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Differential Calculus of Veetor Fields

2-1 Understanding physics

The physicist needs a facility in looking at problems from several points of
view. The exact analysis of real physical problems is usually quite complicated,
and any particular physical situation may be too complicated to analyze directly
by solving the differential equation. But one can still get a very good idea of the
behavior of a system if one has some feel for the character of the solution in differ-
ent circumstances. Ideas such as the field lines, capacitance, resistance, and in-
ductance are, for such purposes, very useful. So we will spend much of our time
analyzing them. In this way we will get a feel as to what should happen in different
electromagnetic situations. On the other hand, none of the heuristic models, such
as field lines, is really adequate and accurate for all situations. There is only one
precise way of presenting the laws, and that is by means of differential equations.
They have the advantage of being fundamental and, so far as we know, precise.
If you have learned the differential equations you can always go back to them.
There is nothing to unlearn.

It will take you some time to understand what should happen in different
circumstances. You will have to solve the equations. Each time you solve the
equations, you will learn something about the character of the solutions. To keep
these solutions in mind, it will be useful also to study their meaning in terms of field
lines and of other concepts. This is the way you will really “understand” the equa-
tions. That is the difference between mathematics and physics. Mathematicians,
or people who have very mathematical minds, are often led astray when “studying”
physics because they lose sight of the physics. They say: “Look, these differential
equations—the Maxwell equations—are all there is to electrodynamics; it is
admitted by the physicists that there is nothing which is not contained in the equa-
tions. The equations are complicated, but after all they are only mathematical
equations and if I understand them mathematically inside out, I will understand
the physics inside out.” Only it doesn’t work that way. Mathematicians who study
physics with that point of view—and there have been many of them—usually
make little contribution to physics and, in fact, little to mathematics. They fail
because the actual physical situations in the real world are so complicated that it is
necessary to have a much broader understanding of the equations.

What it means really to understand an equation—that is, in more than a
strictly mathematical sense—was described by Dirac. He said: “I understand what
an equation means if I have a way of figuring out the characteristics of its solution
without actually solving it.”” So if we have a way of knowing what should happen
in given circumstances without actually solving the equations, then we “under-
stand” the equations, as applied to these circumstances. A physical understanding
is a completely unmathematical, imprecise, and inexact thing, but absolutely neces-
sary for a physicist.

* Ordinarily, a course like this is given by developing gradually the physical
ideas—Dby starting with simple situations and going on to more and more compli-
cated situations. This requires that you continuously forget things you previously
learned—things that are true in certain situations, but which are not true in general.
For example, the “law” that the electrical force depends on the square of the
distance is not always true. We prefer the opposite approach. We prefer to take
first the complete laws, and then to step back and apply them to simple situa-
tions, developing the physical ideas as we go along. And that is what we are going
to do.
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Our approach is completely opposite to the historical approach in which one
develops the subject in terms of the experiments by which the information was
obtained. But the subject of physics has been developed over the past 200 years
by some very ingenious people, and as we have only a limited time to acquire our
knowledge, we cannot possibly cover everything they did. Unfortunately one of
the things that we shall have a tendency to lose in these lectures is the historical,
experimental development. It is hoped that in the laboratory some of this lack can
be corrected. You can also fill in what we must leave out by reading the Ency-
clopedia Brittanica, which has excellent historical articles on electricity and on
other parts of physics. You will also find historical information in many textbooks
on electricity and magnetism.

2-2 Scalar and vector fields—7 and 4

We begin now with the abstract, mathematical view of the theory of electricity
and magnetism. The ultimate idea is to explain the meaning of the laws given in
Chapter 1. But to do this we must first explain a new and peculiar notation that
we want to use. So let us forget electromagnetism for the moment and discuss the
mathematics of vector fields. It is of very great importance, not only for electro-
magnetism, but for all kinds of physical circumstances. Just as ordinary differential
and integral calculus is so important to all branches of physics, so also is the
differential calculus of vectors. We turn to that subject.

Listed below are a few facts from the algebra of vectors. It is assumed that
you already know them.

