
OPTI-310, Review of Electromagnetism Underpinnings

Underpinnings of the EM theory:

1. Forces of two kinds, electric and magnetic, acting on charged particles

Lorentz, Hendrik Antoon
1853-1928

2. A time-varying magnetic field has an electric field associated with it

Faraday, Michael
1791-1867

3. Flux of EM field is zero from a charge-free region
Gauss, Carl Fridrich

1777-1855

4. A time-varying electric field has an associated magnetic field
Ampere, Andre Marie

1775-1836

5. Displacement current “closes” seemingly open electrical circuits

Maxwell, James Clerk
1831-1879
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OPTI-310, Review of Electromagnetism Lorentz force

Lorentz force law

A charged particle of charge q, moving with velocity ~v through electric and magnetic fields ~E and ~B

experiences a force given by:
~F = ~FE + ~FM = q ~E + q~v × ~B

Mathematically, ~E and ~B are vector fields, e.g. ~B = ~B(~r, t)

Effect of EM fields on charged particles are the only way we can “know” these fields.

Static ~E field effect (in ~B = 0)

~FE || ~E

Static ~B field effect (in ~E = 0)

~FM ⊥ ~B , ~FM ⊥ ~v

Thus: relation between acceleration and velocity vector tells us whether we deal with the magnetic or

electric field.
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OPTI-310, Review of Electromagnetism Gauss law

Gauss law:

The ultimate source of all EM fields is the motion of charged particles, e.g.

• Laser — electrons in atoms/molecules/quantum wells/...

• Antenna — electrons in wires

• Cyclotron — accelerated charges

In a volume with no charges there is no source for the fields and it follows that the flux of Em fields

will be zero:

ΦE =

∫∫∫
V

dV∇. ~E −
∫∫

S

d~S. ~E = 0

electric:

magnetic:

ΦM =

∫∫∫
V

dV∇. ~B −
∫∫

S

d~S. ~B = 0

where it should be understood that S is the closed surface of the volume denoted by V .
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OPTI-310, Review of Electromagnetism Gauss law

There is no evidence of magnetic charges (monopoles), and the magnetic Gauss law holds as written.

If the volume contains a total charge
∑
q, then the electric flux is

ΦE =

∫∫
S

d~S. ~E =
1

ε0

∑
q =

1

ε0

∫∫∫
V

dV ρ

This is the Gauss law for the electric field, with

ε0 = 8.854× 10−12F/m As/V m C2/N.m2

standing for the permittivity of free space.

The above is still not the most general case: we have tacitly assumed that charges are embedded in

vacuum. However, the integration surface may be in a medium. In such a case

ε0 → εrε0 ≡ ε

where εr is the dielectric “constant” or relative permittivity of the host medium, and for ~D = ε ~E:∫∫
S

d~S. ~D =
∑

q =

∫∫∫
V

dV ρ
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OPTI-310, Review of Electromagnetism Faraday‘s law

Faraday‘s law: ∮
C

~E.~dl = − d
dt

∫∫
A

~B.d~S

Lenz‘s law:

Lentz, Heinrich
1804 - 1865

Current induced by change in magnetic flux generates additional field that always opposes the original

change.

Note: Use this to figure out directions of currents, fields, forces, ...
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OPTI-310, Review of Electromagnetism Faraday‘s law

Problem:

A) Using the Lenz‘s law, determine the orientation of current induced in the loops when they are

pulled in the directions indicated:

Hint: First, figure out the direction of the magnetic field piercing the loops. Then think about how

the flux changes with the movement, and finally come up with a current which would generate field

with opposite orientation. Keep in mind that is the the change of the flux that you are to consider.

B) Now utilize Lorenz force to figure out the direction of induced currents.

Hint: Force that is perpendicular to a wire “does not count.”
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OPTI-310, Review of Electromagnetism Ampere‘s law

Ampere‘s law:

Consider first a static magnetic field:∮
C

~dl. ~B = µ0
∑

i = µ0

∫∫
S

~J.d~S

The line integral of ~B along a closed curve C is the total of current that crosses the surface bounded

by C.

However, this does not hold if time-varying electric field is present!

James Clerk Maxwell corrected this by postulating the “displacement current density”

~JD =
∂ ~D

∂t

that is added to the current density ~J :∮
C

~dl. ~B = µ0

∫∫
S

(
~J +

∂ ~D

∂t

)
.d~S
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OPTI-310, Review of Electromagnetism Electric and magnetic fields, summary

Electromagnetic fields:

• E Electric field intensity, in V/m or kgms−3A−1 in base units

• H Magnetic field strength, or intensity, in A/m

• D Electric displacement field, electric induction, in As/m2

• B Magnetic field, magnetic flux density, magnetic induction, in V s/m2 or kgs−2A−1 in base units

• ε0 permittivity, in F/m = As/V m or kg−1m−3s4A2 in base units

• µ0 permeability, in H/m = V s/Am or kgms−2A−2

• P Polarization, or dipole-moment density in a medium

•M Magnetization, or magnetic moment density in a medium
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OPTI-310, Review of Electromagnetism Electric and magnetic fields, summary

Why two fields instead of one?

Electric field “pair:” E and D

Magnetic field “pair:” B and H

Physical meaning:

1. Lorentz force gives meaning to E, B:

~F = qE + q~v ×B

2. Electric induction, D-field, displacement field, ..., D and magnetic field intensity H:

They can be understood as part of the electric and magnetic field that are “independent” of the

medium. This is the part of the el-mag field we create by controlling charges and currents.

