OPTI-310, Electromagnetic Waves Transverse waves

Based on our experience with plane waves, we can construct vectorial plane wave solutions to the WE
for E and B:

E(7,t) = Eyexpilk.i — wt]
B(r,t) = Byexpilk.r — wt] .

Having seen such WE solutions, we already know that the dispersion relation must be fulfilled:

2

k§+k§+k§:§

Now, what about EO, éo? To find out constraints on these, we must go back into ME:

1 1
VxB = +gatE EEEQILLO
VxE = —(?tB
V-E =10
V-B =10

.. and use the operator equivalencies
Ux =ik x V- —ik. Oy — —iw
for faster calculation to get ...
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... plane-wave relation for vector amplitudes:

E X é() = —%UJEO or E() = —k X BO
¢ W
— — — — 1—) —
kx Ey =wDBy or By= +—k x Ej
w
kEy, = 0
k.By = 0

Q: If the first two equations are satisfied, the second pair is, too. It seems we did not really need the

divergence constraints! How come?
A: Because divergence equations are merely constraints on initial conditions.

Note:

o It follows than in a plane wave, ¢|Bo| = |Ey|.

A

e Relative spatial orientation of k, Ey, By (in this order!) is the same as between i, J, k

*axb

e These constitute a right-hand oriented system
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Transverse wave summary:
Nomenclature:

—

E(Ft) = éA expli(k.m — wt + p)]

—

B(7,t) = bA/cexpli(k.7 — wt + p)]

e ¢ unit vector in direction of E-field. Note that later in this course it may be a complex-valued
vector.

ok propagation vector (sometimes wave-vector). It gives the direction of propagation, and its
magnitude specifies the wave's spatial frequency along that direction.

e w angular (temporal) frequency
e A amplitude (this, too, can be complex-valued!)

e p phase

As always: Real part has the meaning of the real physical field:

—

E(7,t) = éAcoslk.F — wt + p]

Q: In the above line, I have silently assumed something. What is it?
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Transverse wave summary cont.:
Vector amplitude properties:

e EM plane-waves are transverse:
keAexplilkF—wt+p)] =0  ké=0
e In other words, the polarization vector € is perpendicular to the wavevector k. This means that
the electric field oscillates in direction perpendicular to the propagation direction.
e The same holds for the direction of oscillation of the magnetic field B:
kA cexpli(k.@ — wt + p)] =0 kb=0
e Fixing the electric field magnitude fixes the magnetic field amplitude. Only one degree of freedom
here.

e Electric and magnetic fields are also perpendicular (and lg, é,@ constitute a right-hand oriented
triple):

elb b=

e linear polarization occurs when e is real. At any location 7, the field then oscillates along a
specific line. Other polarizations will be discussed later in the course.
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Linearly polarized Electromagnetic Plane-Wave Geometry
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Q: If a wave-vector kis given, what is the number of linearly independent polarizations vectors e?

Q: A plane wave is characterized by a general wave-vector k& = 27 /(800nm){0, 1/v/2,1/+/2} We also
know that the electric polarization vector é has zero x-component.

A) Find e

B) Calculate the magnetic polarization vector b.
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Q: Plane of polarization is one that is “spanned” by the wave-vector k and the electric field
polarization vector é.

What was the plane of polarization in the previous example?

Q: Show that given e and b, the wave vector direction can be calculated as:

—eXb

=l el
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Transverse waves

Transverse wave summary cont.:
Different ways to express phase argument in the exponential (or sin, cos):

e with wave-vector and angular frequency
kP — wt + D

e with direction vector i = k /k, and wavelength

2T,
n.r —wt+p

e with temporal frequency f

2
;ﬁ.f— o ft +p

e with temporal oscillation period T'

2w, 2w
e with directional cosines
2T s
7(008 QT + COS QY + COS (. 2) — ?t +p

e ... and combinations, of course

Note: All these frequently appear in problem formulations and solutions...
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Concrete plane-wave examples:

E(F,t) = jEy, coslkx — wt + p|
Electric field is:
e propagating along the z-axis
e linearly polarized along y-axis

e plane-wave, and independent of z and y
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Concrete plane-wave examples:

—

E(F,t) = jEy, coslkx — wt + p|

Electric field is:

e propagating along the z-axis

e linearly polarized along y-axis

e plane-wave, and independent of z and y
Magnetic field is:

e propagating along the z-axis

e linearly polarized along z-axis

e magnitude is Ey,/c

e b= +k (no freedom for its sign!)
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Electromagnetic plane waves in dielectric media
All derivations we have done can be repeated for dielectric medium instead of vacuum: The difference
will be solely in

€0 — €€y

As a consequence, all we have established for plane waves holds with this simple replacement:

C

C—>’I”L(W)

where n(w) is the index of refraction for the particular angular frequency w:

2

n(w)” = e (w)

Differences between wave propagation in dielectric and in vacuum:
e phase velocity decreases from ¢/1 to ¢/n(w). Note that the refractive index is larger than one in

most situations in transparent media. We will discuss this in more detail in the Section devoted
to light-matter interactions.

e the in-medium dispersion relation now requires

2 2 2 2
wn(w wie(w w1l + v(w
C C C

e the wavelength in the medium is shorter by the factor given by the refractive index. This is why
we sometimes emphasize which wavelength we mean by specifying “vacuum wavelength.”

e consequently, as light passes from one medium to another, its wavelength in general changes, ...
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Plane-wave wave-fronts:
Representing a harmonic wave trough its phase:

E(7,t) = Aéexpli(k.7 — wt + p)] = Foel™
Phase-fronts or wave-fronts are lines (surfaces in fact) of equal phase, e.g
o(7,t) = 9.87654321

Note: that the above is a “moving” surface, in fact a plane (since we are talking about plane waves)
that moves with the phase velocity in the direction of k.

