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Abstract
When the Fresnel–Kirchhoff (FK) diffraction integral is evaluated exactly
(instead of using the Fresnel approximation), the well-known mathematical
inconsistency in the FK boundary conditions leads to unacceptable results for
the intensity of Poisson’s spot. The Rayleigh–Sommerfeld (RS) integral has
no inconsistencies and leads to an accurate description. The case for RS is
bolstered by the observation that it is equivalent to Fourier propagation.

1. Introduction

The boundary conditions imposed on the diffraction problem in order to obtain the Fresnel–
Kirchhoff (FK) solution are well known to be mathematically inconsistent and to be violated
by the solution when the observation point is close to the diffracting screen [1–3]. Most
textbook treatments of diffraction acknowledge this fact but do not explore its implications.
This leaves the student to wonder what those implications are and what limits they place on
the applicability of the FK diffraction integral. In this paper, I show explicitly how the FK
diffraction integral breaks down at points near the diffracting screen and that this problem is
absent in the Rayleigh–Sommerfeld (RS) solution. This will aid the optics instructor who
wants to explore diffraction theory in detail. I further aid the instructor by showing that Fourier
propagation provides an alternative to the usual Green function approach to the derivation of
the diffraction integral and leads directly to RS diffraction.

Describing Poisson’s spot is an excellent classroom means of illuminating the basic optical
principles of diffraction and interference. I enhance the pedagogical value of Poisson’s spot by
using it to discriminate between RS and FK diffraction and I provide a complete description
of the on-axis and near-axis intensities of the Poisson spot diffraction pattern at all distances
behind the obscuring disc.

The difference between RS and FK is in the inclination factor (also called the obliquity
factor) and is normally immaterial because the inclination factor is normally approximated
by 1. With this approximation, RS and FK are the same. But when the approximation is not
valid, FK can lead to unacceptable answers. Calculating the on-axis intensity of Poisson’s spot
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provides a critical test, a test passed by RS and failed by FK. FK fails because (a) convergence
of the integral depends on how it is evaluated, and (b) when the convergence problem is fixed,
the predicted amplitude at points near the obscuring disc is not consistent with the assumed
boundary conditions.

Poisson’s spot, also known as the spot of Arago, is the name given to the bright on-axis
spot behind a circular obscuration illuminated by a plane wave: on the axis of the disc, all light
diffracted at the rim of the disc arrives in phase and interferes constructively. Consequently,
even for angles approaching 90◦, i.e., for observation points close to the disc, diffraction can
result in a significant intensity. (In the overwhelming majority of optics problems, diffraction
at angles of more than a few degrees leads to vanishingly small intensities and can be safely
ignored.) Treatments of Poisson’s spot that make the Fresnel approximation [4, 5] do not apply
to the region close to the disc. Treatments that do apply close to the disc use the RS integral
[6] or its predecessor, the Rayleigh integral [7]. The RS integral is derived from the Rayleigh
integral with the additional assumption that the wavelength of the light is small compared to
the geometric dimensions of the problem, an assumption that is made throughout this paper. I
refer to a calculation as exact to indicate that, while the short-wavelength approximation has
been made, the Fresnel approximation has not. The other fundamental approximation made
here is the scalar wave approximation, which means that the results apply better to acoustics
than to optics, a point that will be reconsidered in the concluding remarks of section 5.

Fourier propagation provides an alternate means of handling diffraction problems. In this
paper, the Fourier propagation theory is used to derive solutions in an integral form for the
2D (long slits and strips) and 3D (arbitrarily shaped apertures) diffraction problems. Fourier
propagation reproduces the RS diffraction integral.

In section 2, I set up the basic diffraction problem and exhibit the difference between the
RS and FK solutions. In section 3, I show the problem with FK in calculating the on-axis
intensity of Poisson’s spot, and then use RS to calculate the diffraction pattern at on- and
off-axis points. In section 4, I show how Fourier propagation leads to the same solution of the
diffraction problem as RS for the relatively simple 2D problem. Appendix B gives the more
complex derivation for the 3D problem.