A - B = scalar = A,B, + A B, + A,B, 2.1)
A X B = vector 2.2

(4 X B), = A,B, — A,B,

(4 X B), = A,B, — A.,By

(A X B)y = A,B, — A,B,
AXA=0 2.3)
A -(AXB=0 24
A- BXC=AXB-C 2.5)
AX (BXC)= BA-C)—~ C(4-B) 2.6)

Also we will want to use the two following equalities from the calculus:

Af(x,y,2) = % Ax + g—JZ;Ay + g—z[Az, 2.7
Sf _ &f
axdy  dyodx 3)

The first equation (2.7) is, of course, true only in the limit that Ax, Ay, and Az
go toward zero.

The simplest possible physical field is a scalar field. By a field, you remember,
we mean a quantity which depends upon position in space. By a scalar field we
merely mean a field which is characterized at each point by a single number—a
scalar. Of course the number may change in time, but we need not worry about
that for the moment. We will talk about what the field looks like at a given instant.
As an example of a scalar field, consider a solid block of material which has been
heated at some places and cooled at others, so that the temperature of the body
varies from point to point in a complicated way. Then the temperature will be a
function of x, y, and z, the position in space measured in a rectangular coordinate
system. Temperature is a scalar field.
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One way of thinking about scalar fields is to imagine “contours” which are
imaginary surfaces drawn through all points for which the field has the same value,
just as contour lines on a map connect points with the same height. For a tempera-
ture field the contours are called “isothermal surfaces” or isotherms. Figure 2-1
illustrates a temperature field and shows the dependence of T on x and y when
z = 0. Several isotherms are drawn.

There are also vector fields. The idea is very simple. A vector is given for each
point in space. The vector varies from point to point. As an example, consider a
rotating body. The velocity of the material of the body at any point is a vector
which is a function of position (Fig. 2-2). As a second example, consider the flow
of heat in a block of material. If the temperature in the block is high at one place
and low at another, there will be a flow of heat from the hotter places to the colder.
The heat will be flowing in different directions in different parts of the block. The
heat flow is a directional quantity which we call h. Its magnitude is a measure of
how much heat is flowing. Examples of the heat flow vector are also shown

in Fig. 2-1.
”/
/

r4

Let’s make a niore precise definition of A: The magnitude of the vector heat
flow at a point is the amount of thermal energy that passes, per unit time and per
unit area, through an infinitesimal surface element, at right angles to the direction
of flow. The vector points in the direction of flow (see Fig. 2-3). In symbols: If AJ
is the thermal energy that passes per unit time through the surface element Aq, then

AT
h = VL 2.9
where ¢; is a uniz vector in the direction of flow.

The vector k& can be defined in another way—in terms of its components. We
ask how much heat flows through a small surface at any angle with respect to the
flow. In Fig. 2-4 we show a small surface Aa inclined with respect to Aa,, which
is perpendicular to the flow. The unit vector n is normal to the surface Aa,. The
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T=40°

T=30° Fig. 2-1. Temperature T is an example of a
scalar field. With each point (x, y, z) in space

T =20° there is associated a number T(x, y, z). All points on
the surface marked T = 20° (shown as a curve at

T =10° z = 0) are at the same temperature. The arrows

are samples of the heat flow vector h.

—ROTATION

Fig. 2-2. The velocity of the atoms
in a rotating object is an example of a
vector field.

Fig. 2-3. Heat flow is a vector fleld. The vector
b points along the direction of the flow. Its magni-

T2
h
Aa
heat flow
~— ] / surface element oriented perpendicular to the flow,
/ X

tude is the energy transported per unit time across a

divided by the area of the surface element.

Fig. 2—-4. The heat flow through Aa;
is the same as through Aa;.



angle § between n and A is the same as the angle between the surfaces (since A is nor-
mal to Aa;). Now what is the heat flow per unit area through Aa,? The flow
through Aa, is the same as through Aa,; only the areas are different. In fact,
Aa; = Aa,cos 8. The heat flow through Aa, is

A _ A cos b = k- n. (2.10)

We interpret this equation: the heat flow (per unit time and per unit area) through
any surface element whose unit normal.is n, is given by & - n. Equally, we could
say: the component of the heat flow perpendicular to the surface element Aaj, is
k- n. We can, if we wish, consider that these statements define h. We will be apply-
ing the same ideas to other vector fields.