Note: superpositions of plane waves in general results in iso-phase surfaces that are not planes, but
may have e.g. spherical shape.

Geometric optical rays: are paths that are everywhere orthogonal to phase fronts. Recalling
from our math intro,

(7, t) ~ V(i t)

“Wave front" =
Area of

constant
phase

Local
propagation
directions

For our harmonic solution we always have
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Energy density stored in the electromagnetic field
For a given “configuration” of the electromagnetic field, the local energy density stored in the field is
given by:

1 1
U=-DE+-B.H
2 2

For a non-magnetic, dielectric medium (i.e. B = poH) characterized by relative permittivity €, the

energy density reduces to

1 1
U=-¢¢EE+—B.B
2 2o
We have found that in a plane wave there is a definite relation between the electric and magnetic field

magnitudes, namely

1 n(w)?
B? = EEQ = 7E2 = €,(w)eo o E?
Then 1 q
U = ieoerEQ + §€0€TE2 = epe, B2
Note:

e The magnetic and electric contribution to the energy density in a plane wave are equal.

e Energy density is proportional to the square of the electric field magnitude. (Recall, that we have
eluded to this property to interpret the 1/r factor in spherical waves as the one “taking care of
energy conservation.”)
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Poynting vector and energy flow:
Now that we know the energy density, what is the energy flow?
Consider a volume

V = Avdt

given by area A perpendicular to the velocity of the wave v
Total energy transported in time dt is VU so the energy flow defined as amount of energy “crossing
a surface” per unit area and unit time is then

VU Adtvege, E?> ¢

Adt Adt p T e
This is only magnitude of the flow, but it should have a direction (i.e. it should be a vector)!
S—Bxfi——ExP
Ho

Check that Poynting vector S has the required properties:
e it has the same direction as the wave-vector: S||k
e it has the same magnitude as the expression .S above:
1 1 neg B neyc?

§|=—EB=—p*= " 2= "0 g2 T g2 eE?= S
Ho MoV HoC €oHloC C
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Time-averaged flow of energy
More explicitly, the magnitude of the Poynting vector is function of location in space and time:

—

S = egncE (7, t).E(7, t)

In a harmonic plane wave, it is

—

S = eyncE(F,t).E(F,t) = eoncE? cos[k.F — wt] |
which value oscillates between zero and a maximal value egncEj3: energy propagates in “chunks.”

S = egncE? (% + %COS[Q(E.F— wt)]))

The second term if fast, and a detector will average it to zero. What remains is the time-averaged
Poynting vector:

1 |44
<8 >p=1=—¢ncE? unit: —
T 2 0 0 m2

[ is called irradiance or intensity.

Note: We have “derived” Poynting specifically for a plane wave situation, but the formula S=ExH
is valid in general.
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Classical vs Quantum: Conceptual differences

Classical:
e particle has a sharp position and velocity
e measured values are “selected” from continuum
e measured values are sharply defined
e measured values do not affect each other

e measurement does not disturb the system

Quantum:
e particle can not have a sharp position and velocity at the same time
e measured values are “selected” from continuum or from a discrete sets

e measured values may be “blurred,” each individual measurement is random,
it 18 the average we measure

e measurement changes the system's state

e the same object may behave as a discrete particle and as a wave
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Photons: Quantum nature of light

Classical theory:

1 -
I = §€0nC’E0‘2

Quantum theory:

1 1
I = E
area Atime Z ph

photons

In other words, energy transported by a beam is not infinitely divisible. There is a minimal quantum,
called photon that carries the energy

h
Eph:hw:hy h:%

Where:

e Planck constant is i = 1.054571726(47) x 1073* Js

Planck, Max
1858 — 1947

e this energy quantum is proportional to the frequency of light
e its magnitude is really small on the human scale

e most light sources emit zillions of photons
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Light pressure

Besides energy quantum, also momentum is divided between photons:

7= hk =

> =

Note:
e the direction is that of wave propagation
ok plays a similar role as a classical particle velocity (Peassica = M)

Consequence: Light exerts force, or pressure.
Classical picture of light pressure: Pressure equals energy density

S(t
p-p=2
c
.. averaged over optical cycle:
I
<P >p= -
c

Quantum picture of light pressure:
Force x time = change in momentum = number of absorbed photons x momentum of each

APAt = FAt = A ® At hlk|

where A is area, and ® is the photon flux density, i.e. number of photons (hitting the target) per
unit time, per unit of area.
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So the connection between classical and quantum is:

P:cbh]g:cbé [ = dhw P:hkizz
A hw ¢

Note: In the above, we have assumed that all photons were completely absorbed. The situation
changes when they would be reflected: The net change of momentum per photon would double and,
consequently the pressure or force would also double.
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