2. The basic diffraction problem

Solving the basic diffraction problem requires finding a solution to the Helmholtz equation
for a propagating wave encountering a partially obscuring planar screen. The Helmholtz
equation is

(∇2 + k2)U(x, y, z) = 0, (1)

where k = 2π/λ and U describes the amplitude and phase of the wave. U is a scalar, so only
scalar diffraction theory is addressed. The boundary condition imposed on the solution to this
differential equation is the effect of a diffracting screen in the z = 0 plane. Denoting by T the
parts of the screen that are transmissive and by B the parts that block the beam, the boundary
conditions used for the RS and FK solutions are

RS and FK: U(x, y, 0) = U0(x, y, 0) for (x, y) ∈ T ,

U(x, y, 0) = 0 for (x, y) ∈ B,

FK only:
∂U(x, y, z)

∂z

∣∣∣∣
z=0

= ∂U0(x, y, z)

∂z

∣∣∣∣
z=0

for (x, y) ∈ T ,

∂U(x, y, z)

∂z

∣∣∣∣
z=0

= 0 for (x, y) ∈ B,

(2)
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Figure 1. The basic diffraction problem: a point source, p, illuminates an aperture and produces a
diffraction pattern on an observing screen. r is the distance from a point in the aperture to a point
on the observing screen. ζ and χ are the angles the incident and the diffracting rays make with the
z-axis.

where U0 describes the incident wave and ∂U/∂z is the derivative of U normal to the
diffracting plane.

With reference to figure 1, the RS diffraction integral [1, 2] for U at a distance z behind
an aperture in a planar mask is

URS(x
′, y ′, z) = − i

λ

∫
Area

U0(x, y, 0)
exp(ikr)

r
cos χ dx dy, (3)

where r = [(x′ − x)2 + (y′ − y)2 + z2]1/2 is the distance between (x, y, 0) and (x′, y′, z), χ is
the diffraction angle at point (x, y, 0), i.e., the angle the diffracted ray makes with the normal
to the plane (not with the direction of the incoming wave), and the integral is over the area of
the aperture. The FK integral [1, 3] is

UFK(x ′, y ′, z) = − i

λ

∫
Area

U0(x, y, 0)
exp(ikr)

r

1

2
(cos ζ + cos χ) dx dy, (4)

where ζ is the incidence angle at point (x, y, 0). The exp(ikr)/r factors in equations (3)
and (4) express Huygens’ principle: each point in the aperture acts as a source of spherical
waves that combine to give the diffraction pattern. The cosine factors are called the inclination
factors, and constitute the only difference between RS and FK. For most diffraction problems
the inclination factor is approximated by 1, causing the difference between RS and FK to
disappear.

Goodman [1] gives a succinct derivation of both RS and FK and discusses the difference
between them. The derivations use different Green functions, which require different boundary
conditions to reduce the Green theorem integral to the familiar diffraction integrals given in
equations (3) and (4). The basic problem with FK is that the Green theorem integral cannot
be evaluated unless the values of both U and ∂U/∂z are assumed to be zero on the obscuring
part of the diffracting screen, but we know from analytic function theory that if both U and
∂U/∂z are zero over any region, then U ≡ 0 everywhere. Thus, the FK solution cannot be
fully mathematically consistent and must therefore be suspected of not always (at least) giving
the right answer. In section 3, I use Poisson’s spot to show explicitly that the FK solution can
violate the boundary conditions that were assumed for its derivation.

3. Calculating the intensity of Poisson’s spot

For the simple case, shown in figure 2, of a plane wave impinging normally on a circular disc
of radius a, cos ζ = 1 and cos χ = z/r . I will calculate the on-axis amplitude and intensity
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Figure 2. The diffraction problem for Poisson’s spot: a plane wave falls on a circular disc of radius
a. r = [x2 + y2 + z2]1/2 is the distance from a point in the plane of diffraction to a point on the axis
of the disc.

behind the disc by doing so for an annular aperture and letting the outer radius of the annulus
approach infinity:

U(0, 0, z) = − i

λ
U0

∫ ρ→∞

ρ=a

exp(ikr)

r

1

2

(
c1 + c2

z

r

)
2πρ dρ, (5)

where c1 = 0, c2 = 2 for RS; c1 = c2 = 1 for FK and ρ is the radial coordinate in the (x, y)

plane. In order to evaluate equation (5) without using the Fresnel approximation, I follow
Sommerfeld [2] and Harvey et al [6] in changing the variable of integration from ρ to r. On
the z axis r = (z2 + ρ2)1/2, so a � ρ � ∞ ⇒ r0 � r � ∞, where r0 = (z2 + a2)1/2. Now
r2 = z2 + ρ2 so r dr = ρ dρ, and the integral in equation (5) can be put in the right form to be
evaluated via the Sommerfeld lemma given in appendix A:

U(0, 0, z) = −ikU0

∫ r→∞

r0

exp(ikr)
1

2

(
c1 + c2

z

r

)
dr

= −ikU0

[
1

ik
exp(ikr)

1

2

(
c1 + c2

z

r

)∣∣∣∣
r→∞

r=r0

+ O

(
1

k2

)]

≈ U0
1

2

(
c1 + c2

z

r0

)
exp(ikr0) − U0

c1

2
exp[ik(r → ∞)]. (6)

The RS version of equation (6) is

URS(0, 0, z) = U0
z

r0
exp(ikr0), (7)

while the FK version is

UFK(0, 0, z) = U0
1

2

(
1 +

z

r0

)
exp(ikr0) − U0

1

2
exp[ik(r → ∞)], (8)

which shows that the FK integral fails to converge in this case. The reader’s attention is called
to the fact that if a is set to zero (i.e. r0 = z), there is no obscuration and the right-hand side
of equation (8) should be just U0 exp(ikz)—which, because of the second term, it is not! The
FK integral, when evaluated in this straightforward way, does not give an acceptable answer.

Eliminating the second term in equation (8) can be done in various ways. An artificial
way would be to make the outer edge of the annular aperture an ellipse or some other shape
instead of a circle. Then the rays diffracted from this edge do not arrive on the axis in phase
and do not interfere constructively. A more sensible way is to impose Babinet’s principle as
a separate requirement (separate, because, as we have just seen, FK does not satisfy it unless
the integral is done the right way). Babinet’s principle requires that the sum of the obscuration
diffraction pattern (figure 2) and the aperture diffraction pattern (figure 2 with the transmitting
and blocking regions reversed) be the uninterrupted plane wave: Uob + Uap = U0 exp(ikz).
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Figure 3. Intensity of Poisson’s spot at on-axis distance z behind a disc of radius a, according to
the Rayleigh–Sommerfeld and Fresnel–Kirchhoff diffraction theories.

Thus Uob = U0 exp(ikz) − Uap, which can be seen from equations (5) and (6) to be
equation (8) without the second term:

UFK(0, 0, z) = U0 exp(ikz) +
i

λ
U0

∫ a

0

exp(ikr)

r

1

2

(
1 +

z

r

)
2πρ dρ

= U0
1

2

(
1 +

z

r0

)
exp(ikr0). (9)

The remaining, and more serious, problem with equation (9) is that it does not satisfy the
boundary condition under which it was derived. As z → 0, we should find U(0, 0, z) → 0
in equations (7) and (9), since, from equation (2), that is the boundary condition originally
assumed. Equation (7) satisfies this condition, while equation (9) does not. Also, omitting
the exp(ika) phase factor, ∂U/∂z = U0/a at z = 0 for RS and half this for FK. The nonzero
value of ∂U/∂z is consistent with RS, for which only U needs to be zero at the disc, but not
for FK, which began with the additional boundary condition ∂U/∂z = 0. Equations (7) and
(9) are squared to obtain intensity and plotted in figure 3. The predicted intensities begin to
differ appreciably at z/a ≈ 4, where the diffraction angle is χ ≈ 15◦.

Having established the shortcomings of FK, I now use RS to calculate the off-axis intensity
of Poisson’s spot. The simplest way to calculate U(x′, y′, z) for an off-axis point is to set y′ = 0,
calculate U(x′, 0, z), and then invoke symmetry to replace x′ by ρ ′, the polar coordinate in the
(x′, y′) plane. For off-axis points with y′ = 0, r2 = z2+(x−x ′)2+y2 = z2+ρ2+x ′2−2x ′ρ cos φ,
where ρ2 = x2 + y2 and x = ρ cos φ have been used. Therefore r dr = (ρ − x ′ cos φ) dρ ≈
ρ dρ as long as ρ � a 
 x ′, which means that the following result is valid for points whose
distance from the z-axis is small compared to the radius of the disc. Thus, I return to equation
(3) and perform the integral over ρ again using ρ dρ = r dr and the Sommerfeld lemma:

U(x ′, 0, z) = − i

λ
U0

∫ 2π

0

∫ ∞

a

exp(ikr)

r

z

r
ρ dρ dφ ≈ −U0

2π

∫ 2π

0

[
exp(ikr)

z

r

∣∣∣r=∞

r=R(φ)
dφ

= U0

2π

∫ 2π

0
exp[ikR(φ)]

z

R(φ)
dφ, (10)

where

R(φ) =
√

z2 + (x ′ − a cos φ)2 + (a sin φ)2 =
√

z2 + a2 + x ′2 − 2x ′a cos φ

≈ r0 +
x ′2

2r0
− x ′a cos φ

r0
(11)
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Figure 4. The off-axis intensity of Poisson’s spot, relative to unit intensity on the axis (see the
text).

