
OPTI-310, Diffraction One-dimensional diffraction

Single-slit (Fraunhofer) diffraction

Apply HFP:

What we need to do is to add up (i.e. integrate) contributions from all secondary sources (of spherical

waves) in the slit:

E = EL

∫
SLIT

eikr

r
dy

As discussed earlier, we utilize the linear (in y) approximation of r:

r ≈ R− y sin θ

in the exponential, and the crudest (zero-order) in the denominator

r ≈ R

We thus have:

E = EL

∫ +b/2

−b/2

eik(R−y sin θ)

R
dy = EL

eikR

R

∫ +b/2

−b/2
e−iky sin θdy

E = EL
eikR

R

(e−iβ − e+iβ)

−ik sin θ
β =

(
kb

2

)
sin θ

and finally

E = EL
beikR

R

sin β

β
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OPTI-310, Diffraction One-dimensional diffraction

Contributions to the diffraction amplitude:

E = EL
beikR

R

sin β

β
β =

(
kb

2

)
sin θ

• Overall laser-amplitude

• scaled spherical wave amplitude

• modulation due to aperture: sin β/β ≡ sincβ

Note: β measures the “position” in the far field (it relates to the angle θ. It also sets the scale in

the far field: This is determined by the width of the slit.
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Fringe locations

sin(β)

β
= sinc(β) = sinc

(
kb

2
sin θ

)
I(θ)

I(0)
= sinc2

(
kb

2
sin θ

)
In the Fraunhofer region, angle θ must be small, therefore sin θ ∼ θ. Zeros occur at

kb

2
θm ∼ mπ , m = ±1,±2, . . .

or

θm = m

(
λ

b

)
If observed on a screen (distance x), transverse location ym of the m-th null obeys

tan θm =
ym
x
<< 1 or ym ∼ xθm = mx

λ

b

M. Kolesik, Fall 2015



OPTI-310, Diffraction One-dimensional diffraction

Fraunhofer diffraction on a single slit summary:

• pattern given by the sinc function

• pattern expands with the distance from the screen

• zeros and maxima along fixed angles of propagation

• both spatial and angular scale of the pattern scales with the ratio λ
b

• characteristic scale (i.e. feature size) in the pattern inversely proportional to the characteristic

length-scale of the aperture function

• far-field pattern amplitude is essentially a Fourier transform of the aperture function

E = EL
eikR

R

∫
APERTURE

e−ikyydy ky = k sin θ
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Interpretation in terms of plane waves

Single plane wave × Aperture = Superposition of plane waves

Far field intensity = Amplitude2 as a function of the plane-wave propagation angle
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This problem illustrates certain universal properties of far-field (i.e. Fraunhofer) diffraction patterns.

P0: Consider 1D Fraunhofer diffraction through a slit. Following the derivation procedure used in

the class,

A) Show what happens to the diffraction pattern when we use a plane wave that is incident not

perpendicular but at angle γ on the screen.

B) What happens if the slit is moved up by a certain shift s? Is there a change visible in the intensity

of the far field pattern?

C) Show that if the incident plane wave is normal to the screen, then the pattern has an inversion

symmetry: If the angle in the far field is θ then the intensity is the same at I(θ) as for the opposite

angle,

I(θ) = I(−θ)

D) This result may seem trivial for a single slit. Generalize it for an arbitrary collection of slits, for

example for a pair with one wide and one narrow slit. In other words, show that even if the screen

does not have up-down symmetry, the diffraction pattern does.

Note: We will later see that this symmetry property remain true also in 2D diffraction: Instead of

up-down symmetry, we will speak about inversion symmetry.
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Two-slit diffraction

Solution A: Using a superposition principle, together with one result from the problem above. The

far-field amplitude is a sum of amplitudes from each slit. Each slit amplitude is modified by a phase

shift corresponding to a spatial shift ±a/2:

E = EU + EL = Eslite
−ia/2k sin θ + Eslite

+ia/2k sin θ = 2Eslit cos (ka/2 sin θ)

E = 2E0

(
beikR

R

)
sinc(β) cos(α) β =

kb

2
sin θ α =

ka

2
sin θ
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Two-slit diffraction

Solution B: Honest calculation. Using HFP.

E = E0
eikR

R

∫ +a/2+b/2

+a/2−b/2
dye−iky sin θ + E0

eikR

R

∫ −a/2+b/2

−a/2−b/2
dye−iky sin θ

Performing the integrals leads to the same result:

E = 2E0

(
beikR

R

)
sinc(β) cos(α) β =

kb

2
sin θ α =

ka

2
sin θ

Intensity pattern:

I(θ) = 4I(0)sinc2(β) cos2(α)
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Double-slit diffraction summary

• the resulting pattern is a “product” of a slit-pattern and a Young‘s double-source pattern

• each characteristic dimension (a, b) shows up in the far field as a modulation with spatial frequency

inversely proportional to that dimension
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N-slit Fraunhofer diffraction

E =

N−1∑
s=0

Eslite
−isak sin θ = Eslit

1 − e−iNak sin θ

1 − e−iak sin θ
= Eslit

e−iNak/2 sin θ

e−iak/2 sin θ
e+iNak/2 sin θ − e−iNak/2 sin θ

e+iak/2 sin θ − e−iak sin θ

E = Eslite
−i(N−1)ak2 sin θ sin

(
Nak
2 sin θ

)
sin
(
ak
2 sin θ

)
the total amplitude = shift-related phase × single slit × N -slit modulation

E = e−i(N−1)ak2 sin θ sin β

β

sinNα

sinα

intensity pattern:

I(θ) =

(
sin β

β

)2(
sinNα

sinα

)2

(spatial shift not observable in the far-field diffraction intensity pattern)

Note: There are three scales in this: b, a and Na. They all show up in the diffraction pattern.
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N-slit Fraunhofer diffraction

From J. Wyant website:

Exercise: Estimate the parameters of the N -slit from the above plots. Express both the slit width

b and slit spacing a in units of wavelength.
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