2-3 Derivatives of fields—the gradient

When fields vary in time, we can describe the variation by giving their deriva-
tives with respect to . We want to describe the variations with position in a similar
way, because we are interested in the relationship between, say, the temperature in
one place and the temperature at a nearby place. How shall we take the derivative
of the temperature with respect to position? Do we differentiate the temperature
with respect to x? Or with respect to y, or z2?

Useful physical laws do not depend upon the orientation of the coordinate
system. They should, therefore, be written in a form in which either both sides are
scalars or both sides are vectors. What is the derivative of a scalar field, say
dT/3x? Is it a scalar, or a vector, or what? It is neither a scalar nor a vector, as
you can easily appreciate, because if we took a different x-axis, 07/dx would cer-
tainly be different. But notice: We have three possible derivatives: 7/dx, dT/dy,
and 87/dz. Since there are three kinds of derivatives and we know that it takes
three numbers to form a vector, perhaps these three derivatives are the components
of a vector:

(g% , %}7; > g) < a vector. (2.11)

Of course it is not generally true that any three numbers form a vector. It is
true only if, when we rotate the coordinate system, the components of the vector
transform among themselves in the correct way. So it is necessary to analyze how
these derivatives are changed by a rotation of the coordinate system. We shall
show that (2.11) is indeed a vector. The derivatives do transform in the correct
way when the coordinate system is rotated.

We can see this in several ways. One way is to ask a question whose answer is
independent of the coordinate system, and try to express the answer in an “in-
variant” form. For instance, if S = A - B, and if 4 and B are vectors, we know—
because we proved it in Chapter 11 of Vol. I-—that S is a scalar. We know that S
is a scalar without investigating whether it changes with changes in coordinate
systems. It can’t, because it’s a dot product of two vectors. Similarly, if we know
that A is a vector, and we have three numbers B, Bs, and B3, and we find out that

A.B, + Asz + A4,B3 = S, (2-12)

where § is the same for any coordinate system, then it must be that the three
numbers By, B,, B; are the components B, B,, B, of some vector B.

Now let’s think of the temperature field. Suppose we take two points P, and
P, separated by the small interval AR. The temperature at P, is T; and at P, is
T, and the difference AT = T, — T,. The temperatures at these real, physical
points certainly do not depend on what axis we choose for measuring the coordi-
nates. In particular, AT is a number independent of the coordinate system. Itisa
scalar.
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If we choose some convenient set of axes, we could write 7, = T(x, y, z) and
Ty = T(x + Ax,y + Ay, z + Az), where Ax, Ay, and Az are the components of
the vector AR (Fig. 2-5). Remembering Eq. (2.7), we can write
AT = gTA +3 A + ——Az @.13)
The left side of Eq. (2.13) is a scalar. The right side is the sum of three products
with Ax, Ay, and Az, which are the components of a vector. It follows that the
three numbers
o oT oT
ax oy 3z

are also the x-, y-, and z-components of a vector. We write this new vector with
the symbol VT. The symbol V (called “del”) is an upside-down A, and is supposed
to remind us of differentiation. People read VT in various ways: “del-T,” or
“gradient of T,” or “grad T;”

(2.14)

grad T = VT = (aT oT aT)

24 ay 0z

Using this notation, we can rewrite Eq. (2.13) in the more compact form
AT = VT - AR. (2.15)

In words, this equation says that the difference in temperature between two nearby
points is the dot product of the gradient of T and the vector displacement between
the points. The form of Eq. (2.15) also illustrates clearly our proof above that
VT is indeed a vector.

Perhaps you are still not convinced? Let’s prove it in a different way. (Al-
though if you look carefully, you may be able to see that it’s really the same proof
in a longer-winded form!) We shall show that the components of V7T transform in
just the same way that components of R do. If they do, VT is a vector according to
our original definition of a vector in Chapter 11 of Vol. I. We take a new coordi-
nate system x’, 3’, 2/, and in this new system we calculate 97/9x', 47/3y’, and
dT/dz’. To make things a little simpler, we let z = Z’, so that we can forget about
the z-coordinate. (You can check out the more general case for yourself.)