Table 1. Some properties of J0 and of Poisson’s spot.

z J0(z) [2/(πz)]1/2 cos(z − π/4) J 2
0 (z) Poisson’s spot

0 1 Not applicable 1 Central intensity
2.40 0 −0.023 0 First dark ring
3.83 −0.402 −0.406 0.162 First bright ring
5.52 0 0.008 0 Second dark ring
7.02 0.300 0.301 0.090 Second bright ring
8.65 0 −0.003 0 Third dark ring

10.17 −0.248 −0.250 0.062 Third bright ring

is the distance between the points (x, y, 0) and (x′, 0, z) and x = a cos φ, y = a sin φ on the
rim of the disc. I now substitute equation (11) into equation (10), keeping only the first term
where R(φ) appears in the denominator:

U(x ′, 0, z) ≈ U0

2π

∫ 2π

0

z

r0
exp

[
ik

(
r0 +

x ′2

2r0
− x ′a cos φ

r0

)]
dφ

= U0
z

r0
exp

[
ik

(
r0 +

x ′2

2r0

)]
1

2π

∫ π

−π

exp

(
− ikx ′a cos φ

r0

)
dφ

= U0
z

r0
exp(ikr0) exp

(
iπx ′2

λr0

)
J0

(
2πx ′a
λr0

)
, (12)

where J0 is the Bessel function, so

U(ρ ′, z) = URS(0, 0, z) exp

(
iπρ ′2

λr0

)
J0

(
2πρ ′a
λr0

)
. (13)

The relative intensity of light in the spot is given by the square of J0, which is plotted in
figure 4.

Table 1 lists some of the properties of J0 that are useful in this context. Some
relevant mathematical relations are dJ0(z)/dz = −J1(z), which will aid the reader in
finding the extrema of J0; J0(z) ≈ [2/(πz)]1/2 cos(z − π/4) = (sin z + cos z)/(πz)1/2,
which is a good approximation for z � 1 (and only 15% too large at z = 0.5!), and
J1(z) ≈ [2/(πz)]1/2 cos(z − 3π/4) = (sin z − cos z)/(πz)1/2. The bright peak at the centre
of the diffraction pattern is Poisson’s spot. Since J0(2.4) = 0, we see that the radius of the first
dark ring is ρ ′

1 = 2.4λr0/(2πa) = 0.38λr0/a. The spacing of subsequent dark rings is closely
approximated by �ρ ′ = 0.5λr0/a, as shown in the table.
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Note that the exactly on-axis intensity of Poisson’s spot does not depend on wavelength
because there is no wavelength dependence in the inclination factor. Wavelength dependence
enters in the scaling of the radial intensity distribution: if the wavelength is doubled, the
linear dimension of the diffraction pattern doubles, which means that it contains four times
as much energy. Equation (13) applies for all values of z, but only for values of ρ ′ such that
the approximation in equation (11) is valid. A more complete description requires the use of
Lommel functions [4].

4. Doing diffraction with Fourier propagation

In section 4.1, I invoke the basic principles of Fourier propagation, which are used in
section 4.2 to derive the RS diffraction integral. For ease of presentation, I address the
2D diffraction problem: long slits or strips illuminated by plane or cylindrical waves that can
be described by U(x, z). In section 4.1, the generalization to 3D is obvious; in section 4.2, it
is done in appendix B.

