OPTI-310, Electromagnetic Waves

Optical interference I

Regimes in optical interference

From our examination of interference between solutions of the 3D wave equation:

e frequencies must be very similar. In practice it means that in the optical regime the two waves
must be “derived” from the same source.

e interference patterns attain their deepest modulation when the two interfering waves have com-
parable amplitudes

Ways to obtain waves ready for interference:

e Division of wavefront: Separate “pieces” from the same-wave wavefront and bring them to overlap
and interfere at a different location

e Division of amplitude: Leave the wavefront intact, but split it into two (or more) waves with

smaller amplitudes and let them propagate along different paths. The splitting occurs at the same
point In space.
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OPTI-310, Electromagnetic Waves Optical interference I

Interference between two optical fields
Electric field of a two-wave superposition:

E(f’, t) = é1 By cos[/%.f’— wit + p1] + é2F5 COS[EQ.F— wat + po]
Detecting the magnitude of Poynting vector:

S(r,t)

€gnc

— E(7,t).E(F, 1)

Identify three contributions:

S =545 +50

S ~ E? COSQ[El.F—w1t+p1]+E22 COSQ[%Q.F—w2t+p2]+2(é1.ég)ElEg cos[El.F—w1t+p1] COS[EQ.F—therQ]
Obviously, S7 and Sy are magnitudes of Poynting of individual waves. Sis is the interference term.

Fresnel-Arago law:
If the two fields have orthogonal polarization (é1.65) = 0, there is no interference.
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OPTI-310, Electromagnetic Waves Optical interference I

Next, take:
pr=p2=70

[QV
—_
I

Q>
)

S ~ F? cosz[El.F— wit] + E3 COSQ[EQ.F— wot| + 2E1 Es cos[/%.f’— wit] COS[EQ.F— wot]

Now use: |
cos Acos B = 5 [cos(A + B) 4 cos(A — B))]

so that the interference term becomes:
. . 1 L L
S1o ~ cos[ky.T—wit] cos|ks.F—wot] = 5 [COS[(lﬁ + ko). — (w1 + wo)t] + cos|(ky — k2).77— (w1 — wo)t]

The first term is fast oscillating and the second is slow oscillating as long as wq ~ ws.

Time averaging: First term lost. S; and Sy attain their independent time-averaged values:
< S1(7,t) >7 _ lEQ < Sy(ryt) >1 _ 1E2

€NC 2! €ne 272

and
< Su(rt) >r = FEy COS[AIQ.’F— Awt] Ak = (/21 — Ez) Aw = (w1 — wy)

€gnc

Q: For the above to be OK, we had to assume something about the length of the averaging time.
What?
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OPTI-310, Electromagnetic Waves Optical interference I

So the final result is:

< S >p=11+ Ir + 2/ 11 15(é;.65) COS[AE.F— Awt]
with
Ak = (]Cl — kg) Aw = (wl — CL)Q)

Example, Standing waves:
Take
k1= +ki | ko =—kt , w=wy , L=5L=1
so that we have two identical waves (counter-) propagating in opposite directions.
< S >p=2I(1 + cos[2kx — 0t])
[(X)

A result for
orthogonal polarization
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OPTI-310, Electromagnetic Waves Optical interference I

Problem example:

A) Generalize the above derivation of the interference pattern for Iy # I and sketch the intensity
profile as a function of the coordinate x, making sure to mark all important scales such as minimal
and maximal intensity, intensity modulation depth, and the spatial period of the fringe pattern.

B) Generalize the above derivation for w; # ws. Show that the resulting interference pattern will
be moving. Determine this velocity, and estimate its value for two close wavelength from the visible
region.

C) Which direction is the pattern moving? With, or against the direction of the wave with the higher
frequency?
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OPTI-310, Electromagnetic Waves Optical interference I

Example, nearly co-propagating waves

Now we consider two waves (same frequency w) which propagate in the same general direction. Of
course, the formula remains valid...

What is the spacing L between the fringes in this case?

k1 — ko)L = AKL = 2r

2T
[ = 2=
Ak

Note: In this case, the fringes can be “arbitrarily” thick, the smaller the angle between the waves,
the larger L gets.

Problem example: For the case of nearly co-propagating waves with very close frequencies, derive
the expression for the velocity of fringes (in the direction perpendicular to the common “mean”
direction of propagation) as a function of the mean angular frequency and the angle between the
waves.

Hint: Take advantage of the fact that the angle is small, as is the frequency difference.
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OPTI-310, Electromagnetic Waves Optical interference I

Co-propagating waves:

Note: This is a simplified view of a wavepacket: In general, they are realized as a continuos (integral)
superposition of infinitely many waves. In the present case, we are dealing with “discrete, or finite”
superposition.