We take an x’y’-system rotated an angle 6 with respect to the xy-system, as
in Fig. 2-6(a). For a point (x, y) the coordinates in the prime system are

x' = xcos 8 + ysin 6, (2.16)
y' = —xsin @ 4+ ycosé. 2.17)
Or, solving for x and y,
x = x"cos § — y'sin 9, (2.18)
y = x'sin 6 4+ )’ cos 6. 2.19)

If any pair of numbers transforms with these equations in the same way that x
and y do, they are the components of a vector.

Now let’s look at the difference in temperature between the two nearby
points Py and P,, chosen as in Fig. 2-6(b). If we calculate with the x- and y-
coordinates, we would write

oT
AT = o Ax (2.20)

—since Ay is zero.

* In our notation, the expression (a, b, c) represents a vector with components a, b,
and ¢. If you like to use the unit vectors #, j, and &, you may write

oT
VI = t——+jay+k—-
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Fig. 2-5. The vector AR, whose com-
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Fig. 2-6. (a) Transformation to a
rotated coordinate system. (b) Special
case of an interval AR parallel to the
X-axis.



If we choose some convenient set of axes, we could write 7; = T(x, y, z) and

y
= T(x + Ax,y + Ay, z + Az), where Ax, Ay, and Az are the components of
the vector AR (Fig. 2-5). Remembering Eq. (2.7), we can write \ o
1 0 "’
' frt—=2"5 R oy
AT_"—TA +3 A +——Az @13y NY P o
//21 : //I T TAK ” ll :;)
The left side of Eq. (2.13) is a scalar. The right side is the sum of three products ’ Krmmom o o
with Ax, Ay, and Az, which are the components of a vector. It follows that the -
three numbers PRI . S
"/ ~—
o oT or ; £
ax’ ay oz
are also the x-, y-, and z-components of a vector. We write this new vector with Fig. 2-5. The vector AR, whose com-

the symbol V7. The symbol V (called “del”) is an upside-down A, and is supposed ~ PO"e"'s are Ax, Ay, and Az.
to remind us of differentiation. People read VT in various ways: “del-T,” or
“gradient of T,” or “grad T;”

*
grad T = VT = (aT oT aT)- (2.14)

ox 9y 9z
Using this notation, we can rewrite Eq. (2.13) in the more compact form
AT = VT -AR. (2.15)

In words, this equation says that the difference in temperature between two nearby
points is the dot product of the gradient of T and the vector displacement between
the points. The form of Eq. (2.15) also illustrates clearly our proof above that
VT is indeed a vector.

Perhaps you are still not convinced? Let’s prove it in a different way. (Al-
though if you look carefully, you may be able to see that it’s really the same proof
in a longer-winded form!) We shall show that the components of V7 transform in
just the same way that components of R do. If they do, VT is a vector according to
our original definition of a vector in Chapter 11 of Vol. I. We take a new coordi-

nate system x’, ', z’, and in this new system we calculate 97/9x', 9T/9y’, and 4 WL (@
dT/3z’. To make things a little simpler, we let z = Z’, so that we can forget about
the z-coordinate. (You can check out the more general case for yourself.) x b
We take an x’y’-system rotated an angle 8 with respect to the xy-system, as '":;/_;/ '
in Fig. 2-6(a). For a point (x, y) the coordinates in the prime system are '
X = xcosf + ysin 6, (2.16) ’ g
N
Yy = —xsin8 + ycosé. 2.17) *
Or, solving for x and y, y y )
x = x"cos § — y'sin 9, (2.18)
. '19/\\”’
y = x'sin @ + ) cos 6. 2.19) P~ & TR
If any pair of numbers transforms with these equations in the same way that x X!
and y do, they are the components of a vector.
Now let’s look at the difference in temperature between the two nearby -—
points Py and P,, chosen as in Fig. 2-6(b). If we calculate with the x- and y-
coordinates, we would write Fig. 2-6. (a) Transformation to a
BT rotated coordinate system. (b} Special
AT = o Ax (2.20) case of an interval AR parallel to the

—since Ay is zero. x-axis.

