
OPTI-310, Electromagnetic Waves Transverse waves

Based on our experience with plane waves, we can construct vectorial plane wave solutions to the WE

for E and B:

E(~r, t) = ~E0 exp i[~k.~r − ωt]
B(~r, t) = ~B0 exp i[~k.~r − ωt] .

Having seen such WE solutions, we already know that the dispersion relation must be fulfilled:

k2x + k2y + k2z =
ω2

c2
.

Now, what about ~E0, ~B0? To find out constraints on these, we must go back into ME:

∇×B = +
1

c2
∂tE

1

c2
≡ ε0µ0

∇× E = −∂tB

∇ · E = 0

∇ ·B = 0

... and use the operator equivalencies

∇× → i~k × ∇· → i~k. ∂t → −iω

for faster calculation to get ...
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... plane-wave relation for vector amplitudes:

~k × ~B0 = − 1
c2
ω ~E0 or ~E0 = −c

2

ω
~k × ~B0

~k × ~E0 = ω ~B0 or ~B0 = +
1

ω
~k × ~E0

~k. ~E0 = 0
~k. ~B0 = 0

Q: If the first two equations are satisfied, the second pair is, too. It seems we did not really need the

divergence constraints! How come?

A: Because divergence equations are merely constraints on initial conditions.

Note:

• It follows than in a plane wave, c| ~B0| = | ~E0|.
• Relative spatial orientation of ~k, ~E0, ~B0 (in this order!) is the same as between î, ĵ, k̂

• These constitute a right-hand oriented system
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Transverse wave summary:

Nomenclature:

~E(~r, t) = êA exp[i(~k.~r − ωt + p)]
~B(~r, t) = b̂A/c exp[i(~k.~r − ωt + p)]

• ê unit vector in direction of E-field. Note that later in this course it may be a complex-valued

vector.

• ~k propagation vector (sometimes wave-vector). It gives the direction of propagation, and its

magnitude specifies the wave‘s spatial frequency along that direction.

• ω angular (temporal) frequency

• A amplitude (this, too, can be complex-valued!)

• p phase

As always: Real part has the meaning of the real physical field:

~E(~r, t) = êA cos[~k.~r − ωt + p]

Q: In the above line, I have silently assumed something. What is it?
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Transverse wave summary cont.:

Vector amplitude properties:

• EM plane-waves are transverse:

~k.êA exp[i(~k.~r − ωt + p)] = 0 ~k.ê = 0

• In other words, the polarization vector ê is perpendicular to the wavevector ~k. This means that

the electric field oscillates in direction perpendicular to the propagation direction.

• The same holds for the direction of oscillation of the magnetic field ~B:

~k.b̂A/c exp[i(~k.~r − ωt + p)] = 0 ~k.b̂ = 0

• Fixing the electric field magnitude fixes the magnetic field amplitude. Only one degree of freedom

here.

• Electric and magnetic fields are also perpendicular (and ~k, ê, b̂ constitute a right-hand oriented

triple):

ê ⊥ b̂ b̂ =
~k

k
× ê ê = −

~k

k
× b̂

• linear polarization occurs when ê is real. At any location ~r, the field then oscillates along a

specific line. Other polarizations will be discussed later in the course.
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Linearly polarized Electromagnetic Plane-Wave Geometry
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Q: If a wave-vector ~k is given, what is the number of linearly independent polarizations vectors ê?

Q: A plane wave is characterized by a general wave-vector ~k = 2π/(800nm){0, 1/
√

2, 1/
√

2}We also

know that the electric polarization vector ê has zero x-component.

A) Find ê

B) Calculate the magnetic polarization vector b̂.
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Q: Plane of polarization is one that is “spanned” by the wave-vector ~k and the electric field

polarization vector ê.

What was the plane of polarization in the previous example?