Example: In a capacitor with a given charge, D between plates (electrodes) does not depend on the

dielectric medium filling between the electrodes. The electric field E does:

|D| = Q

S
|E| = 1

ε0εr

Q

S

Example: Inside a solenoid, magnetic field intensity H does not depend on what material is the

core of the electromagnet made of. In contrast, magnetic field B does:

|H| = NI

L
|B| = µ0µr

NI

L
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OPTI-310, Review of Electromagnetism Polarization in a medium

Polarization = dipole moment density in a medium exposed to field

uncorrelated dipoles

result in zero average

dipole moment

when the electric field

partially orders the

dipole, the net dipole

moment is nonzero

P =

∑ ~di
V

, ~di = q(~r+i − ~r−i )

D = ε0E + P({E})
In the Section on light-matter interactions, we will explore ways to calculate the polarization term

above...
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OPTI-310, Review of Electromagnetism Magnetization in a medium

Magnetization = magnetic moment density in a medium exposed to field

uncorrelated “magnets”

result in zero average

magnetic moment

when the magnetic field

partially orders the

“magnets”, the net

magnetic moment is

nonzero

M =

∑
~mi

V
, ~mi =

1

2

∫
~r × ~JdV

B = µ0(H + M(H))

In this course we restrict our attention to non-magnetic materials, in which M = 0.
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OPTI-310, Review of Electromagnetism Dielectric constant

Dielectric constant:

• it is not constant! Q: Function of what quantities is it?

• it its an expression of how the electric field permeates the material

• in view of the above “elementary dipole” picture, it measures the ability of the medium to respond

to the external field by ordering its elementary dipoles. But the dipoles need not be permanent!

• most often characterized by relative permittivity εr

• also used is susceptibility χ

D = ε0E + P ≡ ε0εrE ≡ ε0(1 + χ)E P = ε0χE

Soon we will see that it determines refractive index of the material:

n2 = εr = 1 + χ
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OPTI-310, Review of Electromagnetism Maxwell summary

Maxwell equations summary

Differential form

Ampere and Faraday

∇×H = +∂tD + J

∇× E = −∂tB

Integral form

Ampere and Faraday∮
C

B.~dl =

∫∫
S

(∇×B) .d~S = µ0

∫∫
S

(
J +

∂D

∂t

)
.d~S∮

C

E.~dl =

∫∫
S

(∇× E) .d~S = −
∫∫

S

(
∂B

∂t

)
.d~S

Gauss, electric and magnetic

∇ ·B = 0

∇ ·D = ρ

∫∫
S

B.d~S =

∫
V

∇.BdV = 0∫∫
S

D.d~S =

∫
V

∇.DdV =

∫
ρdV

Medium (constitutive) relations, source terms

D = ε0E + P = ε0εrE

B = µ0(H + M) = µ0µrH

P = P({E(t)})
J = J({E(t)})

Charge conservation

∂tρ +∇ · J = 0
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OPTI-310, Review of Electromagnetism Maxwell summary

Maxwell equations summary (specialized for non-magnetic medium)

∇×H = +∂tD + J

∇× E = −∂tB

∇ ·D = ρ

∇ ·B = 0

B = µ0H , D = ε0E + P({E}) = ε0εrE

This is the form we will use in Section on light-matter interaction...
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OPTI-310, Review of Electromagnetism Maxwell summary

Maxwell equations summary (specialized for vacuum)

∇×B = +
1

c2
∂tE

1

c2
≡ ε0µ0

∇× E = −∂tB

∇ · E = 0

∇ ·B = 0

This is the form we will start from (to explore properties of EM waves) next ...

Exercise: Check that dimensions on both sides of ε0µ0 = 1/c2 agree.

It is useful to remember these values:

µ0 = 4π × 10−7 H/m (H/m = V s/Am)

ε0 = 8.854 . . .× 10−12 F/m (F/m = As/V m)

c = 299, 792, 458 m/s

Note: These values are exact.
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OPTI-310, Review of Electromagnetism Maxwell summary

Maxwell equation summary (specialized for harmonic time-dependent fields)

Often (and especially in OPTI-310) it is sufficient to consider harmonic time-dependence in the elec-

tromagnetic fields.

Using our complex representation, we can look for solutions with the Ansatz

E(~r, t) = E(~r)e−iωt B(~r, t) = B(~r)e−iωt ,

... and recall the operator “equivalencies” discussed previously. We get

∇×B = +
1

c2
(−iω)E

∇× E = −(−iω)B

∇ · E = 0

∇ ·B = 0

The advantage of this formulation is that a problem reduces from “time-and-space” to “space” only

Note: The same Ansatz can be used for ME in media. Such a formulation often used for, e.g.,

calculation of waveguide properties.
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OPTI-310, Review of Electromagnetism Maxwell summary

Question:

Consider an initial-value problem. E and B are given for t = 0.

Q: How many independent equations there are to solve? We have six components between, say, E

and B. Having satisfied Ampere and Faraday, it may seem that we are left with no degrees of freedom

to also satisfy Gauss? So, are there too many equations to be satisfied simultaneously!?
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OPTI-310, Review of Electromagnetism Maxwell summary

Divergence equations as Initial Constraints

Here we show that the Gauss law equations represent only constraints on the initial condition for a

solution of Maxwell equations.

Consequence: We only need to worry about ∇. equations at time t = 0. Afterward they are

satisfied automatically as a consequence of:

• Ampere

• Faraday

• charge conservation

Assume that ∇·D(t = 0) = ρ(t = 0). If we show that ∂t(∇·D(t)− ρ(t)) = 0 for all times, it follows

that ∇ ·D(t) = ρ for all t.

∂t∇ ·D(t) = ∇ · ∂tD = ∇ · (∇×H− J) = −∇ · J

and therefore

∂t(∇ ·D(t)− ρ(t)) = −∇ · J− ∂tρ(t) = 0 .

Exercise: Show similar argument for the magnetic Gauss.
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