* In our notation, the expression (a, b, c) represents a vector with components a, b,
and ¢. If you like to use the unit vectors #, j, and &, you may write

oT
VI = t——+]ay+k-
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What would a computation in the prime system give? We would have written

oT ., , oT

Looking at Fig. 2-6(b), we see that

Ax' = Axcos 8 2.22)
and
Ay = —Axsin 6, (2.23)

since Ay is negative when Ax is positive. Substituting these in Eq. (2.21), we find
that

AT = -6-]—: Axcos 0 — —al: Ax sin § (2.24)
X ay
aT aT .
= (W cos § — 3 sin 0) Ax. (2.25)
Comparing Eq. (2.25) with (2.20), we see that
oT _ aT oT .
3% = 0 OO g — G sin 4. (2.26)

This equation says that d7/dx is obtained from 47/dx’ and 8T/dy’, just as x is
obtained from x’ and y’ in Eq. (2.18). So 9T/dx is the x-component of a vector.
The same kind of arguments would show that 67/9dy and 67/9z are y- and z-com-
ponents. So VT is definitely a vector. It is a vector field derived from the scalar
field T.

2-4 The operator V

Now we can do something that is extremely amusing and ingenious—and
characteristic of the things that make mathematics beautiful. The argument that
grad T, or VT, is a vector did not depend upon what scalar field we were differ-
entiating. All the arguments would go the same if 7 were replaced by any scalar
field. Since the transformation equations are the same no matter what we differ-
entiate, we could just as well omit the T and replace Eq. (2.26) by the operator
equation

% - 5% - ai;—, sin . .27)
We leave the operators, as Jeans said, “hungry for something to differentiate.”

Since the differential operators themselves transform as the components of a

vector should, we can call them components of a vector operator. We can write

Jd 9 4
= — s —ry—]> 2.2
v <6x ay az) (2.28)
which means, of course,
a a a
= Ty T 2.29)

We have abstracted the gradient away from the T—that is the wonderful idea.
You must always remember, of course, that V is an operator. Alone, it
means nothing. If V by itself means nothing, what does it mean if we multiply
it by a scalar—say 7—to get the product 7v? (One can always multiply a vector
by a scalar.) It still does not mean anything. Its x-component is
d

T —

= (2.30)

which is not a number, but is still some kind of operator. However, according to
the algebra of vectors we would still call TV a vector.
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Now let’s multiply V by a scalar on the other side, so that we have the product
(vT). In ordinary algebra
TA = AT, (2.31)

but we have to remember that operator algebra is a little different from ordinary
vector algebra. With operators we must always keep the sequence right, so that
the operations make proper sense. You will have no difficulty if you just remember
that the operator V obeys the same convention as the derivative notation. What is
to be differentiated must be placed on the right of the v. The order is important.

Keeping in mind this problem of order, we understand that 7'V is an operator,
but the product V7T is no longer a hungry operator; the operator is completely
satisfied. It is indeed a physical vector having a meaning. It represents the spatial
rate of change of T. The x-component of VT is how fast 7 changes in the x-direc-
tion. What is the direction of the vector vI'? We know that the rate of change of
T in any direction is the component of VT in that direction (see Eq. 2.15). It
follows that the direction of VT is that in which it has the largest possible com-
ponent—in other words, the direction in which T changes the fastest. The gradient
of T has the direction of the steepest uphill slope (in T).

2-5 Operations with V

Can we do any other algebra with the vector operator v? Let us try combining
it with a vector. We can combine two vectors by making a dot product. We could
make the products

(a vector) - v, or V - (a vector).