Q: Show that given ê and b̂, the wave vector direction can be calculated as:

~k

k
= ê× b̂
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Transverse wave summary cont.:

Different ways to express phase argument in the exponential (or sin, cos):

• with wave-vector and angular frequency

~k.~r − ωt + p

• with direction vector ~n = ~k/k, and wavelength

2π

λ
~n.~r − ωt + p

• with temporal frequency f
2π

λ
~n.~r − 2πft + p

• with temporal oscillation period T
2π

λ
~n.~r − 2π

T
t + p

• with directional cosines

2π

λ
(cosαxx + cosαyy + cosαzz)− 2π

T
t + p

• ... and combinations, of course

Note: All these frequently appear in problem formulations and solutions...
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Concrete plane-wave examples:

~E(~r, t) = ĵE0y cos[kx− ωt + p]

Electric field is:

• propagating along the x-axis

• linearly polarized along y-axis

• plane-wave, and independent of z and y
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Concrete plane-wave examples:

~E(~r, t) = ĵE0y cos[kx− ωt + p]

Electric field is:

• propagating along the x-axis

• linearly polarized along y-axis

• plane-wave, and independent of z and y

Magnetic field is:

• propagating along the x-axis

• linearly polarized along z-axis

• magnitude is E0y/c

• b̂ = +k̂ (no freedom for its sign!)
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Electromagnetic plane waves in dielectric media

All derivations we have done can be repeated for dielectric medium instead of vacuum: The difference

will be solely in

ε0 → ε0εr

As a consequence, all we have established for plane waves holds with this simple replacement:

c→ c

n(ω)

where n(ω) is the index of refraction for the particular angular frequency ω:

n(ω)2 = εr(ω)

Differences between wave propagation in dielectric and in vacuum:

• phase velocity decreases from c/1 to c/n(ω). Note that the refractive index is larger than one in

most situations in transparent media. We will discuss this in more detail in the Section devoted

to light-matter interactions.

• the in-medium dispersion relation now requires

k2x + k2y + k2z = k2 =
ω2n(ω)2

c2
=
ω2εr(ω)

c2
=
ω2(1 + χ(ω))

c2

• the wavelength in the medium is shorter by the factor given by the refractive index. This is why

we sometimes emphasize which wavelength we mean by specifying “vacuum wavelength.”

• consequently, as light passes from one medium to another, its wavelength in general changes, ...
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Plane-wave wave-fronts:

Representing a harmonic wave trough its phase:

~E(~r, t) = Aê exp[i(~k.~r − ωt + p)] = ~E0e
iφ(~r,t)

Phase-fronts or wave-fronts are lines (surfaces in fact) of equal phase, e.g

φ(~r, t) = 9.87654321

Note: that the above is a “moving” surface, in fact a plane (since we are talking about plane waves)

that moves with the phase velocity in the direction of ~k.

Note: superpositions of plane waves in general results in iso-phase surfaces that are not planes, but

may have e.g. spherical shape.

Geometric optical rays: are paths that are everywhere orthogonal to phase fronts. Recalling

from our math intro,

~n(~r, t) ≈ ∇φ(~t, t)

For our harmonic solution we always have

~n(~r, t) ≈ ~k
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Energy density stored in the electromagnetic field

For a given “configuration” of the electromagnetic field, the local energy density stored in the field is

given by:

U =
1

2
D.E +

1

2
B.H

For a non-magnetic, dielectric medium (i.e. B = µ0H) characterized by relative permittivity εr the

energy density reduces to

U =
1

2
ε0εrE.E +

1

2µ0
B.B

We have found that in a plane wave there is a definite relation between the electric and magnetic field

magnitudes, namely

B2 =
1

v2
E2 =

n(ω)2

c2
E2 = εr(ω)ε0µ0E

2

Then

U =
1

2
ε0εrE

2 +
1

2
ε0εrE

2 = ε0εrE
2

Note:

• The magnetic and electric contribution to the energy density in a plane wave are equal.

