies, derive

the expression for the velocity of fringes (in the direction perpendicular to the common “mean”

direction of propagation) as a function of the mean angular frequency and the angle between the

waves.

Hint: Take advantage of the fact that the angle is small, as is the frequency difference.
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Co-propagating waves:

Note: This is a simplified view of a wavepacket: In general, they are realized as a continuos (integral)

superposition of infinitely many waves. In the present case, we are dealing with “discrete, or finite”

superposition.

This time we will look at the field itself for the case

~k1 = k1î ~k2 = k2î p2 = p2 = 0 ê2 = ê2 ~E1 = E2 = E0

~E(~r, t) = êE0 [cos(k1x− ω1t) + cos(k2x− ω2t)]

Note: Of course, we can use the formula for interference of two scalar waves derived previously...

(A = B, and ê does not really matter)

~E(~r, t) = 2êE0 cos

[
k1 + k2

2
x− ω1 + ω2

2
t

]
cos

[
k1 − k2

2
x− ω1 − ω2

2
t

]
Define

k̄ =
k1 + k2

2
ω̄ =

ω1 + ω2

2
and

∆k =
k1 − k2

2
∆ω =

ω1 − ω2

2
.

... and obtain what should be now a familiar expression in terms of carrier and envelope:

~E(~r, t) = 2êE0 cos(k̄x− ω̄t) cos(∆kx−∆ωt)
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Carrier “motion”:

cos(k̄x− ω̄t)→ cos[k̄(x− ω̄

k̄
t)]

this gives us (similar frequencies!) the phase velocity:

vp =
ω̄

k̄
=
ω

k

Envelope “motion”:

cos(∆kx−∆ωt)→ cos[∆k(x− ∆ω

∆k
t)]

this gives us the group velocity:

vg =
∆ω

∆k
→ ∂ω

∂k

Note: In relations as the one above, ω and k are viewed as functions of each other, defined by the

dispersion relation:

k =
ω(k)n(ω(k))

c
or k(ω) =

ωn(ω)

c
The independent variable is k on the left, and ω on the right.

Note: The second relation is easier to use (Q: Why?). That is why we usually calculate the inverse

of the group velocity as
1

vg
=
∂k

∂ω
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Relation between group and phase velocities

Start from
1

vg
=
∂k

∂ω

and execute the derivative,

1

vg
=
∂k

∂ω
=
n(ω)

c
+
ω

c

∂n(ω)

∂ω
=
n(ω)

c
+
n(ω)

c

ω

n(ω)

∂n(ω)

∂ω
=

1

vp

(
1 +

ω

n(ω)

∂n(ω)

∂ω

)
so the two velocities are related by

vg = vp
1(

1 + ω
n(ω)

∂n(ω)
∂ω

)
Observation: Refractive index as a function of the angular frequency determines not only the

dispersion relation, but also group and phase velocity. The two velocities can be quite different.

Note: Recall the example of wave-guided 3D wave equation solution: It also showed that group and

phase velocities were different. In that case the reason was the geometry of the waveguide. In general

material and waveguide dispersion both contribute to propagation properties of EM waves.

These issues will be revisited in detail in the Section on light-matter interaction.
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Relation between group and phase velocities

• Wave-packet as a whole moves with the group velocity.

• The carrier oscillation “underneath” the envelope runs with the phase velocity

• When vp 6= vg the relative position of the carrier and envelope (called Carrier-Envelope Phase

(CEP) ) changes upon propagation.

• This is best visible in short-duration (few-cycle) pulses.

• Because n(ω) depends on frequency in non-trivial way (which we will explore in Section 6), also

vp(ω) and vg(ω) depend on frequency or wavelength.

• This dependence in vg is called group velocity dispersion. It causes pulses of different color

to take different time to travel the same distance (e.g. in fibers).
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Young‘s two-slit experiment

Young, Thomas
1773 — 1829

• This is an example division of wavefront.

• Displays wave nature of EM field
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Far-field pattern examination

geometry, notation:

• source of light is distant

• field polarized along z

• observation screen is far, x >> h, and x >> y

• slits are very narrow, they act as sources of cylindrical waves:
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At the observation point, two waves originating in the two slits add:

~E(~r, t) =
Ak̂

|~r − ĵh/2|
exp i[k|~r − ĵh/2| − ωt + p] +

Ak̂

|~r + ĵh/2|
exp i[k|~r + ĵh/2| − ωt + p]

~r = xî + yĵ

|~r ± ĵh/2| =
√
x2 + (y ± h/2)2

Now we use the fact that x >> y, h, and Taylor expand:

|~r ± ĵh/2| =
√
x2 + (y ± h/2)2 ≈ x

(
1 +

(y ± h/2)2

2x2

)
here we used a fromula worth to remember,

√
a2 + b2 = a

√
1 + b2/a2 ≈ a(1+b2/(2a2)) = a+b2/(2a)

|~r ± ĵh/2| ≈ x

(
1 +

y2

2x2
± yh

2x2
+
h2

8x2
+ . . .

)
|~r ± ĵh/2| ≈ L± yh

2x2
L = x +

y2

2x
+
h2

8x
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Note: As a general rule, we have to be more precise in the phase arguments of exponentials (or

sines/cosines), while a rougher approximations are sufficient in the amplitude pre-factors.

~E(~r, t) = k̂
A

x
exp[i(kL− kyh/2x− ωt + p)] + k̂

A

x
exp[i(kL + kyh/2x− ωt + p)]

~E(~r, t) = k̂
2A

x
exp[i(kL− ωt + p)] cos

[
kyh

2x

]
The observable is the time-averaged Poynting. To simplify calculation, note that we are not going

to get an absolutely correct result — so why not to throw away unimportant (for now) common

pre-factors. We look at the profile of the intensity

< S >T∼< ~E. ~E∗ >=∼
(

2A

x

)2
1

2
cos2

[
kyh

2x

]
The argument of cos is

kyh

2x
=

2π

λ

yh

2x
= π

yh

λx
Determine positions of bright fringes:

π
yh

λx
= mπ m = 0,±1,±2, . . .

y = m
λx

h
∆y =

λx

h

M. Kolesik, Fall 2015



OPTI-310, Electromagnetic Waves Optical Interference II

Lesson: Adding harmonic waves leads to optical interference, with fringes which depend on wave-

length and geometry of the problem. These properties are at the heart of much optics — interferom-

eters, metrology, ....

Note:

• fringe separation increases with wavelength

• it decreases with the characteristic scale (dimension) of the source, namely h

• this behavior is generic
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