The first one doesn’t mean anything yet, because it is still an operator. What it
might ultimately mean would depend on what it is made to operate on. The
second product is some scalar field. (4 - B is always a scalar.)
Let’s try the dot product of V with a vector field we know, say k. We write
out the components:
V.h=Vh, + Vh, + V.h, (2.32)
or

V-h= + (2.33)
The sum is invariant under a coordinate transformation. If we were to choose a
different system (indicated by primes), we would have*

Ohy | Ohy | Ohe

Y ~ ke '8
vk ax’ a9y’ 9z’

(2.34)

which is the same number as would be gotten from Eq. (2.33), even though it
looks different. That is,
Vi h=V-h (2.35)

for every point in space. So V -k is a scalar field, which must represent some
physical quantity. You should realize that the combination of derivatives in
V -+ h is rather special. There are all sorts of other combinations like dk,/dx,
which are neither scalars nor components of vectors.

The scalar quantity Vv - (a vector) is extremely useful in physics. It has been
given the name the divergence. For example,

V -k = divh = “divergence of h.” (2.36)

As we did for VT, we can ascribe a physical significance to V - h. We shall, how-
ever, postpone that until later.

* We think of & as a physical quantity that depends on position in space, and not
strictly as a mathematical function of three variables. When & is “differentiated” with
respect to x, y, and z, or with respect to x’, y’, and z’, the mathematical expression for A
must first be expressed as a function of the appropriate variables.
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Fig. 2-7. (a) Heat flow through a
slab. (b) An infinitesimal slab parailel to
an isothermal surface in a large block.

First, we wish to see what else we can cook up with the vector operator V.
What about a cross product? We must expect that

Vv X h = a vector. (2.37)

It is a vector whose components we can write by the usual rule for cross products
(see Eq. 2.2):

oh dh,
(Vv X h), = Vohy — Vyh, = 6_; - —5)7' (2.38)
Similarly, oh o
= — = 9y
(VX h), = Vh, — V,h, 3y s (2.39)
and oh,  oh
(V X )y = Vohe — Voh, = 5% — 2. (2.40)

The combination V X h is called “the curl of h.” The reason for the name
and the physical meaning of the combination will be discussed later.
Summarizing, we have three kinds of combinations with v:

vT = grad T = a vector,
V'h = divh = ascalar,
V X h = curl A = a vector.

Using these combinations, we can write about the spatial variations of fields in a
convenient way—in a way that is general, in that it doesn’t depend on any particular
set of axes.

As an example of the use of our vector differential operator v, we write a set
of vector equations which contain the same laws of electromagnetism that we gave
in words in Chapter 1. They are called Maxwell’s equations.

Maxwell’s Equations

P
V- E="-
(1) E p
JB
2) VXE=-< (2.41)
3) vV-B=0
2 _OE  j

)

where p (rho), the “electric charge density,” is the amount of charge per unit
volume, and j, the “electric current density,” is the rate at which charge flows
through a unit area per second. These four equations contain the complete
classical theory of the electromagnetic field. You see what an elegantly simple
form we can get with our new notation!

2-6 The differential equation of heat flow

Let us give another example of a law of physics written in vector notation.
The law 1s not a precise one, but for many metals and a number of other sub-
stances that conduct heat it is quite accurate. You know that if you take a slab of
material and heat one face to temperature T, and cool the other to a different
temperature Ty, the heat will flow through the material from T to Ty [Fig. 2-7(a)].
The heat flow is proportional to the area 4 of the faces, and to the temperature
difference. It is also inversely proportional to d, the distance between the plates.
(For a given temperature difference, the thinner the slab the greater the heat flow.)
Letting J be the thermal energy that passes per unit time through the slab, we write

J = k(Ty — Ty) -’3- (2.42)

The constant of proportionality k (kappa) is called the thermal conductivity.
2-8



‘What will happen in a more complicated case? Say in an odd-shaped block of
material in which the temperature varies in peculiar ways? Suppose we look at a
tiny piece of the block and imagine a slab like that of Fig. 2-7(a) on a miniature
scale. We orient the faces parallel to the isothermal surfaces, as in Fig. 2-7(b), so
that Eq. (2.42) is correct for the small slab.