• Energy density is proportional to the square of the electric field magnitude. (Recall, that we have

eluded to this property to interpret the 1/r factor in spherical waves as the one “taking care of

energy conservation.”)
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Poynting vector and energy flow:

Now that we know the energy density, what is the energy flow?

Consider a volume

V = Avdt

given by area A perpendicular to the velocity of the wave v

Total energy transported in time dt is V U so the energy flow defined as amount of energy “crossing

a surface” per unit area and unit time is then

S =
V U

Adt
=
Adtvε0εrE

2

Adt
=
c

n
ε0n

2E2 = ε0ncE.E

This is only magnitude of the flow, but it should have a direction (i.e. it should be a vector)!

~S = ~E × ~H =
1

µ0
~E × ~B

Check that Poynting vector ~S has the required properties:

• it has the same direction as the wave-vector: ~S||~k

• it has the same magnitude as the expression S above:

|~S| = 1

µ0
EB =

1

µ0v
E2 =

n

µ0c
E2 =

nε0
ε0µ0c

E2 =
nε0c

2

c
E2 = ε0ncE

2 = S
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Time-averaged flow of energy

More explicitly, the magnitude of the Poynting vector is function of location in space and time:

S = ε0nc ~E(~r, t). ~E(~r, t)

In a harmonic plane wave, it is

S = ε0nc ~E(~r, t). ~E(~r, t) = ε0ncE
2
0 cos2[~k.~r − ωt] ,

which value oscillates between zero and a maximal value ε0ncE
2
0 : energy propagates in “chunks.”

S = ε0ncE
2
0

(
1

2
+

1

2
cos[2(~k.~r − ωt)])

)
The second term if fast, and a detector will average it to zero. What remains is the time-averaged

Poynting vector:

< S >T= I =
1

2
ε0ncE

2
0 unit :

W

m2

I is called irradiance or intensity.

Note: We have “derived” Poynting specifically for a plane wave situation, but the formula ~S = ~E× ~H
is valid in general.
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Classical vs Quantum: Conceptual differences

Classical:

• particle has a sharp position and velocity

• measured values are “selected” from continuum

• measured values are sharply defined

• measured values do not affect each other

• measurement does not disturb the system

Quantum:

• particle can not have a sharp position and velocity at the same time

• measured values are “selected” from continuum or from a discrete sets

• measured values may be “blurred,” each individual measurement is random,

it is the average we measure

• measurement changes the system‘s state

• the same object may behave as a discrete particle and as a wave
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Photons: Quantum nature of light

Classical theory:

I =
1

2
ε0nc| ~E0|2

Quantum theory:

I =
1

area

1

∆time

∑
photons

Eph

In other words, energy transported by a beam is not infinitely divisible. There is a minimal quantum,

called photon that carries the energy

Eph = ~ω = hν ~ =
h

2π

Where:

• Planck constant is ~ = 1.054571726(47)× 10−34 Js

Planck, Max
1858 — 1947

• this energy quantum is proportional to the frequency of light

• its magnitude is really small on the human scale

• most light sources emit zillions of photons
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Light pressure

Besides energy quantum, also momentum is divided between photons:

~p = ~~k =
h

λ

Note:

• the direction is that of wave propagation

• ~k plays a similar role as a classical particle velocity (~pclassical = m~v)

Consequence: Light exerts force, or pressure.

Classical picture of light pressure: Pressure equals energy density

P = U =
S(t)

c

... averaged over optical cycle:

< P >T=
I

c
Quantum picture of light pressure:

Force × time = change in momentum = number of absorbed photons × momentum of each

AP∆t = F∆t = A Φ ∆t ~|~k|
where A is area, and Φ is the photon flux density, i.e. number of photons (hitting the target) per

unit time, per unit of area.
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So the connection between classical and quantum is:

P = Φ~k = Φ
h

λ
I = Φ~ω P = ~k

I

~ω
=
I

c

Note: In the above, we have assumed that all photons were completely absorbed. The situation

changes when they would be reflected: The net change of momentum per photon would double and,

consequently the pressure or force would also double.
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