4.1. Fourier propagation

The Fourier transform over x of U(x, z) is called its angular spectrum, defined by

A(α, z) ≡
∫ ∞

−∞
U(x, z) exp(−ikαx) dx. (14)

Fourier propagation rests on the premise that, as shown by Goodman [1] for example,

A(α, z) = A(α, 0) exp
(
ik

√
1 − α2z

)
, (15)

where α is not restricted to −1 �α � 1. The Fourier transform variable in equation (14) is
α/λ, so the inverse transform of A(α, z) is

U(x ′, z) =
∫ ∞

−∞
A(α, z) exp(ikαx ′) d

(α

λ

)

=
∫ ∞

−∞
A(α, 0) exp

(
ik

√
1 − α2z + ikαx ′) d

(α

λ

)

=
∫ ∞

−∞

∫ ∞

−∞
U(x, 0) exp(−ikαx) dx exp

(
ik

√
1 − α2z + ikαx ′) d

(α

λ

)

=
∫ ∞

−∞

∫ ∞

−∞
U(x, 0) exp

[
ik

√
1 − α2z + ikα(x ′ − x)

]
dx d

(α

λ

)
. (16)

The second equality in equation (16) shows that U(x ′, z) is the sum of plane waves of
amplitude A(α, 0), propagating at an angle θ = cos−1 α with respect to the x-axis. When
|α| > 1, the plane waves are evanescent, with exponentially decaying z-dependence given by
exp[−(α2 − 1)1/2kz]. These waves do not propagate a significant distance from the aperture,
but are needed to give a complete Fourier decomposition of U(x ′, z) at, or near, z = 0.

We can easily check that U(x ′, z) given by equation (16) is indeed a solution of the 2D
Helmholtz equation. Since the dependence on x′ and z is all in the exponent on the right-hand
side of equation (16), we see that(

∂2

∂x ′2 +
∂2

∂z2

)
U(x ′, z) =

[
(ikα)2 +

(
ik

√
1 − α2

)2
]
U(x ′, z)

= −k2U(x ′, z), (17)
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as desired. Furthermore, equation (16) shows that the solution depends only on the value of
U in the z = 0 plane. For the diffraction problem, the standard procedure is to use U0(x, 0)
for U(x, 0) in the transmissive parts of the screen and zero in the blocking parts. (Goodman
loosely states that ‘Kirchhoff boundary conditions’ are applied [1], but actually only the RS
conditions are needed.) Thus, Fourier propagation and the RS integral are solutions to the
same differential equation with the same boundary condition, hence must be the same function,
a fact that is shown explicitly in the next section.

4.2. The RS integral derived via Fourier propagation

Returning to equation (16), interchanging the order of integration, and using the RS boundary
condition,

U(x ′, z) =
∫ ∞

−∞
U0(x, 0)

∫ α=1

α=−1
exp

{
ik

[√
1 − α2z + α(x ′ − x)

]}
d
(α

λ

)
dx

≡
∫ ∞

−∞
U0(x, 0)

∫ α=1

α=−1
exp[ikF (α)] d

(α

λ

)
dx, (18)

where restricting the range of α to −1 � α � 1 neglects the effects of evanescent waves, and
the last line defines the function F(α). The α integral is done by the stationary phase method:
the function F(α) is expanded in a Taylor series about the point α0 at which its first derivative
is zero. Using the notation Fα ≡ ∂F/∂α, we require

Fα(α0) = − α0z√
1 − α2

0

+ x ′ − x = 0, (19)

which can be solved for α0,

α0 = x ′ − x√
(x ′ − x)2 + z2

= x ′ − x

r2D
. (20)

Therefore √
1 − α2

0 = z

r2D
(21)

and

F(α0) =
√

1 − α2
0z + α0(x

′ − x) = r2D. (22)

The second derivative of F(α) at α0 is

Fαα(α0) = − z√
1 − α2

0

− α2
0z√

1 − α2
0

3 = − z√
1 − α2

0

3 = − r3
2D

z2
. (23)

Since the first-order term vanishes by construction, the Taylor series expansion through second
order of F(α) about α0 is

F(α) ≈ F(α0) + 1
2Fαα(α0)(α − α0)

2. (24)

A standard Fresnel integral is now written in a form that will be useful below:∫ ∞

−∞
exp

{
−i

[π

λ
A(u − u0)

2
]}

d
(u

λ

)
= 1 − i√

2

1√
λA

, (25)

where A is positive definite.
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The integral over α in equation (18) can now be evaluated. For ease of notation, drop the
α0 argument from Fαα and observe that Fαα = −|Fαα| (Fαα is always negative). Equation (24)
is inserted into the exponent in equation (18) to obtain

exp[ikF (α0)]
∫

α

exp

{
ik

[
−1

2
|Fαα|(α − α0)

2

]}
d
(α

λ

)

= exp(ikr2D)
1 − i√

2

1√
λ|Fαα| = exp(ikr2D)

1 − i√
2

1√
λr2D

z

r2D
. (26)