If the area of the small slab is AA, the heat flow per unit time is

AA

M=KATAS’

(2.43)

where As is the thickness of the slab. Now AJ/AA we have defined earlier as the

" magnitude of h, whose direction is the heat flow. The heat flow will be from
T, + AT toward T, and so it will be perpendicular to the isotherms, as drawn in
Fig. 2-7(b). Also, AT/As is just the rate of change of T with position. And since
the position change is perpendicular to the isotherms, our AT/As is the maximum
rate of change. It is, therefore, just the magnitude of v7. New since the direction
of vT is opposite to that of h, we can write (2.43) as a vector equation:

h= —xVT. (2.44)

(The minus sign is necessary because heat flows “downhill” in temperature.)
Equation (2.44) is the differential equation of heat conduction in bulk materials.
You see that it is a proper vector equation. Each side is a vector if k is just a num-
ber. It is the generalization to arbitrary cases of the special relation (2.42) for
rectangular slabs. Later we should learn to write all sorts of elementary physics
relations like (2.42) in the more sophisticated vector notation. This notation is
useful not only because it makes the equations /look simpler. It also shows most
clearly the physical content of the equations without reference to any arbitrarily
chosen coordinate system.

2-7 Second derivatives of vector fields
So far we have had only first derivatives. Why not second derivatives? We
could have several combinations:
(@ Vv-(vVD)
(b) VvV X (VD)
© V(V-h (2.45)
@d v-(VXh
© vX((VXh

You can check that these are all the possible combinations.
Let’s look first at the second one, (b). It has the same form as

A X (AT) = (4 X A)T = 0,
since 4 X A is always zero. So we should have
curl (grad T) = v X (VvT) = 0. (2.46)

We can see how this equation comes about if we go through once with the com-
ponents:

[V X (vVT)].

]

Vx(VT)y - VV(VT)z
8 (aT d (aT
-3 -5 () @47

which is zero (by Eq. 2.8). It goes the same for the other components. So V X
(VT) = 0, for any temperature distribution—in fact, for any scalar function.
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Now let us take another example. Let us see whether we can find another
zero. The dot product of a vector with a cross product which contains that vector
is zero:

A-(4A X B) =0. (2.48)

because 4 X Bis perpendicular to 4, and so has no components 1n the direction A.
The same combination appears in (d) of (2.45), so we have

V. (V X k) = div (curl &) = 0. (2.49)

Again, it is easy to show that it is zero by carrying through the operations with
components.

Now we are going to state two mathematical theorems that we will not prove.
They are very interesting and useful theorems for physicists to know.

In a physical problem we frequently find that the curl of some quantity—say
of the vector field A—is zero. Now we have seen (Eq. 2.46) that the curl of a
gradient is zero, which is easy to remember because of the way the vectors work.
It could certainly be. then, that A4 is the gradient of some quantity, because then
its curl would necessarily be zero. The interesting theorem is that if the curl A4 is
zero, then A is always the gradient of something—there is some scalar field ¢ (psi)
such that A is equal to grad ¥. In other words, we have the

THEOREM:
If vXAaA=0
there is a v
such that 4 = Wy (2.50)

There is a similar theorem if the divergence of A4 is zero. We have seen in
Eq. (2.49) that the divergence of a curl of something is always zero. If you come
across a vector field D for which div D is zero, then you can conclude that D is
the curl of some vector field C.

THEOREM:
If v-D=20
there is a C
suchthat D = v X C. .51

In looking at the possible combinations of two ¥ operators, we have found
that two of them always give zero. Now we look at the ones that are not zero.
Take the combination v + (VT), which was first on our list. It is not, in general,
zero. We write out the components:

vl = v,T + v,T + V.T.
Then

v - (vT) VA(V,.T) + V,,(V,,T) + V.(V.T)

2 2 2
T 9T T , (2.52)
axz = 9y? az2
which would, in general, come out to be some number. It is a scalar field.

You see that we do not need to keep the parentheses, but can write, without
any chance of confusion,

V- (VI) = V- VI = (V- V)T = VT, (2.53)

We look at V2 as a new operator. It is a scalar operator. Because it appears often
n physics, it has been given a special name—the Laplacian.