This time we will look at the field itself for the case
/;1:/%1% E2:]€2% pp=p2=0 é2=26 EleQZEO
E(7,t) = By [cos(kyx — wit) + cos(kox — wat)]

Note: Of course, we can use the formula for interference of two scalar waves derived previously...
(A = B, and é does not really matter)

D fy + K by — k _
E(r,t) = 2eEy cos 1+ Qx_wl—l_w?t cos | LT R W1 T W
2 2 9 5
Define
7. k1+k2 B w1_|_w2
k: W =
2 2
and ) X
Ak = 1 = Rh2 AW:Wl_wz

2
.. and obtain what should be now a familiar expression in terms of carrier and envelope:

E(7,t) = 26 Ey cos(kx — wt) cos(Akz — Awt)

M. Kolesik, Fall 2015



OPTI-310, Electromagnetic Waves Optical interference I

Carrier “motion”:

cos(kx — wt) — cos[k(x — %t)]

this gives us (similar frequencies!) the phase velocity:

w o w
YR
Envelope “motion”:
A
cos(Akx — Awt) — cos[Ak(x — A—:t)}
this gives us the group velocity:
Aw R Ow
Vg = — — —
9 Ak ok

Note: In relations as the one above, w and k are viewed as functions of each other, defined by the
dispersion relation:

k= w(k)nc(w(k)) or k(w)= p

The independent variable is k& on the left, and w on the right.

wn(w)

Note: The second relation is easier to use (Q: Why?). That is why we usually calculate the inverse
of the group velocity as

1 Ok

op ow
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Relation between group and phase velocities

Start from

1 Ok
op  Ow
and execute the derivative,

1 0k n(w) N win(w) _ n(w) N n(w) w on(w) 1 (1 LY 8n(w))

vy,  Ow c c Ow c c nw) dw v,

so the two velocities are related by

Vg = Up

Observation: Refractive index as a function of the angular frequency determines not only the
dispersion relation, but also group and phase velocity. The two velocities can be quite different.

Note: Recall the example of wave-guided 3D wave equation solution: It also showed that group and
phase velocities were different. In that case the reason was the geometry of the waveguide. In general
material and waveguide dispersion both contribute to propagation properties of EM waves.

These issues will be revisited in detail in the Section on light-matter interaction.
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Relation between group and phase velocities

e Wave-packet as a whole moves with the group velocity.
e The carrier oscillation “underneath” the envelope runs with the phase velocity

e When v, # v, the relative position of the carrier and envelope (called Carrier-Envelope Phase
(CEP) ) changes upon propagation.

e This is best visible in short-duration (few-cycle) pulses.

e Because n(w) depends on frequency in non-trivial way (which we will explore in Section 6), also
vp(w) and v,(w) depend on frequency or wavelength.

e This dependence in v, is called group velocity dispersion. It causes pulses of different color
to take different time to travel the same distance (e.g. in fibers).
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OPTI-310, Electromagnetic Waves Optical Interference 11

Young'‘s two-slit experiment
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e This is an example division of wavefront.

e Displays wave nature of EM field
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Far-field pattern examination
geometry, notation:

X=0 observation
screen
A
A y
\

e source of light is distant
e field polarized along 2
e observation screen is far, x >> h, and x >> y

e slits are very narrow, they act as sources of cylindrical waves:
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OPTI-310, Electromagnetic Waves Optical Interference II

At the observation point, two waves originating in the two slits add:

Ak Ak

(7, t) = —— exp k|7 — jh/2| — wt + p| + —————— expilk|7+ jh/2| — wt + ]
7= 3h/2 7+ jh/2|

A A

r=xi+YyJ

7+ jh/2| = /22 + (y £ h/2)?

Now we use the fact that x >> y, h, and Taylor expand:

‘Fijh/Q‘ =22+ (y£h/2? ~ 2 <1+ (93252/2) )

here we used a fromula worth to remember, Va2 + b2 = a+/1 + b?/a? ~ a(1+b?/(2a%)) = a+b*/(2a)

2 2
RN Y yh h
+ 7h /2| = 1 +
7+ jh/2| x(+ +8x2+ )

22 22
+ 7h/2| ~ [ + Z— L = — 4+ —
7 5h/2 212 x+2$+8x
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Note: As a general rule, we have to be more precise in the phase arguments of exponentials (or
sines/cosines), while a rougher approximations are sufficient in the amplitude pre-factors.

H - A ~ A
E(7t) = k} expli(kL — kyh/2x — wt + p)] + k; expli(kL + kyh/2x — wt + p)]

- ~2A kyh

E(r,t) = k—expli(kL — wt + p)| cos | —

(78) = k22 expli pleos |22

The observable is the time-averaged Poynting. To simplify calculation, note that we are not going

to get an absolutely correct result — so why not to throw away unimportant (for now) common
pre-factors. We look at the profile of the intensity

5 o 24\" 1 kyh
< §>po< BE = [Z2) Zcos? |22
x 2 2T
The argument of cos is
kyh  2myh yh
= = 77
2x A 2x AT
Determine positions of bright fringes:

h
w2 e m=0,41,42, ...
AT
AT AT
— i Ay = 2
y=my Y=
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Lesson: Adding harmonic waves leads to optical interference, with fringes which depend on wave-
length and geometry of the problem. These properties are at the heart of much optics — interferom-
eters, metrology, ....

Note:
e fringe separation increases with wavelength
e it decreases with the characteristic scale (dimension) of the source, namely h

e this behavior is generic
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