Therefore

U(x ′, z) =
∫ ∞

−∞
U0(x, 0) exp(ikr2D)

1 − i√
2

1√
λr2D

z

r2D
dx

= 1 − i√
2λ

∫ ∞

−∞
U0(x, 0)

exp(ikr2D)√
r2D

cos χ2D dx. (27)

Equation (27) is the 2D version of equation (3) and contains the 2D Huygens’ principle: each
strip in the aperture acts as a source of cylindrical waves, for which amplitude falls off as
r2D

− 1
2 . The interested student may want to make the normal approximations [cos χ2D ≈ 1,

r2D ≈ z+ (x ′ −x)2/2z in the exponent, r2D ≈ z outside it] and show that equation (27) reduces
to the standard form that is evaluated with the Cornu spiral.

Extending equation (27) to the 3D problem will, first of all, add a dy to the integral.
Keeping in mind that all the units of length must cancel out on the right-hand side, inspection
of equation (27) suggests that the effect of a 3D calculation is to replace r2D and χ2D by
r and χ , to replace cylindrical waves by spherical waves and to square the factor outside
the integral. This intuitive argument is confirmed in detail in appendix B, with a result,
equation (B.12), that matches the RS form of the diffraction integral given in equation (3).

5. Conclusion

The fundamental flaw in the Fresnel–Kirchhoff diffraction integral and the superiority of
Rayleigh–Sommerfeld have been demonstrated with exact calculations of the intensity of
Poisson’s spot. Fourier propagation has been presented as an alternate means of deriving the
diffraction integral. Compared to the usual approach via Green’s theorem, this derivation
has the advantage of rendering obvious the proper choice of boundary conditions. It has the
disadvantage of requiring knowledge of Fourier propagation and, for the 3D version, more
complicated maths, but the 2D version is not excessively difficult and the generalization to 3D
by inspection is intuitively appealing.

As noted in the introduction, the argument has been confined to scalar wave theory, which
will not be completely adequate for describing Poisson’s spot in optics for points near the
disc. (The contribution of those rays not polarized parallel to the diffracting edge should be
multiplied by the sine of the angle between the polarization vector and the direction to the
observation point.) But it should be entirely adequate for describing Poisson’s spot in an
acoustics experiment because acoustic waves are scalar (pressure) waves. Also, because the
wavelength is much longer, diffraction phenomena can be more easily studied in an acoustics
than in an optics laboratory. This experiment was done many years ago with somewhat
equivocal results [8]. With modern equipment, it should not be particularly difficult to repeat,
and could settle the conflict between RS and FK diffraction by direct measurement.
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Appendix A. The Sommerfeld lemma

Following Sommerfeld [2] and Harvey et al [6], I perform a series of integrations by parts
(only the first two are shown) to expand the integral of a function multiplied by a complex
exponential in a series of terms:∫ b

a

f (x) exp(ikx) dx = f (x)

ik
exp(ikx)

∣∣∣∣
b

a

− f ′(x)

(ik)2
exp(ikx)

∣∣∣∣
b

a

+
1

(ik)2

∫ b

a

f ′′(x) exp(ikx) dx

≈ f (x)

ik
exp(ikx)

∣∣∣∣
b

a

, (A.1)

where the approximation is justified if f (x) is a slowly varying function, or, equivalently, in
the limit k → ∞ (λ → 0). When applied to diffraction, the approximation in equation (A.1)
holds when the geometric dimensions of a problem are large compared to a wavelength of
light, otherwise f (x) may not be sufficiently slowly varying.

The integral in equation (A.1) has exactly the form of the k-frequency coefficient of a
Fourier series expansion of the function f (x) over the interval (a, b). This shows that for a
large k we need to know only the values of f (a) and f (b) to find the value of the coefficient.
I have searched more than a dozen Fourier series books and not found this lemma in any
of them. It does appear (in a more general form) in Mandel and Wolf [9], who also give a
thorough treatment of the stationary phase method of evaluating integrals.