32 92 8*

Laplacian = V2 = a_X—Q- + 5}§ + (;}—ZE . (254)
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Since the Laplacian is a scalar operator, we may operate with it on a vector—
by which we mean the same operation on each component in rectangular coor-
dinates:

VZh = (V2h,, Vihy, V7h,).

Let’s look at one more possibility: V X (V X h), which was (e) in the list
(2.45). Now the curl of the curl can be written differently if we use the vector
equality (2.6):

AX (BXC)=BA-C)— C(4-B). (2.55)

In order to use this formula, we should replace 4 and B by the operator V and
put C = h. If we do that, we get

VXEXBD=VV-h~—hv-Vv)..1

Wait a minute! Something is wrong. The first two terms are vectors all right
(the operators are satisfied), but the last term doesn’t come out to anything. It’s
still an operator. The trouble is that we haven’t been careful enough about keeping
the order of our terms straight. If you look again at Eq. (2.55), however, you see
that we could equally well have written it as

AX(BXC)= BAd-C)~ (4-B)C. (2.56)
The order of terms looks better. Now let’s make our substitution in (2.56). We get
VX (VXh=V(V-h—(V Vi 2.57)

This form looks all right. It is, in fact, correct, as you can verify by computing the
components. The last term is the Laplacian, so we can equally well write

VX (VXh=vV(Vh— Vi (2.58)

We have had something to say about all of the combinations in our list of
double V’s, except for (c), V(V - b). Itis a possible vector field, but there is nothing
special to say about it. It’s just some vector field which may occasionally come up.

It will be convenient to have a table of our conclusions:

(a) V- (VT) = V2T = a scalar field
() vX(¥VDI) =0

(¢) V(v -k = avector field

d VvV (vVXkh=0

€ VXVXhH=VvV-'h-—Vh
) (v:V)h = VZh = a vector field

(2.59)

You may notice that we haven’t tried to invent a new vector operator (V X V).
Do you see why?

2-8 Pitfalls

We have been applying our knowledge of ordinary vector algebra to the alge-
bra of the operator V. We have to be careful, though, because it is possible to go
astray. There are two pitfalls which we will mention, although they will not come
up in this course. What would you say about the following expression, that in-
volves the two scalar functions ¥ and ¢ (phi):

(V¥) X (v4)?
You might want to say: it must be zero because it’s just like

(4a) X (4b),
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which is zero because the cross product of two equal vectors A X A is always zero.
But in our example the two operators V are not equal! The first one operates on
one function, y; the other operates on a different function, ¢. So although we rep-
resent them by the same symbol Vv, they must be considered as different operators.
Clearly, the direction of ¥y depends on the function ¥, so it is not likely to be
parallel to V¢.

(Vy) X (V¢) = 0 (generally).

Fortunately, we won'’t have to use such expressions. (What we have said doesn’t
change the fact that v X V¢ = O for any scalar field, because here both ¥’s
operate on the same function.)

Pitfall number two (which, again, we need not get into in our course) is the
following: The rules that we have outlined here are simple and nice when we use
rectangular coordinates. For example, if we have V2k and we want the x-com-

ponent, it is
a2 Py Py )
(Vzh), = <—5; + 5;2“ + (—9“2—2) /lx = Vz}l,r. (260)
The same expression would nor work if we were to ask for the radial component
of V2h. The radial component of V2 is not equal to V24,. The reason is that
when we are dealing with the algebra of vectors, the directions of the vectors are
all quite definite. But when we are dealing with vector fields, their directions are
different at different places. If we try to describe a vector field in, say, polar coordi-
nates, what we call the “‘radial” direction varies from point to point. So we can
get into a lot of trouble when we start to differentiate the components. For ex-
ample, even for a constant vector field, the radial component changes from point
to point.

It is usually safest and simplest just to stick to rectangular coordinates and
avoid trouble, but there is one exception worth mentioning: Since the Laplacian
V2, is a scalar, we can write it in any coordinate system we want to (for example,
in polar coordinates). But since it is a differential operator, we should use it only
on vectors whose components are in a fixed direction—that means rectangular
coordinates. So we shall express all of our vector fields in terms of their x-, y-,
and z-components when we write our vector differential equations out in com-
ponents.
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