Appendix B. Deriving the RS diffraction integral via Fourier propagation

Proceeding in analogy to section 4.2, the 3D version of equation (18) is

U(x ′, y ′, z) =
∫ ∫

x,y

U0(x, y, 0)

∫ ∫
α,β

exp
{
ik

[√
1 − α2 − β2z

+ α(x ′ − x) + β(y ′ − y)
]}

d
(α

λ

)
d

(
β

λ

)
dx dy

≡
∫ ∫

x,y

U0(x, y, 0)

∫ ∫
α,β

exp[ikF (α, β)] d
(α

λ

)
d

(
β

λ

)
dx dy. (B.1)

The function F(α, β) is expanded in a Taylor series about the point (α0, β0) at which its first
derivatives are zero. Setting

Fα(α0, β0) = − α0z√
1 − α2

0 − β2
0

+ x ′ − x = 0, (B.2)

and similarly for β, leads to

α0 = x ′ − x

r
, β0 = y ′ − y

r
,

√
1 − α2

0 − β2
0 = z

r
. (B.3)

The second derivatives of F(α, β) at (α0, β0) are

Fαα(α0, β0) = − z√
1 − α2

0 − β2
0

− α2
0z√

1 − α2
0 − β2

0

3 = − r[(x ′ − x)2 + z2]

z2
, (B.4)

Fββ(α0, β0) = − r[(y ′ − y)2 + z2]

z2
, (B.5)



Rayleigh–Sommerfeld diffraction and Poisson’s spot 203

and

Fαβ(α0, β0) = − α0β0z√
1 − α2

0 − β2
0

3 = − r(x ′ − x)(y ′ − y)

z2
. (B.6)

The following quantities will be needed below:

F(α0, β0) = z2

r
+ α0(x

′ − x) + β0(y
′ − y) = r, (B.7)

and

Fαα(α0, β0)Fββ(α0, β0) − F 2
αβ(α0, β0) = r4

z2
. (B.8)

The Taylor series expansion through the second order of F(α, β) about the point (α0, β0) is

F(α, β) ≈ F(α0, β0) + 1
2Fαα(α0, β0)(α − α0)

2 + 1
2Fββ(α0, β0)(β − β0)

2

+ Fαβ(α0, β0)(α − α0)(β − β0). (B.9)

The α and β integrals in equation (B.1) can now be evaluated. Observe that Fαα =
−|Fαα| (Fαα is always negative) and, for ease of notation, drop the (α0, β0) argument from the
quantities Fαα, Fββ and Fαβ. The first, second and fourth terms in equation (B.9) are inserted
into the exponent in equation (B.1) and the integral over α evaluated by completing the square
in the exponent [the symbol ± in equation (B.10) means add and subtract, not add or subtract]:

exp[ikF (α0, β0)]
∫

α

exp

{
ik

[
−1

2
|Fαα|(α − α0)

2 + Fαβ(α − α0)(β − β0)

]}
d
(α

λ

)

= exp(ikr)

∫
α

exp

{
− ik

2
|Fαα|

[
(α − α0)

2

− 2
Fαβ

|Fαα| (α − α0)(β − β0) ± F 2
αβ

|Fαα|2 (β − β0)
2

]}
d
(α

λ

)

= exp(ikr) exp

[
ik

2

F 2
αβ

|Fαα| (β − β0)
2

]

×
∫

α

exp

{
− ik

2
|Fαα|

[
α − α0 − Fαβ

|Fαα| (β − β0)

]2
}

d
(α

λ

)

= exp(ikr) exp

[
ik

2

F 2
αβ

|Fαα| (β − β0)
2

]
1 − i√

2

1√
λ|Fαα| . (B.10)

The integral over β in equation (B.1) can now be carried out by adding the third term in
equation (B.9) to the exponent in equation (B.10) and again using Fαα = −|Fαα|:
1 − i√

2

1√
λ|Fαα| exp(ikr)

∫
β

exp

(
ik

2

F 2
αβ

|Fαα| (β − β0)
2 +

ik

2
Fββ(β − β0)

2

)
d

(
β

λ

)

= 1 − i√
2

1√
λ|Fαα| exp(ikr)

∫
β

exp

[
− ik

2

(
FααFββ − F 2

αβ

|Fαα|

)
(β − β0)

2

]
d

(
β

λ

)

= 1 − i√
2

1√
λ|Fαα| exp(ikr)

1 − i√
2

√
|Fαα|

λ
(
FααFββ − F 2

αβ

) = − iz

λr2
exp(ikr).

(B.11)
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Equation (B.1) can now be written in the desired form:

U(x ′, y ′, z) = − i

λ

∫ ∫
x,y

U0(x, y, 0)
z exp(ikr)

r2
dx dy

= − i

λ

∫ ∫
x,y

U0(x, y, 0)
exp(ikr)

r
cos χ dx dy. (B.12)
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